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Abstract

To determine if nuclear factor-kB (NF-kxB) activation may be a key factor in lung inflammation and
respiratory dysfunction, we investigated whether NF-xB can be blocked by intratracheal
administration of NF-xB decoy oligodeoxynucleotides (ODNs), and whether decoy ODN-
mediated NF-«kB inhibition can prevent smoke-induced lung inflammation, respiratory dysfunction,
and improve pathological alteration in the small airways and lung parenchyma in the long-term
smoke-induced mouse model system. We also detected changes in transcriptional factors. In vivo,
the transfection efficiency of NF-kB decoy ODNSs to alveolar macrophages in BALF was measured
by fluorescein isothiocyanate (FITC)-labeled NF-kB decoy ODNs and flow cytometry post
intratracheal ODN administration. Pulmonary function was measured by pressure sensors, and
pathological changes were assessed using histology and the pathological Mias software. NF-xB and
activator protein | (AP-1) activity was detected by the electrophoretic motility shift assay (EMSA).
Mouse cytokine and chemokine pulmonary expression profiles were investigated by enzyme-linked
immunosorbent assay (ELISA) in bronchoalveolar lavage fluid (BALF) and lung tissue homogenates,
respectively, after repeated exposure to cigarette smoke. After 24 h, the percentage of transfected
alveolar macrophages was 30.00 * 3.30%. Analysis of respiratory function indicated that
transfection of NF-kB decoy ODNs significantly impacted peak expiratory flow (PEF), and
bronchoalveolar lavage cytology displayed evidence of decreased macrophage infiltration in airways
compared to normal saline-treated or scramble NF-kB decoy ODNs smoke exposed mice. NF-kB
decoy ODNs inhibited significantly level of macrophage inflammatory protein (MIP) la and
monocyte chemoattractant protein |(MCP-1) in lung homogenates compared to normal saline-
treated smoke exposed mice. In contrast, these NF-kxB decoy ODNs-treated mice showed
significant increase in the level of tumor necrosis factor-a(TNF-a) and pro-MMP-9(pro-matrix
metalloproteinase-9) in mice BALF. Further measurement revealed administration of NF-kB decoy
ODNs did not prevent pathological changes. These findings indicate that NF-kB activation play an
important role on the recruitment of macrophages and pulmonary dysfunction in smoke-induced
chronic lung inflammation, and with the exception of NF-kB pathway, there might be complex
mechanism governing molecular dynamics of pro-inflammatory cytokines expression and structural

changes in small airways and pulmonary parenchyma in vivo.
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Introduction

Extensive exposure to cigarette smoke is a principal risk
factor associated with chronic obstructive pulmonary dis-
ease (COPD). COPD is a complex inflammatory disease
involving numerous inflammatory cell types, which have
the capacity to release multiple inflammatory mediators.
An increase in expression of many of these mediators
translates to activation of an inflammatory cascade
involving cytokines, chemokines, growth factors,
enzymes, receptors, and adhesion molecules [1-4]; spe-
cific to COPD are increased levels of tumor necrosis fac-
tor-a (TNFa), interferon-y(IFNy), interleukin-8(IL-8),
macrophage inflammatory protein 1o(MIP-1at), mono-
cyte chemoattractant protein 1(MCP-1), GROq, and
matrix metalloproteinase(MMP)-9 [1-4].

NF-«B is a family of critical transcription factors regulating
many cytokines, including IL-8, IL-6, TNF-a, GM-CSF,
MIP-1, and MCP-1 [5], as well as MMP-9 expression [6].
In the past few years, five mammalian NF-xB family mem-
bers have been identified and cloned [7-9]. These include
NF-xB1 (p50/p105), NF-kB2 (p52/p100), RelA (p65),
RelB, and c-Rel. In resting cells NF-kB is retained in the
cytoplasm due to inhibitory protein (I-xB) binding. When
the cell is appropriately stimulated, I-kB degradation
results in the ability of NF-«B to recognition nuclear local-
ization signals of p65, thus it is rapidly transported into
the nucleus where it binds to specific kB recognition ele-
ments in the promoters of target genes [10]. Chronic
exposure to cigarette smoke causes cellular oxidative
stress, a key feature in smoking-induced lung inflamma-
tion [11-13], and oxidative stress (particularly hydrogen
peroxide) can enhance the DNA binding activity of NF-xB
[14].

It has been demonstrated in humans and animal models
that smoke-induced chronic pulmonary inflammation is
associated with increased NF-kB activity in lung cells.
Enhanced NF-xB activation has been observed in bron-
chial biopsies from smokers, macrophages from COPD
patients and in guinea pigs exposed to cigarette smoke,
with a subsequent increase in IL-8 release [15-17]. During
the past few years, tremendous progress has been achieved
in our understanding on how intracellular signaling path-
ways are transmitted in either a linear or a network man-
ner leading to the activation of NF-«xB and airway
inflammation control [18-20]. However, a detailed role in
long-term smoke-induced inflammation and the impact
of NF-«B inhibition on histology and airflow obstruction
has yet to be determined. Therefore, we have used NF-xB
decoy ODNs to block NF-«kB activity in mouse lung during
long-term smoke exposure. It is well known that transfec-
tion of cis-element double-stranded oligodeoxynucle-
otides (decoy) has been identified as a powerful tool in a
new class of anti-gene strategies for gene therapy and

http://respiratory-research.com/content/10/1/79

research [21]. Transfection of decoys corresponding to a
specific cis sequence results in the attenuation of endog-
enous cis-elements, and subsequent modulation of gene
expression [21,22].

We hypothesized that in the long-term smoke-induced
mouse model double-stranded ODNs decoy to NF-xB
would suppress the pulmonary expression levels of
inflammation-related genes and MMP-9/TIMP-1 gene
that may play a role in the development of emphysema.
The other purpose of this study was to assess the potential
of NF-kB decoy ODNs to histological influence. Based on
the evidence that early structural changes may occur in
peripheral airways of smokers before COPD [23], we fur-
ther measured small-airway changes. Since NF-xB and AP-
1 may regulate each other [24], both of NF-xB and AP-1
activities were measured after intratracheal administration
of NF-kB decoy ODNs in 92 day smoke-induced mice.
Therefore, the present study was performed to determine
the effects of NF-kB decoy ODNs on lung inflammation
and pathological changes in the cigarette smoke-induced
animal model.

Materials and methods

NF-xB decoy ODNs

Double-stranded NF-kB decoy ODNs containing the con-
sensual NF-xB binding site (5'-GGGATITCCC-3') were
generated using equimolar amounts of single-stranded
sense and antisense phosphorothioate-modified ODNs
(sense strand: 5'-CCT TGA AGG GAT TTC CCT CC-3') as
previously described [25]. Briefly, synthetic single-
stranded ODNs were dissolved in sterile STE buffer (10
mM Tris, 1 mM EDTA, 100 mM NaCl, pH 8.0), purified by
PAGE and quantified by SDS gel electrophoresis (AuGCT
company, Beijing, China). Single-stranded ODNs were
then annealed for 3 h, during which time the temperature
was reduced from 94°C to 25°C. Double-stranded scram-
bled ODNs were used as negative controls (sense strand:
5'-TTG CCG TAC CTG ACT TAG CC-3') [25]. In the flow
cytometry experiment, the sense and antisense NF-kB
decoys ODN were modified with FITC labels at both the
5'and 3'end.

