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encoded by azoB in Pigmentiphaga kullae K24
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Abstract

Background: Microbial degradation of azo dyes is commonly initiated by the reduction of the azo bond(s) by a
group of NADH or NADPH dependant azoreductases with many requiring flavin as a cofactor. In this study, we
report the identification of a novel flavin-free NADPH preferred azoreductase encoded by azoB in Pigmentiphaga
kullae K24.

Results: The deduced amino acid sequence of azoB from P. kullae K24 showed 61% identity to a previously
studied azoreductase (AzoA) from the same strain. azoB encoded a protein of 203 amino acids and heterologously
expressed in Escherichia coli. The purified recombinant enzyme was a monomer with a molecular mass of 22 kDa.
Both NADH and NADPH can be used as an electron donor for its activity with 4-(4-hydroxy-1-naphthylazo)
benzenesulfonic acid (Orange I) as substrate. The apparent Km values for both NADH and Orange I were 170 and
8.6 μM, respectively. The Km of NADPH for the enzyme is 1.0 μM. When NADPH served as the electron donor, the
activity of the enzyme is 63% higher than that when NADH was used. The pH and temperature optima for activity
of the enzyme with Orange I as the substrate were at pH 6.0 and between 37 and 45°C. Phylogenetic analysis
shows that AzoB belongs to the flavin-free azoreductase group which has a key fingerprint motif GXXGXXG for
NAD(P)H binding at the N-terminus of the amino acid sequences. The 3D structure of AzoB was generated by
comparative modeling approach. The structural combination of three conserved glycine residues (G7xxG10xxG13) in
the pyrophosphate-binding loop with the Arg-32 explains the preference for NADPH of AzoB.

Conclusion: The biochemical and structural properties of AzoB from P. kullae K24 revealed its preference for
NADPH over NADH and it is a member of the monomeric flavin-free azoreductase group. Our studies show the
substrate specificity of AzoB based on structure and cofactor requirement and the phylogenetic relationship
among azoreductase groups.

Background
Azo dyes are characterized by one or more azo bonds (R-
N = N-R) that allow visible light to be absorbed by the
dyes. These dyes are used in a wide variety of consumer
products including textile, paper, cosmetics, pharmaceu-
ticals, and food [1]. Azo dyes such as Sudan dyes are not
legal for use as colorants in foods, however, they recently
have been detected as contaminants in the food supply
[2]. The human health impact of exposure to azo dyes
used in certain food products has caused concern since
they may have genotoxic properties. The environmental

fate and subsequent heath effects of the azo dyes released
in textile and paper industry wastewater are increasing
being studied by the scientific community [3].
While azo dyes are generally considered to be persistent

pollutants because they are typically recalcitrant to aerobic
biotransformation [4,5], they may be metabolized by azor-
eductases from commensal microorganisms, mammalian
liver cells, and soil microorganisms [6]. A variety of micro-
organisms, including bacteria and fungi, are capable of
decolorizing a diverse range of azo dyes. Some bacteria
have the ability to degrade azo dyes both aerobically and
anaerobically [2,6]. Bacterial degradation of azo dyes is
often initiated by cleavage of azo bonds by azoreductases
which are followed by the aerobic degradation of the
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resulting amines [5]. Two types of oxygen-insensitive azor-
eductases have been identified in bacteria: one is mono-
meric flavin-free enzymes containing a putative NAD(P)H
binding motif and the other is polymeric flavin-dependent
enzymes [5]. The genes encoding oxygen-insensitive flavin
dependent azoreductases have been cloned from Bacillus
sp. OY1-2 [7], Escherichia coli [8], Enterococcus faecalis
[9], Rhodobacter sphaeroides [10], Pseudomonas aerugi-
nosa [11], and Staphylococcus aureus [12]. Biochemical
characteristics of bacterial FMN-dependent azoreductases
and the protein structures of several enzymes have been
recently determined [11-14]. Moreover, the role of specific
amino acid residues involved in flavin binding and cataly-
tic mechanism of oxygen-insensitive flavin dependent
azoreductase from E. faecalis has been analyzed [15].
Two monomeric flavin-free azoreductases from Xeno-

philus azovorans KF46F [16] and Pigmentiphaga kullae
K24 [17,18] have been described. However, little is
known about the structure and function of monomeric
flavin-free azoreductases from bacteria. P. kullae K24
was first described to contain oxygen-insensitive flavin-
free azoreductase. This soil bacterium was isolated by
long-term adaptation in the chemostat for growth on
Orange I as the sole source of carbon and energy [18].
As a part of structure and function study of monomeric
flavin-free azoreductases, we describe in this study the
cloning and identification of a gene, azoB, which
encodes a novel flavin-free NADH/NADPH dependent
oxygen-insensitive azoreductase from P. kullae K24.

Results
Cloning of an azoreductase gene (azoB) from P. kullae
K24
An azoreductase gene, designed as azoB, was amplified
from genomic DNA of P. kullae K24 by PCR using a

pair of primers (K24NEW-forward and -reverse) yielding
a DNA band of about 800 bp (812 bp) on agarose gel
(not shown). It was directly ligated to TA cloning vec-
tor, pCR2.1-TOPO. Sequencing of the insert revealed
that it contained 812 bp DNA fragment with a complete
ORF (azoB). azoB encoded a protein consisting of 203
amino acid residues of 21,295 Dalton. The deduced pro-
tein sequence of AzoB displayed 61% primary structure
identity to P. kullae K24 azoreductase A (AzoA) and
had three amino acid residues more in size than that of
the AzoA (AzoA, 200 amino acid residues, AY165002).
Three deletion and/or insertion differences between
these two protein sequences were found (Figure 1).

Functional expression of the azoreductase in E. coli
azoB was inserted via its unique NdeI and BamHI
restriction sites into corresponding sites of pET-11a.
The enzyme (AzoB) was functionally expressed as a
native enzyme without modification in E. coli with a
phage T7-promotor system. Crude-cell extracts were
prepared from cultures of E. coli BL21-Gold(DE3)pLysS
carrying the expression plasmid pAZOB, which had
been induced by the addition of 0.1 mM IPTG for 2.5 h.
Supernatant of the cell-extract from the induced culture
displayed an elevated level of azoreductase activity (2.9
U/mg) in comparison with that of the non-induced cul-
ture (undetectable), indicating that the enzyme was
induced and functionally expressed in the host.

Purification of AzoB of P. kullae K24 from the
recombinant E. coli
The azoreductase was purified from the supernatant of
the IPTG-induced recombinant E. coli by a combination
of hydrophobic interaction chromatographies and ion
exchange columns (Table 1). The enzyme was purified

Figure 1 Comparison of the deduced amino acid sequences of P. kullae K24 AzoB (top) and AzoA (bottom). Amino acid residues with an
identical match (letter) and those with different degrees of conservation (+) are indicated. The NADPH binding residues are boldfaced.
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nearly 3.5-fold with a yield of 45%, which allows the
proportion of the enzyme to be estimated at 28.7% of
the total protein present in the crude cell extract. The
specific activity of the purified P. kullae K24 AzoB was
10.1 U/mg protein using Orange I as the substrate.
SDS-PAGE analysis showed that the molecular weight
of the purified azoreductase was 22 kDa (Figure 2). Gel
filtration chromatography on a HiLoad Superdex 75 col-
umn conformed the molecular weight obtained by SDS-
PAGE. In comparison to that of AzoA (2.8 U/mg) from
P. kullae K24 the enzyme has a high specific activity
(10.1 U/mg). Only Orange I can be reduced by AzoB,

while Methyl Red, Amaranth, Ponceau BS, Ponceau S,
Orange II, Orange G, Megneson II, 1-(4-Nitropheny-
lazo)-2-naphthol, and 4-(4-Nitrophenylazo)-resorcinol
were not reduced. The purified AzoB is colorless and no
absorption spectrum of flavins was detected in the
enzyme solution.

Properties of the recombinant AzoB of P. kullae K24
Enzymatic reactions were carried out by varying the
concentration of one substrate and fixing the other sub-
strate concentration at the same time. Analysis of the
purified AzoB indicated the enzyme used both NADH
and NADPH for Orange I reduction. Apparent Km and
Vmax values were obtained from Lineweaver-Burk plots.
The Km values for NADH and Orange I are 170 and 8.6
μM, respectively (Table 2). When NADPH served as the
electron donor, the activity of the enzyme is 63% higher
than NADH. The Km of NADPH for the enzyme is
about 1.0 μM. When the enzyme activities were carried
out in 50 mM Sorensen’s phosphate buffer with differ-
ent pH values and Orange I as substrate, the optimum
pH was found to be around 6.0, as shown in Figure 3A.