Animals

Male C57/BL6 mice (6-8 weeks of age, 20 + 0.5 g, Beijing
University Animal Center, Beijing, China) were divided
into 3 groups, treated for 92 days smoke exposure and
started intratracheal instillation on 52 days, administered
every 10 days, a total of 4 times: 1 decoy group (n = 8):
smoke-exposed followed by intratracheal instillation of
NF-kB decoy ODNs (15 nmol in 30 pl of STE buffer/
mouse); and negative controls 2 NS group (n = 8): smoke-
exposed followed by intratracheal instillation of sterile
normal saline (0.9%NS, 30 pl/mouse); and 3 Scr group (n
= 8): smoke-exposed followed by intratracheal instillation
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of scrambled ODNs (15 nmol in 30 pl of STE buffer/
mouse). In order to recognize pulmonary function before
intratracheal instillation, an additional test has been
done, in which 20 mice were divided into 2 groups and
treated for 52 days 4 sham group (n = 10): air exposure; 5
smoke-exposed group (n = 10): smoke exposure. These
time points were chosen from previous data generated by
our group [26,27].

In experiments aimed at NF-kB decoy localization, intrat-
racheal administration to smoke-exposed mice (for 52
days) was performed with FITC-labeled ODNs after 3 h,
24 h, 3 days and 7 days. All animal experimentation was
approved by the Local Ethical Committee of Peking Uni-
versity, China.

Chronic exposure to cigarette smoke

Mice were whole-body exposed to cigarette smoke gener-
ated from commercial cigarettes in 300 L inhalation
chambers (Derby, USA. Tar = 13 mg, cotinine = 1.2 mg,
CO = 15 mg per cigarette). Actual smoke generation
method was designed by Masanori Nishikawa, as
described previously [16]. The exposure regime consisted
of two sessions of 5 cigarettes/hr, interrupted by a 10 min
rest period. The exposure regime was conducted twice
daily with a minimal four hour interval between sessions,
6 days/week. Carbon monoxide concentration was ranged
between10% and 12% after exposure [28], and the mice
appeared grossly normal during the entire experimental
period. Chamber concentrations of CO were 400-501
ppm (measured by Infrared Gas Analyzer, MODEL GXH-
3050A) and particulates (PM10) were 7.88-8.28 mg/m3
(measured by Respirable Aerosol Mass Monitor, MODEL
3511). Animals were maintained on a 12 h light/dark
cycle with free access to conventional laboratory food and
water. Mice were sacrificed at 24 hour after the last expo-
sure regime.

Respiratory function

After 52 or 95 days of smoke exposure, mice were anaes-
thetized by intraperitoneal injection with 1% sodium
pentobarbital, and then intubated endotracheally using
improved scalp needles. Respiratory function was meas-
ured using an Animal Ventilator (Biolab) connected to a
pressure sensor. Peak inspiratory flow (PIF) and peak
expiratory flow (PEF) were measured, and data were ana-
lyzed using Chart 4.1 software.

Bronchoalveolar lavage cytology, and cytokine assays

On day 95 of the smoke exposure regime, after exsanguin-
ation by severing the abdominal aorta, mouse lungs were
sequentially lavaged twice with 0.5 ml of Hank's balanced
salt solution (HBSS). Recovered aliquots of BALF were
pooled. Bronchoalveolar lavage (BAL) cells were pelleted
by centrifugation at 1,000 rpm for 8 min. Cell differentials
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were performed on cytospin preparations stained with
Wright-Giemsa, and a total of 200 cells were counted.
Supernatant was stored at -80°C. Supernatant TNF-o and
IL-6 concentrations were measured using a commercially
available ELISA kit (Jingmei Company, Shenzhen, China)
according to the manufacturer's specifications. The con-
centration of pro-MMP-9 was detected in the supernatant
of BALF as a commercial kit for MMP-9 was not available
[29]. Pro-MMP-9 and TIMP-1 levels were detected using
ELISA kits (R&D systems, catalog number: MMP900,
MTM100, respectively). The detection limit of TNF-q, IL-
6, pro-MMP-9 and TIMP-1 were 7 pg/ml, 4 pg/ml, 3 pg/ml
and 1.4 pg/ml, respectively.

Tissue Processing

Lungs were excised from mice, and the right lobe was tied
off, harvested, washed with 4°C PBS solution, weighed
and snap-frozen in liquid nitrogen. The left lobe was
inflated with 0.25 ml of 4% paraformaldehyde and
immersed in fresh 4% paraformaldehyde for 12 h. Tissues
were embedded in paraffin and stained with hematoxylin
and eosin (H&E).

Preparation and analysis of lung homogenates for
chemokine determination

MCP-1 and MIP-1a concentrations were measured in
lung homogenates collected from 95 day smoke-exposed
mice. The nitrogen-snap frozen portion of the right lung
was cut into small pieces and placed in 4 °C PBS solution
at 4 ml/g [30], and homogenized on ice (homogenizer:
Ingenieurbiiro CAT. M. Zipperer GmbH, Germany) for 20
sec at 6,000 rpm three times. Homogenates were centri-
fuged at 10,000 x g at 4°C and stored at -80° C until MCP-
1 and MIP-1a levels could be determined by FlowCy-
tomix (BMS8440FF, Bender MedSystems). The limitaton
of detection of MCP-1 and MIP-1a concentration were 50
pg/ml and 17 pg/ml, respectively.

Morphologic and Morphometric Analyses

Intra-alveolar macrophages from H&E stained lung sec-
tions in the terminal bronchiole region were counted at
400x magnification by two independent observers in a
blind study. Results were expressed as the number of mac-
rophages/mm? [31].

Quantification of airspace enlargement was determined
by mean linear intercept (Lm) ([32-36]) and mean alveo-
lar surface (Am). The measurement of Lm was performed
by using a 100x100 um grid that was randomly posi-
tioned in the lung. The length of each grid line, divided by
the number of alveolar intercepts, yielded the average dis-
tance between alveolated surfaces, or the Lm. The same
image was used to measure the Am. An alveolus or air-
space is defined as the space surrounded by the alveolar
wall, which in the case of an alveolus opening into a duct
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ends at the mouth of the alveolus. The surface of an air-
space cross-section was calculated and divided by the
number of alveoli to obtain the Am.

The destruction of alveolar walls was quantified by the
destructive index (DI) [32]. Briefly, a grid with 42 hairline
crosses was superimposed on the lung field. Structures
lying under the cross-points were classified as normal (N)
or destroyed (D) alveolar and/or duct spaces. Points fall-
ing over other structures, such as duct walls, alveolar
walls, etc., were not considered in the calculations. The DI
was calculated using the following formula:

DI =D /(D +N)x100

Analysis of small airways fibrosis and inflammation
Masson trichrome stain was used on consecutive tissue
sections as a further means to identify fibroblasts and was
carried out using Masson trichrome staining Kit (BASO
Co., Tai wan) according to the manufacturer's instruction.
Lung sections were processed for Masson's trichrome
staining to detect collagen and elastin, and analyzed by
two separate pathologists in a blinded fashion. Small air-
way fibrosis and inflammation scores were determined as
described before [37].

Flow cytometry

Localized FITC-labeled NF-xB decoys in macrophages
were detected in BALF collected from 52 day smoke-
exposed mice after FITC-labeled ODNs or 0.9% NS
administration at 24 h, 3 days and 7 days. BALF cells were
harvested by sequentially lavaging mouse lungs twice with
0.5 ml of HBSS containing 2 mM EDTA and were assayed
for non-vitality by staining with 0.4% trypan
blue(Sigma). Then the cells were pelleted by centrifuga-
tion at 800 rpm for 8 min, differentiated as described
above and filtered through nylon mesh prior to flow
cytometry analysis. Cells were incubated (for 30 min on
ice in PBS containing 2% Bovine Serum Albumin, 0.1%
Sodium azide) with either PE-conjugated anti-mouse F4/
80 (Serotec, MCA497PE) or PE-conjugated anti-mouse
IgG antibody as a isotype control (BD Pharmin-
gen,553989). Cells were washed, fixed with paraformal-
dehyde (0.25%), and analyzed using a FACSCalibur (BD
Biosciences, San Jose, CA, USA).