Table 1 Summary of purification of azoreductase from
the recombinant E. colia

Step Total
protein (mg)

Total
activity (U)*

Specific activity
(U/mg)

Yield
(%)

Crude
cell-extract

258 750.5 2.9 100%

Phenyl
Sepharose FF

57.6 570.0 9.9 76%

HiPrep SP XL 33.2 334.3 10.1 45%
aActivities were determided with NADH as proton donor.

Figure 2 Purification of P. kullae K24 AzoB from the recombinant E. coli. Lane M, protein size markers; lane 1, extraction of the
recombinant E. coli; lane 2, ammonium sulfate deposition suspension; lane 3, pooled fractions with phenyl Sepharose FF; lane 4, fraction of
concentrated sample of the pooled fractions with phenyl Sepharose FF; lane 5, pooled fractions with HiPrep SP XL.
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Enzyme activities were measured under different tem-
perature from 25°C to 60°C. As shown in Figure 3B, the
optimum temperature of the enzyme was found to be
45°C.

In silico analysis of AzoB from P. kullae K24
Figure 4 shows the result of phylogenetic analysis for
azoreductases with the NAD(P)H binding domain infor-
mation. The tree shows three distinct groups for the 30
azoreductases or hypothetic azoreductases. The poly-
meric flavin-dependent enzymes were further divided

Table 2 Michaelis constants (Km) and maximal velocities
(Vmax) of recombinant AzoB of P. kullae K24 expressed in
E. coli.

Substrate Km (μM)* Vmax (U/mg protein)

NADPH 1.0 33

Orange I (NADPH) 3.0 36

NADH 170 17

Orange I (NADH) 8.6 22

* Data were presented by the averages from triplicate with standard
deviations of <10%;
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into two groups, NADPH-preferred and NADH-pre-
ferred azoreductases, respectively. Collectively, the first
is the polymeric flavin-dependent NADH-preferred
azoreductase group, which contains AzoA from E. faeca-
lis [9], AzoR from E. coli [14], etc. The second is the
polymeric flavin-dependent NADPH-preferred azoreduc-
tase group. Azo1 from S. aureus [12] and Azr from
Bacillus sp. OY1-2[7], etc. belong to this group. The
third group contains several monomeric flavin-free
NADPH-preferred azoreductases, such as AzoA from
strain K24 [17].
P. kullae K24 AzoB belongs to the flavin-free azoreduc-

tase group that displays over 39% sequence identity to
each in the third group, with the exception of AzoB from
X. azovorans KF46F, which shows very low sequence
identity with other azoreductases (< 14%). The PD values
within each group were less than 0.788. While the overall

degree of amino acid sequence identity between groups is
no more than 18%, members in each group show over
23% sequence identity to one another. A key fingerprint
motif for NAD(P)H binding was identified at the N-ter-
minus of the deduced amino acid sequences of the flavin-
free azoreductase group. Sequence alignment of flavin-
free azoreductases revealed three conserved Glys
(GXXGXXG) and an Arg that are known to govern dinu-
cleotide recognition [19,20]. In flavin-dependent
NADPH-azoreductase group, the majority of enzymes
show the glycine-rich pyrophosphate-binding motifs
GXGXXG or GXXGXXG (data not shown). However,
any type of glycine-rich pyrophosphate binding motifs
was not conserved in the protein sequences of flavin-
dependent NADH-azoreductase group.
3D structural model of AzoB from strain K24 was

constructed using the crystal structure (3DHN) of the

Figure 4 Grouping of 30 azoreductases or hypothetic azoreductases with conserved dinucleotide binding domain. The phylogenetic
tree, inferred using the Neighbor-Joining method, shows the relative position of AzoB among other azoreductases. Bootstrap values for 100
replicates are given. Protein sources and GenBank accession numbers are as follows. AzoA (AAR38851)_Enterococcus faecalis; AzoR (A4W2Z7)
_Streptococcus suis 98HAH33; AzoR2 (Q9CIH9)_Lactococcus lactis subsp. lactis; LMHCC_1847 (YP_002350802)_Listeria monocytogenes HCC23; AzrA
(AB263756)_Bacillus sp. B29; AcpD (YP_252301)_Staphylococcus haemolyticus JCSC1435; AcpD (YP_039668)_Staphylococcus aureus subsp. aureus
MRSA252; AcpD (YP_149218)_Geobacillus kaustophilus HTA426; YvaB (NP_391234)_Bacillus subtilis subsp. subtilis strain 168; YvaB (YP_001422634)
_Bacillus amyloliquefaciens FZB42; AzoR (AAG04174)_Pseudomonas aeruginosa PAO1; AZOR (Q8X9S9)_Escherichia coli O157:H7; AzoR (1V4B_A)
_Escherichia coli; Azo1 (AY545994)_Staphylococcus aureus ATCC 25923; Azo1 (Q4L3N6)_Staphylococcus haemolyticus JCSC1435; SERP0206
(YP_187802)_Staphylococcus epidermidis RP62A; AZR (ACF54629)_Staphylococcus cohnii AZR; L8106_10307 (ZP_01622489)_Lyngbya sp. PCC 8106;
GYMC10DRAFT_0416 (ZP_03036583)_Geobacillus sp. Y412MC10;Azr (AB032601)_Bacillus sp. OY1-2; YB0110 (AY150311)_Rhodobacter sphaeroides;
AZR (AB071368)_Bacillus subtilis ISW1214; AZR (AB071367)_Geobacillus stearothermophilus IFO13737; AzoB (GQ247527)_Pigmentiphaga Kullae K24;
AzoA k24 (AY165002)_Pigmentiphaga Kullae K24; EU307209 (ACA34616)_Erwinia chrysanthemi; RSMK02502 (YP_002254667)_Ralstonia
solanacearum MolK2; H16_A2352 (YP_726815)_Ralstonia eutropha H16; RALTA_A1896 (YP_002005902)_Cupriavidus taiwanensis strain LMG 19424;
AzoB (AF466104)_Xenophilus azovorans KF46F.
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putative epimerase from Bacteroides thetaiotaomicron as
a template. RMSD (Ca) of the AzoB model (202 amino
acids) superimposed on the 3DHN (216 amino acids) is
0.405 Å, in which 197 amino acid residues were aligned
with 42% sequence identity. In AzoB, the pyropho-
sphate-binding loop of three conserved glycine residues
arranged as G7xxG10xxG13 connects the C-terminus of
b1 with the N-terminus of a1 (Figure 5A and 5B). Espe-
cially, Arg is in a favorable position for interaction with
the monophosphate at the 02’ position of adenine ribose
in NADPH (Figure 5B) [19].
In SAS analysis of AzoB, three bacterial unknown

functional proteins, 3DHN from B. thetaiotaomicron,
3EW7 from Listeria monocytogenes, and 3H2S from Lac-
tobacillus casei showed the highest Smith-Waterman
scores with sequence identity of 43%, 35.3%, and 32%,
respectively. Despite a relatively low sequence identity
(28%) with amino acid overlap of 205, a human biliver-
din IXb reductase (BVR-B, 1HDO), which is an early
fetal bilirubin IXb producing enzyme, shows appreciable
overall alignment of secondary structure with AzoB.
RMSD of 1HDO (205 amino acids) superimposed on
AzoB (202 amino acids) is 1.41 Å on 165 residues
aligned with 17% sequence identity [21].

Discussion
In our effort to study the three dimensional structure of
flavin-independent azoreductase and mechanism of azo
dye reduction by the enzyme, we characterized a novel

azoreductase gene encoding a flavin-free azoreductase
from P. kullae K24. Cell-extract from the recombinant
P. kullae K24 AzoB revealed an azoreductase activity of
6-fold higher than that of cell-extract from the recombi-
nant AzoA. The specific activity of the purified AzoB is
about 3-fold higher than that of AzoA. These data
demonstrated that AzoB is facile to be expressed and
the enzyme is very efficient in reducing Orange I com-
pared to AzoA from P. kullae K24 [17]. Among the
tested azo dyes, AzoB is only able to reduce Orange I
and not the monoazo dye Magneson II. On the other
hand, AzoA has minor activity against Magneson II
(13% of that Orange I).
AzoB requires 2 mol of NADPH as four electron

donor for the complete reductive cleavage of Orange I
to sulfanilic acid and 1-amino-4-naphthaol. Attempts to
orient NADPH in AzoB were guided by two criteria.
First, the three conserved glycine residues Gly-7, 10, and
13 interact with the pyrophosphate of NADPH. Second,
Arg-32 interacts with the 2’-phosphate, providing an
anchor for the 2’-phophate-AMP half of NADPH, defin-
ing the coenzyme specificity. The presence of at least
one Arg side chain in the vicinity of the 2’-phosphate of
NADP is a common feature of NADP dinucleotide bind-
ing fold complex [20]. In contrast, it is known that
NAD- and FAD-binding Rossmann fold proteins have
an acidic amino acid residue of Asp or Glu in the posi-
tion where the functional group carboxylate hydrogen
bonds to the 2’ hydroxyl of the adenine ribose [19]. The