Nuclear Protein Extraction

Fresh snap-frozen mouse lung tissue was weighed, cut
into small pieces, and homogenized directly in Cytoplas-
mic Extraction Reagent I (Pierce, 78833). The mix solu-
tion was vortexed vigorously on the highest setting for 15
sec to resuspend the cell pellet, then incubated on ice for
10 min. Ice-cold Cytoplasmic Extraction Reagent II (11
ml) was added to the mix solution, vortexed for 5 sec on
the highest setting and incubated on ice for 1 min. The
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mix solution was centrifuged for 5 min at 16,000 x g, and
the supernatant was collected in a clean pre-chilled tube.

The nuclei pellet was resuspended on ice in 100 pl of ice-
cold Nuclear Extraction Reagent, and vortexed for 15 sec
every 10 min for 40 min. The sample tube was centrifuge
at 16,000 x g for 10 min, and the supernatant (nuclear
extract) was collected in a clean pre-chilled tube and
stored at -80°C.

Electrophoretic Motility Shift Assay

Binding reactions were established in 20 pl of binding
buffer from the Pierce LightShift Chemiluminescent
EMSA Kit (Pierce,20148) using 5 pg of nuclear extract pro-
tein per reaction for the consensus probe 5'-biotin
labeled: NF-xB 5'-AGT TGA GGG GAC TIT CCC AGG C-
3'; AP-1 5'-CGC TTG ATG AGT CAG CCG GAA-3'. Sam-
ples were electrophoresed through a 5% polyacrylamide
gel for 50 min at 4°C and then transferred to a positively
charged nylon membrane for 30 min. DNA was UV cross
linked to the membrane, and the membrane was blocked
for 15 min by incubation in LightShift Blocking Buffer
with gentle shaking. The membrane was then incubated
in conjugate/blocking buffer solution for 15 min, washed
4 times for 5 min each in 10 ml LightShift Substrate Equi-
libration Buffer, followed by incubation in Washing
Buffer for 5 min with gentle shaking a total of 4 times.
Electrophoretic mobility shifts were visualized using
enhanced chemiluminescence solution (Pierce, 20148).
The binding bands and probe were analyzed using Kodak
software.

Protein Assay
Protein concentrations in lung homogenates were deter-
mined using the bicinchoninic acid (BCA) method.

Statistical Analysis

All values given represent mean + standard deviation
(STD). Nonparametric Mann-Whitney U-test was used to
assess the statistical significance of differences between
the groups. Correlations between the BAL analysis data
and the MCP-1, MIP-1a levels were assessed with the non-
parametric Spearman correlation test. For each analysis, P
values less than 0.05 were considered to be statistically
significant. Statistical analyses were performed by using
the Statistical Package for the Statistical Analysis System
8.1(SAS, Cary, NC, USA).

Results

Respiratory function was unaltered after 52 days of smoke
exposure

Respiratory function in the smoke-exposed mouse group,
as measured with an animal ventilator and connected
pressure sensor, was not affected after 52 days of exposure
to smoke when compared to sham controls, as illustrated
in Table 1.
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Table I: Respiratory Function in Cigarette Smoke-Exposed Mice
(persistent exposure to smoke for 52 days) and Sham Mice
(exposure to air).

Test Exposure MEAN £ STD(L/S) P.> Chi-Square

PIF sham 1.70 £ 0.67 0.7393
smoke 1.76 + 0.39

PEF sham 7.09 £ 0.39 0.9558
smoke 7.07 £ 0.24

The data were expressed as means + STD and analyzed by using the
Mann-Whitney U-test. Statistical significance was accepted at P <
0.05.PIF: peak inspiratory flow; PEF: peak expiratory flow. n = 10—15/

group.

Administration of NF-xB decoy ODNss intratracheally
reduced NF-xB activity in the lungs after 92 days smoke
exposure

The lungs of 92 day smoke-exposed mice were examined
for evidence of an NF-«xB decoy ODNs-mediated reduc-
tion in NF-kB activation in the lungs. Nuclear extracts pre-
pared from whole lung of normal saline (NS) or
scrambled ODNs (Scr) intratracheally instillated mice
demonstrated strong NF-«B binding activity, as assessed
by EMSA (Fig. 1A). As expected, a weak NF-kB-binding
activity was observed in whole lung extracts of mice
treated with NF-kB decoy ODNs. In contrast, AP-1 bind-
ing activity was not significantly changed by NF-xB decoy
ODNs administration (Fig. 1B).

Free Probe

NS
Scr

=
=3
5]
]
a

Free Probe
NS
Decoy

Scr

= AP-1

4= NF-kB
<= NF-xB

A

Figure |

Demonstration of the impact of local administration
of decoy ODNs on NF-«B activation in the lungs of 92
day smoke-exposed mice. Normal saline (NS), NF-xB
decoys ODNs (Decoy) or scrambled ODNs (Scr) were
administered by intratracheal instillation on day 52 in smoke-
exposed mice. Nuclear protein extracts were prepared from
whole lung and assessed for NF-kB DNA-binding activity by
electrophoretic mobility shift assay (EMSA). (A) A represent-
ative non-autoradiograph of EMSA analysis of level of NF-kB
in the nuclear fraction using biotin detection. (B) A repre-
sentative of the EMSA analysis of level of AP-1 in the nuclear
fraction by non-autoradiograph.

http://respiratory-research.com/content/10/1/79

NF-xB decoy ODNs were capable of entry into alveolar
macrophages on day 52 of smoke exposure

To show that whether decoy-mediated NF-xB inhibition
was sufficient to induce cell non-vitality of BALF cells in
52 day smoke-induced mice, we examined using trypan
blue staining at 24 hour after treatment with NF-«B decoy
ODNs or normal saline (NS) as a control. The rates of
non-vitality cells in BALF were similar to that of NS-
treated animals (Table 2). Thus, our results show that
treatment of 52 day smoke-induced mice with NF-kB
decoy ODNs did not impact on cell survival in BALF.

To localize NF-«xB decoy ODNSs in vivo, 52 day smoke-
exposed mice were administrated FITC-labeled ODNs
intratracheally. After 3 h, 24 h, 3 days, and 7 days cells col-
lected from BALF were examined for FITC positivity by
flow cytometry; alveolar macrophages were labeled as F4/
80. Prior to flow cytometry analysis, cell differential was
determined using cytospin preparations stained with
Wright-Giemsa, and a total of 200 tabulated cells. We
determined that alveolar macrophages in BALF consti-
tuted over 95% of total cells (Table 3). In cells collected 24
h after instillation, an observed peak depicted that 30.00
+ 3.30% of the FITC signal was located in macrophages
(F4/80)(Fig. 2G and Fig. 2B), which after 7 days persisted
at 9.00 + 0.93% (Fig. 2G and Fig. 2D). Macrophages
labeled F4/80 (an transmembrane protein, the best
marker for mature macrophages) from BALF were
assessed for PE (marked F4/80) and FITC positivity
(marked NF-«xB decoy ODNs) using flow cytometry. The
data analysis was the compilation of quadrant statistics.
The co-stained cells (F4/80+, FITC-ODNs*) were showed
by R2 rectangular gating regions. The percentage in the R2
rate indirectly reflected transfection efficiency of NF-xB
decoy ODN:s to the mature macrophages in vivo.