Figure 5 Structural representation of P. kullae K24 AzoB for dinucleotide binding. A, shows cartoon structure of AzoB, in which the key
residues for NADPH binding are colored. B, in the AzoB-NADPH complex, there is a wide exposed cleft adjacent to the nicotinamide moiety. C,
the alignment of the glycine-rich pyrophosphate-binding sequences from the enzymes studied. The secondary structure assignment is based on
the AzoB. The residues related to NADPH binding are boxed.
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information addresses the limitation on availability of
NADH in AzoB, although the enzyme utilizes both
NADH and NADPH. As shown in Figure 5, when
bound in the active site of AzoB, the nicotinamide ring
of NADPH is located in a cleft large enough to accept
the substrate Orange I. The suggested NADPH binding
mode and putative substrate binding site of the AzoB:
NADPH binary complex support the idea that AzoB
joins two substrates, Orange I and NADPH, together, in
the active site, in which the reaction center of Orange I
lies near to the reactive C4 of the NADPH, an appropri-
ate position for direct hydride transfer rather than a
proton-relay catalytic reaction. Bibliomic data strongly
supports the proposed catalysis model [21]. A human
monomeric NADPH-dependent biliverdin IXb reductase
(BVR-B), with its overall structure that is closely related
to AzoB, has adopted the same reaction mechanism, in
which the substrates, NADPH and biliverdin share a
common binding site for direct hydride transfer from
the C4 of the dinucleotide [21].
There is a clear correlation between structure, cofac-

tor requirement, and substrate specificity in azoreduc-
tases. Among the tested azo dyes, AzoB is only able to
degrade Orange I, and other monomeric flavin-free
azoreductases also show very narrow substrate specifi-
city [17,22]. On the other hand, polymeric flavin-depen-
dent azoreductase families can catalyze substrates which
vary in both chemical nature and size
[5,7,9,12,13,23,24]. Structural characteristics in the active
sites appear to dictate the substrate diversity of the
enzymes. For example, the dimeric AzoA from E. faeca-
lis has two separate active sites located at the interfaces
between the two monomers, and FMN lies inside each
active site, in which si face of the isoalloxazine ring pro-
vides room for both NAD(P)H and substrate binding for
the sequential transfer of four electrons from NAD(P)H
to the substrate via FMN [15,25]. The enzyme is not
only able to decolorize Methyl Red, but is also able to
convert sulfonated azo dyes Orange II, Amaranth, Pon-
ceau BS, and Ponceau S. On the other hand, AzoB has
a relatively small substrate binding site, which simulta-
neously accepts both the nicotinamide ring of NADPH
and the substrate in the catalytic cycle. Moreover, the
demands for successful direct hydride transfer between
the two substrates require more sophisticated binding
mode. Presumably because of these constraints, the
number of substrates catalyzed by the monomeric azor-
eductases is limited. A survey of the efficiency of var-
ious azo dyes as substrate for an Orange II flavin free
azoreductase from X. azovorans KF46F revealed that a
hydroxygroup in the 2-position of the naphthol ring of
azo dyes is required and it is only able to reduce
Orange II and its analogues [16,22]. AzoA from P. kul-
lae K24 converted only azo dyes that carried a hydroxyl

group in the 4-position of the naphthol ring relative to
the azo group [18].
Bacterial oxygen-insensitive azoreductases can be clas-

sified into at least three distinct non-homologous
groups, based on structure, flavin dependency, and dinu-
cleotide preference. Phylogenetic analysis also mirrors
well the grouping scheme at the molecular level. The
cofactor preference further divides the polymeric azore-
ductases into two different groups, and the third group
is strikingly different from the two polymeric azoreduc-
tase groups in respect of both its structural and bio-
chemical requirements for catalytic process. Based on its
biochemical and phylogenetic relationship, the enzymes
of monomeric azoreductase group seem to have a differ-
ent origin but have developed towards the same chemi-
cal function of azoreduction, suggesting convergent
evolution. Nevertheless, significant difference in bio-
chemistry and structure indicates that the monomeric
azoreductase group has adopted different catalytic stra-
tegies from that of the polymeric azoreductase groups.

Conclusion
AzoB from strain K24 is a member of the monomeric
flavin-free NADPH-preferred azoreductase group. Bio-
chemical analysis and homology modeling studies of
AzoB demonstrated how NADPH is recognized and
oriented in the active site. Our data indicated a narrow
substrate specificity of the enzyme. Phylogenetic analysis
revealed that the oxygen-insensitive azoreductases can
be divided into three distinct groups. Further investiga-
tions on the protein crystallization and mutant experi-
ments to obtain decisive proof of the proposed
biochemistry of AzoB from strain K24 are warranted.

Methods
Bacterial strains, plasmids, and growth conditions
P. kullae K24 ATCC BAA-795 was grown in Trypticase
Soy Broth (TSB) or on TSB agar plates at 30°C for 48 h
and used for inoculum and genomic DNA preparation.
E. coli TOP10F’ (Invitrogen), NovaBlue (DE3) (Nova-
gen), and BL21-Gold(DE3)pLysS (Stratagene) were used
for recombinant DNA studies. E. coli strains were cul-
tured at 37°C in Luria-Bertani (LB) medium with appro-
priate antibiotics (50 μg/ml). The plasmids pCR2.1-
TOPO (Invitrogen) and pET-11a (Stratagene) were used
for cloning and expression, respectively.

Cloning of P. kullae K24 azoB gene and expression of
AzoBin E. coli
Genomic DNA of P. kullae K24 was isolated based on a
similar method described by Wang et al. [26]. Plasmids
from E. coli Top10F’ and NovaBlue (DE3) were isolated
using a Qiaprep Spin Miniprep kit (Qiagen). A DNA
fragment containing the putative P. kullae K24
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azoreductase gene was obtained by PCR with the geno-
mic DNA of P. kullae K24 as template. The forward pri-
mer included an NdeI site before the start codon: 5’-
gattcatatgaatatcgccatcatcggc-3’ (K24NEW-forward). The
reverse primer included a BamHI site down stream of
azoB: 5’-cgggatccgcgctgatggccaagaggcc-3’ (K24NEW-
reverse). The PCR primers were designed based on Gen-
Bank accession number AY165002. PCR was performed
in a Mastercycler gradient (Eppendorf) and amplification
conditions were one cycle of 95°C for 3 min, 30 cycles
with each cycle including 30 s of melting at 95°C, 40 s
of annealing at 50°C, and 60 s of extension at 72°C, and
one final extension cycle at 72°C for 15 min. The ampli-
con was examined by 1.5% agarose gel electrophoresis.
The amplicon recovered from the gel was directly

cloned into pCR2.1-TOPO vector and sequenced. For
over-expression of native AzoB in E. coli, the amplicon
was cleaved with NdeI and BamHI (New England Bio-
Labs). The digested DNA was purified from agarose gel
and ligated into pET-11a with a rapid DNA ligation kit
(Roche). The resulting plasmid pAZOB was transformed
to E. coli NovaBlue (DE3). The plasmids (pAZOB) were
subsequently isolated and introduced into E. coli BL21-
Gold(DE3)pLysS. DNA sequence analysis, translation,
and alignment with related genes and proteins were car-
ried out using the Lasergene program (Version 8,
DNASTAR). The GenBank program BLAST was utilized
to find similar genes or proteins.

Enzyme assay
Azoreductase activity was measured spectrophotometri-
cally by monitoring the reduction of Orange I at 482
nm (�482 = 22.3 mM/cm) at room temperature. The
reaction mixture was in 1.0 ml 50 mM potassium phos-
phate buffer (pH 6.8), containing 200 μM NADH or
NADPH, 25 μM Orange I, and the enzyme. One unit of
activity was defined as the amount of enzyme needed
for the reduction of 1 μmol Orange I per min. Proteins
were quantified using the bicinchoninic acid assay
(Pierce) with bovine serum albumin (BSA) as the stan-
dard. Some azo dyes including Methyl Red, Amaranth,
Ponceau BS, Ponceau S, Orange II, Orange G, 4-(4-
Nitrophenylazo)-1-naphhol (Magneson II), 1-(4-Nitro-
phenylazo)-2-naphthol, and 4-(4-Nitrophenylazo)-resor-
cinol also served as substrates.