NF-xB decoy ODNs attenuated macrophage aggregation
in smoke-induced chronic inflammation, improved lung
function, and reduced MIP-1« and MCP-1 expression

To demonstrate that the impact of NF-xB decoy ODNs on
smoke-induced chronic inflammation, a series of experi-
ments were performed. We analyzed whether intratra-

Table 2: Percentage of death cells in the BALF of NS-treated
(NS) and NF-xB decoy-treated (Decoy) mice after 24 hours with
smoke exposure for 52 days.

Treatment Non-viable cells %
NS 432 £3.93
Decoy 5.56 £5.53
P.> Chi-Square 0.6579

All data are expressed as means * STD and analyzed by using the
Mann-Whitney U-test in two groups of mice. Statistical significance
was accepted at P < 0.05. n = 3/group.
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Table 3: Inflammatory cell profile in BALF from NF-xB decoy ODNs (Decoy) and normal saline (NS) treatment in 52 day cigarette

smoke-exposed mice.

Macrophages(%) Lymphocytes(%) Neutrophils(%)
Decoy 98.62 + 0.40 0.60 + 0.47 0.79 £ 0.56
NS 98.94 + 1.03 0.59 £ 0.70 0.48 £ 0.38
Pr > Chi-Square 0.7728 0.766 0.3094

All data are expressed as means + STD. The data were analyzed by using the Mann-Whitney U-test in two groups of mice. Statistical significance

was accepted at P < 0.05. n = 4 per/group.

cheal delivery of NF-xB decoy ODNs could affect smoke-
induced macrophage influx, some macrophage-related
chemokines and pro-inflammatory cytokines expression,
lung function, and cell number in BALF. After smoke
exposure for 92 days, macrophage accumulation in the
alveolar space was observed in normal saline (NS) and
scrambled ODNs (Scr) mice. Treatment with NF-xB decoy
ODN:s resulted in a reduction in alveolar macrophage
accumulation in the alveoli (Fig. 3A). The number of mac-
rophages is tabulated in Fig 3B.

Airway inflammation was evaluated in the BALF. Total cell
and macrophage count in the BALF recovered from Decoy
mice were lower than that from NS or Scr smoke-exposed
mice (Fig. 4). Moreover, the level of MCP-1 and MIP-1a
in lung homogenates was greatly reduced in the decoy
group compared with the NS smoke-exposed group (Fig.
5A), and weakly correlated with total cell number (P =
0.051, p =0.619; P = 0.052, p = 0.75, respectively). Instil-
lation of NF-xB decoy ODNs induced a significant
increase in TNF-o protein levels in mice BALF. In contrast,
the level of IL-6 in BALF was not significantly
changed(Fig. 5B).

In addition, PIF and PEF were measured to determine
whether instillation of NF-xB decoy ODNs influences
lung function. As expected, administration of NF-xB
decoys but not scrambled ODNs led to a significant
improvement of PEF (Table 4).

NF-xB decoy ODNs treatment induced pro-MMP-9 in
BALF, but did not affect pathological changes in small
airways and alveoli

The concentration of MMP-9 was undetectable in mouse
BALF in our experiment, We therefore measured the levels
of pro-MMP-9 and TIMP-1, which have been shown to be
tissue remodeling-related. Moreover, NF-«kB is a critical
transcription factor in the regulation of MMP-9. Of note,
NF-xB decoy ODNs not scrambled ODNs modified the
levels of pro-MMP-9. Additionally, there was no signifi-
cant change in the expression of TIMP-1 (Fig. 6A).

We evaluated alveolar wall destruction and enlargement
of alveolar spaces by morphologic and morphometric

analyses. The level of alveolar wall destruction was deter-
mined by measuring the DI and enlargement of alveolar
spaces, and by quantifying the Lm and the Am. Micro-
scopic analysis of lung tissue sections revealed clearly the
enlarged destroyed alveolar spaces interspersed by appar-
ently normal parenchyma among NS, Decoy and Scr
groups (Fig. 6B). Unexpectedly, no significant difference
was found in Lm, Am, or DI calculated values after 92 days
of smoke exposure (Table 5).

Based on a blinded assessment of the pathology, the
examination of small airways post administration NF-xB
decoy ODNs revealed fibrosis was prominent after admin-
istration NF-xB decoy ODNS in peribronchiolar and
interstitial lung tissue compared to treatment with scram-
ble ODNs while goblet-cell metaplasia scores significantly
reduced compared to NS lung specimens (Table 6).

Discussion

Smoke-induced chronic airway inflammation may be
mediated by overwhelming inflammatory dysregulation
caused by overexpression of not one or several but many
NF-kB regulated genes. We here tested the hypothesis that
blockade of NF-kB transcriptional activity, via phospho-
rothioate-modified decoy ODNs containing the NF-xB
consensus binding site, would improve smoke-induced
chronic airway inflammation and prevent lung dysfunc-
tion in the mouse model system. Our results provided evi-
dence that local administration of decoy through trachea
indeed make a strong decrease of a population of macro-
phages in BALF and alveolar space of smoke-induced
mice. Moreover, NF-kB-regulated chemokines MCP-1 and
MIP-o were strongly repressed in mice BALF after admin-
istration of NF-kB decoy ODN:s intratracheally compared
with NS-treated smoke-triggered mice. Conversely, NF-«B
decoy ODNs increased release of TNF-o and pro-MMP-9
in the mice BALF. These data show that NF-xB decoy
ODNis have both repressive and stimulating effects on NF-
kB-regulated inflammatory genes in the mouse model.

We report here that intratracheal administration of decoy
ODN s, but not scrambled control, abrogated NF-«xB acti-
vation in whole lung following long-term cigarette expo-
sure; furthermore, we determined that such treatment was
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Dot-plots of FITC-labeled NF-xB decoy ODNs and F4/80 double-positive cells in BALF on day 52 in smoke-

exposed mice. NF-kB decoy ODNs were capable of effective entry into alveolar macrophages in BALF. FITC-labeled NF-kB
decoy ODNs were administered intratracheally on day 52 in smoke-exposed mice. As a negative control, smoke exposed mice
in 52 days were treated with normal saline (F). After 3 h (A), 24 h (B), 3 days(C) and 7 days (D), macrophages (labeled F4/80)
from BALF were assessed for FITC positivity using flow cytometry. A population of FITC-labeled NF-kB decoy ODNs and F4/
80 double-positive cells was present in all analysis (R2, higher right quadrant) whereas R1| represented the F4/80-positive, but
FITC-ODNs negative macrophages. In BALF, cells collected from mice treated with PE-conjugated isotype IgG antibody (E) as
another negative control. Both of the negative controls showed false positive rate (R1+R2+R4) < 5%, which suggested the flow
cytometry experiments were not interfered with nonspecific backgrounds. These results were representative of 3 comparable
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Figure 3

NF-kB decoy ODNs attenuated macrophage aggregation in smoke-induced chronic inflammation on day 92.
(A) Alveolar macrophages (arrows) are largely observed in the lung parenchyma of smoke-exposed mice on day 92 in both
normal saline-treated smoke-induced mice (NS) and scrambled ODNs-treated smoke-induced mice (Scr), but not in NF-xB
decoy ODNs administered mice on day 92 of smoke exposure (Original magnification 400x), Bar = 50 um. (B) Quantitative
measurement of intra-alveolar macrophages, expressed as macrophages/mm? (mean + STD, n = 8/group). There was clear
decrease of macrophage numbers in Decoy mice compared with NS and Scr group. Symbols delineate statistical significance
compared to NS mice (¥, P < 0.05) and Scr mice (#, P < 0.05). NS: normal saline-treated smoke-induced mice; Decoy: NF-kB
decoy ODNis-treated smoke-induced mice; Scr: scrambled ODNs-treated smoke-induced mice.

very effective in preventing the development of lung dys-
function and macrophage aggregation in the airway.

Systemic or local injection of "naked" NF-kB decoys may
effectively inhibit NF-kB activation and thereby prevent
inflammation in vivo [25,38]. As reported here, we've
demonstrated that intratracheal administration of
"naked"NF-kB decoys with modified phosphorothioate
backbones resulted in reduced NF-«B activation, while no
effect was observed after scrambled ODN administration.
The decoy ODNs used in this study were phosphorothio-
ated and therefore resistant to degradation. Although we
cannot exclude that the decoy ODNs were damaged
through smoke exposure, there is good evidence that 24 h
after intravenous injection at least 50% of phosphoratio-
ated ODN in the lung were intact [39]. We have previ-
ously shown that NF-xB activation slightly increased
compared to air-exposure mice in a model of subacute

inflammation [27]. Here, we demonstrate that long-term
smoke exposure in mice enhanced NF-«B activity in the
nuclear extracts of lung tissue. The success in vivo transfer
of a sufficient quantity of NF-kB decoy ODN into lungs
was confirmed by the gel shift assay. These results encour-
aged us to study the potential of NF-xB decoy ODNs for
pulmonary smoke-induced chronic airway inflammation
by in vivo via intratracheal administration.

I. Intratracheal delivery of NF-xB decoy ODNs reduced
macrophage influx and prevented lung dysfunction in
smoking mice

Many of the genes implicated in smoke-induced chronic
airway inflammation contain NF-xB binding sites in the
promoter/enhancer region (i.e., cytokines, chemokines
and proteases) [1-4]. Of particular clinical relevance, NF-
kB binding activity has been reported to increase in smok-
ers and is correlated with lung function [15].
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Figure 4

Treatment with NF-kB decoy ODNs markedly atten-
uated the number of airway inflammatory cells in
smoke-induced chronic airway inflammation on day
92. Total and differential cell counts were performed on the
collected BALF. Data were expressed as mean £ STD (n = 8/
group). Symbols delineate statistical significance compared to
NS mice (*, P < 0.05) and Scr mice (#, P < 0.05). NS: normal
saline-treated smoke-induced mice; Decoy: NF-xB decoy
ODNs-treated smoke-induced mice; Scr: scrambled ODNs-
treated smoke-induced mice.

In our study, there was no significant increase in the influx
of neutrophils following 92 days smoke exposure, neither
in BALF nor lung parenchyma. This result agreed with
some previous studies, which also have shown that the
inflammatory cell type is cigarette dose-dependent [40]
and related with smoking history in COPD patients [41].
Macrophages have a potential role in the pathogenesis of
COPD which has several important functions such as
phagocytosis[42],  activating the adaptive host
response[43]. The alveolar macrophage products include
cytokines and chemokines with the capacity of recruiting
other inflammatory cells to the lungs [44]. Furthermore,
there is a positive association between macrophage num-
bers in the alveolar walls and the presence of mild-to-
moderate emphysema as well as the degree in small air-
ways disease in patients with COPD [45]. Nuclear locali-
sation of p65 in CD68+ alveolar macrophages rather than
neutrophils confirmed the presence of activated NF-«xB in
lung parenchyma macrophages of patients with stable
COPD [46]. Therefore, we underline the importance of
studying NF-kB activity in alveolar macrophages in our
research. As expected, the macrophage counts in the BALF
were reduced and paradoxically decreased in the alveolar
regions as assessed by quantificational analysis. Although
cigarette smoke can modify matrix proteins, resulting in
macrophage activation and adherence in the alveolar
spaces together with decrease on alveolar macrophage
population in the BALF [47], we can rule out the effect of
cigarette smoke on the population of macrophages by
comparing NF-xB decoys group to NS group.

It is now clear that macrophage populations can be distin-
guished based on their surface antigen expression, and
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Figure 5

Lung inflammation at 92 days smoke-exposure after
treatment with normal saline (NS), NF-xB decoy
ODNs (Decoy) or scrambled ODNs (Scr). NF-xB
decoy ODN:s inhibited MIP-1c and MCP-1 but not IL-6. The
level of TNF-a in BALF was increased in Decoy group, com-
pared with the level of that in NS and Scr group. Cytokine
levels were determined by ELISA and were presented as
mean + STD (n = 7-8/group). Symbols delineate statistical
significance compared to NS mice (*, P < 0.05) and Scr mice
(#, P <0.05). NS: normal saline-treated smoke-induced mice;
Decoy: NF-kB decoy ODNs-treated smoke-induced mice;
Scr: scrambled ODNss-treated smoke-induced mice.

functional activity. One population is termed the "inflam-
matory" monocyte/macrophage population and preferen-
tially traffic to sites of inflammation [48]. This function

Table 4: Respiratory function in cigarette smoke-exposed mouse
groups on day 92.

Treatment PIF(L/S) PEF(L/S)
NS 146 +0.23 3.69 + 0.45%
Decoy .83 + 0.34 5.46 + 0.44
Scr 1.62 +0.28 3.79 £ 021#

Data were expressed as mean * STD. PIF: peak inspiratory flow PEF:
peak expiratory flow. NS: normal saline-treated smoke-exposed mice;
Decoy: NF-kB decoy ODNs-treated smoke-exposed mice; Scr:
scrambled ODNs-treated smoke-exposed mice. *P < 0.05 for Decoy
mice compared with NS mice, # P < 0.05 for Decoy mice compared
with Scr mice. n = 8/per group
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The effect of administration NF-xB decoy ODNs on the structure of pulmonary parenchyma and the expres-
sion of pro-MMP-9 or TIMP-1 in the long-term smoke-induced mice. (A)NF-kB decoy ODN:s significantly induced
high levels of pro-MMP-9 but not TIMP-1 in the BALF of mice. Data were expressed as mean + STD (n = 8). Symbols delineate
statistical significance compared to NS mice (¥, P < 0.05) and Scr mice (#, P < 0.05). (B) Lung parenchyma from NS, Decoy or
Scramble-treated smoke-exposed mice at 92 days. Mice were exposed to smoke for 92 days, then they were killed | day after
the last exposure and their lungs processed for light microscopy with haematoxylin-eosin staining. The lesion was character-
ized by disseminated foci of airspace destruction interspersed by apparently normal parenchyma. Original magnification 100%,
Bar = 200 um. NS: normal saline-treated smoke-induced mice; Decoy: decoy NF-kxB ODNs-treated smoke-induced mice; Scr:

scrambled ODNs-treated smoke-induced mice. n = 8.

difference may explain transfection efficiency was not
over 50%.

As a result of NF-«B inhibition in mouse lung, MIP-1a
and MCP-1 expression in lung was markedly reduced in
the airways of decoy-treated mice as compared to NS-

Table 5: Lung Morphologic analysis of mice on 92 days of
persistent smoke exposure.