Purification of azoreductase of P. kullae K24from the
recombinant E. coli
Induction of target protein was performed using a simi-
lar procedure as described previously [9]. Protein purifi-
cation was performed at 4°C using an AKTApurifier 10
system with UNICORN 4.10 software (GE Healthcare).
Three liters of the recombinant strain culture was cen-
trifuged at 3,200 × g, 10 min. The collected cells were

disrupted by freezing and thawing followed by 5 min
sonication at 4°C with a vibracell VCX 400 model soni-
fier. Cell debris was removed by centrifugation at 12,000
× g for 10 min. Azide was added to the supernatant
(crude enzyme) to a final concentration of 0.02% (w/v).
Ammonium sulfate was added to the crude enzyme to a
final concentration of 0.5 M. The mixture was centri-
fuged and filtered using a 0.2 μm syringe filter. The
enzyme was applied to a HiPrep 16/10 phenyl FF col-
umn. The column was eluted as follows: (1) 40 ml of
0.5 M (NH4)2SO4, (2) 40 ml of 0.05 M (NH4)2SO4, and
(3), 40 ml of water. All of the active fractions were col-
lected, concentrated and diluted by 20 mM phosphate
buffer (pH 6.8). The fraction was applied to a SP XL
column. The column was eluted as follows: (1) 40 ml of
20 mM phosphate buffer, (2) 40 ml of linear gradient to
0.2 M NaCl, (3) 40 ml of 1 M NaCl. All of the active
fractions were collected.

SDS-PAGE analysis
SDS-PAGE was carried out in Laemmli’s buffer [27]
with 12.5% polyacrylamide. Perfect protein markers
(Novagen) were used. Electrophoresis was performed in
a Hoefer SE 260 Mighty Small II Mini Vertical Unit (GE
Healthcare). Gels were stained for proteins with Coo-
massie brilliant blue R-250 (Bio-Rad).

Apparent kinetic constants of azoreductase from the
recombinant E. coli contained azoB gene from P. kullae
K24
Initial velocities of the enzymatic reaction were per-
formed by varying concentrations of one substrate,
Orange I (from 1.5 to 15 μM) or NADH/NADPH (from
0.07 to 0.7 mM), while the concentration of the other
substrate was kept constant (NADH/NADPH: 1 mM or
Orange I: 30 μM). Apparent Km and Vmax values were
obtained from Lineweaver-Burk plots.
As for the optimum pH, the enzyme activities were

carried out in 50 mM Sorensen’s phosphate buffer with
pH values ranging from pH 4.6 to pH 7.6. To determine
the optimum temperature of the enzyme, optical density
(OD 482 nm) was detected before NADH/NADPH was
added to the mixture. When NADH/NADPH was added
(200 μM), the mixture was incubated at different tem-
perature (25°C, 30°C, 37°C, 40°C, 45°C, 50°C, 55°C, and
60°C) for 5 min, and then the optical density (OD 482

nm) was detected immediately.

In silico analysis
ClustalX [28] was used to obtain multiple sequence
alignments, which the grouping and comparison of azor-
eductases were conducted in ClassRHO [29]. Phyloge-
netic analyses were conducted in MEGA4 [30]. The
homology model of AzoB was generated using the
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Swiss-Model server [31] with the 3DHN as a template.
Basic structure validation was checked using PRO-
CHECK (European Bioinformatics Institute, Cambridge,
U.K). The pocket volumes of AzoB were measured
using both CASTp [32] and Pocketfinder http://
bmbpcu36.leeds.ac.uk/pocketfinder. SAS (Sequence
Annotated by Structure, http://www.ebi.ac.uk/thornton-
srv/databases/sas/) was used to apply structural informa-
tion to AzoB amino acid sequence. RMSD (Root-Mean-
Square-Deviation) was calculated by SuperPose (Ver.
1.0) [33]. PyMOL (0.99RC6, http://www.pymol.org) was
used to visualize the 3D structures.

Nucleotide sequence accession number
The nucleotide sequence of azoB of P. kullae K24 has
been assigned accession number GQ247527 in GenBank
database.
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