Treatment Lm(um) Am(um?) DI
NS 46.05 + 6.71 1019.71 £95.62 4289 £9.19
Decoy 45.07 823 1137.15+246.28 4873 + 15.87
Scr 4148 £ 451 1231.02+139.88 4454+ 11.70
Pr > Chi-Square 0.4573 0.0643 0.4712

Data were analyzed by Nonparametric Mann-Whitney U-test and
expressed as mean * STD. Lm: linear intercept; Am: mean alveolar
surface; DI: destructive index; NS: normal saline-treated smoke-
exposed mice; Decoy: decoy NF-kB ODNs-treated smoke-exposed
mice; Scr: scrambled ODNs-treated smoke-exposed mice. n = 8

treated controls, whereas there was no significant decrease
in scramble group compared with NS-treated controls.
This result suggested that the inhibition was from NF-xB
decoy but not double stranded oligodeoxynucleotides.
Prior studies have identified an important role for CC-
chemokines such as MIP-1a in macrophage accumulation
in the lungs of smokers with severe airflow limitation
[49]. It is reasonable to speculate that reduced macro-
phage recruitment in the airways and alveolar space may
be involved in MIP-1a and MCP-1 attenuation or other
chemoattractants are involved in macrophage recruitment
in this model.

The release of pro-inflammatory mediators might play an
important role in long-term smoke-triggered lung inflam-
mation. NF-xB theoretically regulates the secretion of
TNF-a and IL-6. However, our data showed administra-
tion of NF-xB decoy ODN5s did not alter IL-6 levels in lung
BALF when compared with scrambled ODNs. Several
explanations may account for these differences. Firstly,
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Table 6: Mean Group Score £ STD for Each Pathological Variable on 92 days of persistent smoke exposure.

Group Goblet-Cell Metaplasia Inflammatory-Cell Infiltration Fibrosis Muscle
NS 9.17 £ 5.05 5.50 + 1.48 642 +2.15 5.58 + 1.88

Decoy 3.70 £ 2.54* 6.79 + 4.00 9.71 £4.27# 5.08 + 2.42
Scr 5.30+2.19 45+ 1.58 4.68 £2.26 4.94 +2.59

Data were analyzed by Nonparametric Mann-Whitney U-test and expressed as mean + STD. NS: normal saline-treated smoke-exposed mice;
Decoy: decoy NF-kB ODNs-treated smoke-exposed mice; Scr: scrambled ODNs-treated smoke-exposed mice. *P < 0.05 for Decoy mice
compared with NS mice, # P < 0.05 for Decoy mice compared with Scr mice. n = 5-7/per group

both of these pro-inflammatory cytokines are produced
by a variety of cells types, including macrophages and epi-
thelial cells. NF-kB decoys might not selectively enter into
epithelial cells [25]. In addition, IL-6 release is both NF-
kB and IKK (inhibitor of kB kinase) 2-dependent in
human pulmonary epithelial cells in vitro [50]. Interest-
ingly, in rat asthma model, IkB kinase-2 inhibitor cause
significant dose-related and time-dependent inhibition of
TNF-a [51]. This inhibition of kB were not studied in this
current study and therefore we can not rule out if any
effects of the compound are due to kB regulation of NF-
kB pathways.

With regard to TNF-o production, our results showed
higher expression in NF-«xB decoy ODNs-treated smoke
induced mice compared with NS or Scr-treated control
mice. The possible explanations for this result may be the
relationship between MCP-1 and the inflammatory medi-
ators [52,53]. In addition, there is a diversity in the mech-
anisms of NF-kB-regulated inflammatory genes, which
could explain the reduction in gene expression selectively
for MCP-1 and MIP-1a, but not for TNF-a and IL-6 in
response to NF-kB decoy ODNs administration. Interest-
ingly, one of conserved NF-«B binding sites in IL-6 gene
contained high-affinity AP-1-binding sites, suggesting that
the response of some NF-kB dependent genes may be
modified by adjacent transcription factor regulatory sites.
However, for TNF-a, AP-1 binding sites did not exist in
conserved NF-xB binding sites [54]. More work will be
required to understand NF-xB and other transcription fac-
tors in our model and their regulation function in target
inflammatory genes.

As expected, administration of NF-kB decoy ODNs pre-
vented the development of airway dysfunction in our
study. Previous study showed that both alveolar macro-
phage (Ams) counts and MIP-1a levels in BALF were neg-
atively correlated with FEV (1.0% pred) [55]. This
suggested that macrophages play an important role in
smoking related airflow obstruction. Consistent with
above results, the lower level of MIP-1a in BALF may
cause macrophage influx reduced in the airways and lung
parenchyma, and alleviate airway limitation following
decoy treatment.

2. Intratracheal delivery of NF-xB decoy ODNs did not
prevent pathological changes in small airways and alveolar
space in smoking mice

A crucial pathologic feature of COPD is airway inflamma-
tion and remodeling. This process primarily occurs at the
level of the small airways, defined as bronchioles that are
less than 2 mm in diameter in human being. Niewoehner
and colleagues indicated that early structural changes in
the small airways developed before the diagnosis of
COPD was established [23]. We therefore focused on
small airways fibrosis differences among the three groups.
However, the results were unexpected. There was striking
changes in fibrosis and goblet-cell metaplasia reflecting
strong function of NF-kB decoy ODN:s for tissue structure
abnormality.

The treatment outcomes we obtained can be associated
with increased expression of pro-MMP-9 and/or TNF-a
expression in BALF after treatment with NF-«xB decoy
ODN:s. The increase on MMP-9 profile seems consistent
with fibrosis pathological score in small airways in our
study. A similar role of MMP-9 has been reported that
transgenic MMP-9 expression induces adult-onset emphy-
sema in mice [56]. Despite TIMP-1 is thought to be impor-
tant in the airway repair and remodeling processes [57,58]
and one of regulators of MMP-9[59], its profile remained
unchanged in our study. A plausible explanation for the
observed effect in MMP-9 levels in BAL fluid among NF-
kB decoy ODNs treatment groups is the presence of mul-
tiple transcription factor consensus binding motifs in the
MMP-9 promoter, including NF-xB, SP-1, AP-1 and each
of their binding sites are indispensable for PMA-induced
MMP-9 gene transcription in HeLa cells [60]. Although
our data demonstrated that there was unaltered in AP-1
activity that are known to promote MMP expression and a
combination of supershift, RNA interference and overex-
pression experiments implicated AP-1 family member
Fra-1 in the regulation of MMP-1 expression. It is unclear
which transcription factor plays a central regulatory role
in MMP-9 expression in vivo post cigarette exposure, or
whether multiple transcription factors lead to a coordi-
nated response of MMP-9 expression [61]. Gene transcrip-
tion is also reliant on the modification of core histone
proteins, which regulate genome accessibility to transcrip-
tion factors and cofactors [62].
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MMPs are both effectors and regulators of inflammation.
Pro-inflammatory stimuli such as TNF-a and IL-1p also
increased MMP-9 production in human monocytes
[63]while there were examples of MMP-mediated release
or activation of cytokines including TNF-a [64]. Together,
this suggests the intersection between the chemokine and
MMP networks is broad with potentially important bio-
logical consequences. In our results, we observed the ele-
vation of pro-MMP-9 profile in concomitance with higher
level of TNF-a and lower expression of MCP-1 and MIP-
1o post treatment with NF-«xB decoy ODN:s. It is possible
that cytokines and MMPs networks play a key role in
orchestrating the inflammation via non-dependent NF-xB
pathway in smoke-induced mice model. Other studies
have documented possible effects of TNF-a on the devel-
opment of pulmonary fibrosis through chronic lung
inflammation and activation of the elastolytic enzymes
[65]. In particular, NF-«B site is indispensable for the sup-
pressive activity of TGF- in the regulation of MMP-9 tran-
scription[66].

Conclusion

We reported here that local NF-«B inhibition was associ-
ated with attenuated MIP-la and MCP-1 expression
simultaneously, macrophage influx in the airway and
lung parenchyma, and marked improvement in respira-
tory function of mice in response to long-term smoke
exposure. Our studies suggest that inhibitors of NF-«xB
may offer promise as a therapeutic approach for the
improvement of smoke-triggered pulmonary dysfunction.
Furthermore, our pathological analysis of the macro-
phages reduction in lungs of mice and macrophages
recruitment-related cytokines decrease also provides use-
ful information about NF-kB decoy ODNs for a model of
experimental smoke-induced chronic inflammation.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions

YTL participated in the design of the study, carried out the
immunoassays and cytologic studies, performed the sta-
tistical analysis and drafted the manuscript. BH super-
vised the design of the study, participated in the statistical
analysis and coordination. YZW participated in the mor-
phometric analysis. JW participated in the morphometric
analysis.

Acknowledgements

We wish to thank the National Natural Science Foundation Council (China)
for the funding of this work. We are also grateful to professor You-Yi
Zhang for help in gel mobility shift assay. Foundation: National Natural
Science Foundation of China 30370608

Doctoral Fund of Ministry of Education of China 20050001 143

http://respiratory-research.com/content/10/1/79

References

I. Chung KF: Cytokines in chronic obstructive pulmonary dis-
ease. Eur Respir | Suppl 2001, 34:50s-59s.

2. Caramori G, Adcock I: Pharmacology of airway inflammation in
asthma and COPD. Pulm Pharmacol Ther 2003, 16:247-277.

3. De Boer WI: Cytokines and therapy in COPD: a promising
combination? Chest 2002, 121(5 suppl):209S-218S.

4. Barnes PJ: Chronic Obstructive Pulmonary Disease: Cellular and Molecular
Mechanisms (Series: Lung Biology in Health and Disease; v 198) Boca
Raton, Taylor & Francis Group; 2005:368-369.

5. Blackwell TS, Christman JW: The role of nuclear factor kB in
cytokine gene regulation. Am | Respir Cell Mol Biol 1997, 17:3-9.

6. Ho TY, Bagnell CA: Relaxin induces matrix metalloproteinase-
9 through activation of nuclear factor kappa B in human
THP-1 Cells. Ann N Y Acad Sci 2005, 1041:314-316.

7.  Chen F, Castranova V, Shi X, Demers LM: New insights into the
role of nuclear factor-xB, a ubiquitous transcription factor in
the initiation of diseases. Clin Chem 1999, 45:7-17.

8.  Baldwin AS Jr: The NF-kB and I-kB proteins: new discoveries
and insights. Annu Rev Immunol 1996, 14:649-683.

9.  Ghosh S, May MJ, Kopp EB: NF-xB and Rel proteins: evolution-
arily conserved mediators of immune responses. Annu Rev
Immunol 1998, 16:225-260.

10. Baldwin AS Jr: The transcription factor NF-xB and human dis-
ease. | Clin Invest 2001, 107:3-6.

I'l. Rahman I, MacNee W: Lung glutathione and oxidative stress:
implications in cigarette smoke-induced airways disease. Am
J Physiol Lung Cell Mol Physiol 1999, 227:1067-1088.

12. Church DF, Pryor WA: Free radical chemistry of cigarette
smoke and its toxicological implications. Environ Health Perspect
1985, 64:111-126.

13.  Rahman |: Oxidative stress, chromatin remodelling and gene
transcription in inflammation and chronic lung disease. | Bio-
chem Mol Biol 2003, 36:95-109.

14.  Schreck R, Rieber P, Baeuerle PA: Reactive oxygen intermedi-
ates as apparently widely used messengers in the activation
of the NF-xB transcription factor and HIV-1. EMBO | 1991,
10:2247-2258.

I5. Di Stefano A, Caramori G, Oates T, Capelli A, Lusuardi M, Gnemmi
I, loli F, Chung KF, Donner CF, Barnes P}, Adcock IM: Increased
expression of nuclear factor-kappaB in bronchial biopsies
from smokers and patients with COPD. Eur Respir | 2002,
20:556-563.

16.  Nishikawa M, Kakemizu N, Ito T, Kudo M, Kaneko T, Suzuki M, Udaka
N, lkeda H, Okubo T: Superoxide mediates cigarette smoke-
induced infiltration of neutrophils into the airway through
nuclear factor-kB activation and IL-8 mMRNA expression in
guinea pigs in vivo. Am | Respir Cell Mol Biol 1999, 20:189-198.

17.  He B, Zhao MW, Qi GY: Activation of transcription factors and
induction of cytokines from macrophages in chronic obstruc-
tive pulmonary disease. National Medical Journal of China 2001,
22:1360-1364.

18.  Conron M, Andreakos E, Pantelidis P, Smith C, Beynon HL, Dubois
RM, Foxwell BM: Nuclear factor-kappaB activation in alveolar
macrophages requires lkappaB kinase-beta, but not nuclear
factor-kappaB inducing kinase. Am | Respir Crit Care Med 2002,
165:996-1004.

19. Lora JM, Zhang DM, Liao SM, Burwell T, King AM, Barker PA, Singh
L, Keaveney M, Morgenstern ], Gutiérrez-Ramos JC, Coyle AJ, Fraser
CC: Tumor necrosis factor-alpha triggers mucus production
in airway epithelium through an lkappaB kinase beta-
dependent mechanism. | Biol Chem 2005, 280:36510-36517.

20. Laza-Stanca V, Stanciu LA, Message SD, Edwards MR, Gern JE, John-
ston SL: Rhinovirus replication in human macrophages
induces NF-kappaB dependent tumor necrosis factor alpha
production. | Virol 2006, 80:8248-8258.

21. Mann M), Dzau V]: Therapeutic applications of transcription
factor decoy oligonucleotides. | Clin Invest 2000, 106:1071-1075.

22. Bielinska A, Shivdasani RA, Zhang LQ, Nabel GJ: Regulation of gene
expression with double-stranded phosphorothioate oligonu-
cleotides. Science 1990, 250:997-1000.

23. Niewoehner DE, Klienerman J, Rice D: Pathologic changes in the
peripheral airways of young cigarette smokers. N Engl | Med
1974, 291:755-758.

Page 12 of 14

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12392035
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12392035
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12877818
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12877818
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12010854
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12010854
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9224203
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9224203
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15956726
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15956726
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15956726
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9895331
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9895331
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8717528
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8717528
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9597130
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9597130
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11134170
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11134170
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3007083
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3007083
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12542980
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12542980
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2065663
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12358328
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12358328
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12358328
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9922209
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9922209
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11934728
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11934728
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11934728
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16123045
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16123045
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16123045
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16873280
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16873280
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16873280
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11067859
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11067859
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2237444
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2237444
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2237444
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4414996
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4414996

Respiratory Research 2009, 10:79

24.

25.

26.

27.

28.
29.

30.

31

32.

33.

34.

35.
36.

37.

38.

39.

40.

41.

42.
43.

Fujioka S, Niu J, Schmidt C, Sclabas GM, Peng B, Uwagawa T, Li Z,
Evans DB, Abbruzzese JL, Chiao P): NF-kB and AP-1 connection:
Mechanism of NF-kB-dependent regulation of AP-1 activity.
Mol Cell Biol 2004, 24:7806-7819.

Desmet C, Gosset P, Pajak B, Cataldo D, Bentires-Alj M, Lekeux P,
Bureau F: Selective Blockade of NF-kB Activity in Airway
Immune Cells Inhibits the Effector Phase of Experimental
Asthma. | Immunol 2004, 173:5766-5775.

Shen F, Zhao MW, He B, Pei F, Yao WZ: Observations on lung
function and pathological changes of airway lung tissues in
rats with different passive-smoking durations. | GuiYang Med
Coll 2006, 3:247-251. [in Chinese]

Li YT, He B, Wang YZ: Exposure to cigarette smoke upregu-
lates AP-1 activity and induces TNF-alpha overexpression in
mouse lungs. Inhalation Toxicology 2009, 21:641-647.

Matthew E, Warden G, Dedman J: A murine model of smoke
inhalation. Am | Physiol Lung Cell Mol Physiol 2001, 280:L716-L723.
Manoury B, Nenan S, Leclerc O, Guenon |, Boichot E, Planquois JM,
Bertrand CP, Lagente V: The absence of reactive oxygen species
production protects mice against bleomycin-induced pulmo-
nary fibrosis. Respiratory Research 2005, 6:11-23.

Fremond CM, Yeremeev V, Nicolle DM, Jacobs M, Quesniaux VF, Ryf-
fel B: Fatal Mycobacterium tuberculosis infection despite
adaptive immune response in the absence of MyD88. | Clin
Invest 2004, 114:1790-1799.

Vernooy JH, Dentener MA, van Suylen R}, Buurman WA, Wouters EF:
Long-term intratracheal lipopolysaccharide exposure in
mice results in chronic lung inflammation and persistent
pathology. Am | Respir Cell Mol Biol 2002, 26(1):152-159.

Saetta M, Shiner R], Angus GE, Kim WD, Wang NS, King M, Ghezzo
H, Cosio MG: Destructive index: a measurement of lung
parenchymal destruction in smokers. Am Rev Respir Dis 1985,
131:764-769.

Saito K, Cagle P, Berend N, Thurlbeck WM: The "destructive
index" in nonemphysematous and emphysematous lungs.
Morphologic observations and correlation with function. Am
Rev Respir Dis 1989, 139:308-312.

Robbesom AA, Versteeg EM, Veerkamp JH, van Krieken JH, Bulten
HJ, Smits HT, Willems LN, van Herwaarden CL, Dekhuijzen PN, van
Kuppevelt TH: Morphological quantification of emphysema in
small human lung specimens: comparison of methods and
relation with clinical data. Mod Pathol 2003, 16:1-7.

Thurlbeck WM: Measurement of pulmonary emphysema. Am
Rev Respir Dis 1967, 95:752-764.

Bartalesi B, Cavarra E, Fineschi S, Lucattelli M, Lunghi B, Martorana
PA, Lungarella G: Different lung responses to cigarette smoke
in two strains of mice sensitive to oxidants. Eur Respir | 2005,
25:15-22.

Cosio M, Ghezzo H, Hogg JC, Corbin R, Loveland M, Dosman }J,
Macklem PT: The relations between structural changes in
small airways and pulmonary-function tests. N Engl | Med
1978, 298:1277-1281.

Matsuda N, Hattori Y, Jesmin S, Gando S: Nuclear factor-xB decoy
oligodeoxynucleotides prevent acute lung injury in mice with
cecal ligation and puncture-induced sepsis. Mol Pharmacol
2005, 67:1018-1025.

Geary RS, Leeds M, Fitchett ], Burckin T, Truong L, Spainhour C,
Creek M, Levin AA: Pharmacokinetics and metabolism in mice
of a phosphorothioate oligonucleotide antisense inhibitor of
C-raf-1 kinase expression. Drug Metab Dispos 1997,
25:1272-1281.

Valenca SS, Castro P, Pimenta WA, Lanzetti M, Silva SV, Barja-Fidalgo
C, Koatz VL, Porto LC: Light cigarette smoke-induced emphy-
sema and NFkB activation in mouse lung. Int | Exp Pathol 2006,
87(5):373-38I.

Babusyte A, Stravinskaite K, Jeroch J, Lotvall |, Sakalauskas R, Sitkausk-
iene B: Patterns of airway inflammation and MMP-12 expres-
sion in smokers and ex-smokers with COPD. Respiratory
Research 2007, 8:81-90.

Tetley TD: Macrophages and the pathogenesis of COPD. Chest
2002, 121:156S-159S.

Lem VM, Lipscomb MF, Weissler JC, Nunez G, Ball EJ, Stastny P,
Toews GB: Bronchoalveolar cells from sarcoid patients dem-
onstrate enhanced antigen presentation. | Immunol 1985,
135:1766-71.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

60.

6l.
62.

63.

http://respiratory-research.com/content/10/1/79

Barnes PJ, Shapiro SD, Pauwels RA: Chronic obstructive pulmo-
nary disease: molecular and cellular mechanisms. Eur Respir |
2003, 22:672-88.

Ohnishi K, Takagi M, Kurokawa Y, Satomi S, Konttinen YT: Matrix
metalloproteinase-mediated extracellular matrix protein
degradation in human pulmonary emphysema. Lab Invest
1998, 78:1077-1087.

Caramori G, Romagnoli M, Casolari P, Bellettato C, Casoni G, Bos-
chetto P, Chung KF, Barnes PJ, Adcock IM, Ciaccia A, Fabbri LM, Papi
A: Nuclear localisation of p65 in sputum macrophages but
not in sputum neutrophils during COPD exacerbations. Tho-
rax 2003, 58:348-351.

Kirkham PA, Spooner G, Ffoulkes-Jones C, Calvez R: Cigarette
smoke triggers macrophage adhesion and activation: role of
lipid peroxidation products and scavenger receptor. Free
Radic Biol Med 2003, 35:697-710.

Geissmann F, Jung S, Littman DR: Blood monocytes consist of
two principal subsets with distinct migratory properties.
Immunity 2003, 19:71-82.

Di Stefana A, Capelli A, Lusuardi M, Balbo P, Vecchio C, Maestrelli P,
Mapp CE, Fabbri LM, Donner CF, Saetta M: Severity of airflow lim-
itation is associated with severity of airway inflammation in
smokers. Am | Respir Crit Care Med 1998, 158:1277-1285.

Newton R, Holden NS, Catley MC, Oyelusi W, Leigh R, Proud D,
Barnes P): Repression of inflammatory gene expression in
human pulmonary epithelial cells by small-molecule IkappaB
kinase inhibitors. | Pharmacol Exp Ther 2007, 321:734-742.

Birrell MA, Hardaker E, Wong S, McCluskie K, Catley M, De Alba |,
Newton R, Haj-Yahia S, Pun KT, Watts CJ, Shaw R, Savage TJ, Belvisi
MG: lkappa-B kinase-2 inhibitor blocks inflammation in
human airway smooth muscle and a rat model of asthma.
Am | Respir Crit Care Med 2005, 172:962-971.

Koth LL, Rodriguez MW, Bernstein XL, Chan S, Huang X, Charo IF,
Rollins BJ, Erle DJ: Aspergillus antigen induces robust Th2
cytokine production, inflammation, airway hyperreactivity
and fibrosis in the absence of MCP-1 or CCR2. Respiratory
Research 2004, 5:12.

Thompson WL, Karpus W], Van Eldik LJ: MCP-I-deficient mice
show reduced neuroinflammatory responses and increased
peripheral inflammatory responses to peripheral endotoxin
insult. | Neuroinflammation 2008, 5:35.

Tian B, Nowak DE, Brasier AR: A TNF-induced gene expression
program under oscillatory NF-xB control. BMC Genomics 2005,
6:137.

Capelli A, Di Stefano A, Gnemmi |, Balbo P, Cerutti CG, Balbi B,
Lusuardi M, Donner CF: Increased MCP-1 and MIP-1§ in bron-
choalveolar lavage fluid of chronic bronchitis. Eur RespirJ 1999,
14:160-165.

Foronjy R, Nkyimbeng T, Wallace A, Thankachen ], Okada Y, Lemai-
tre V, D'Armiento J: Transgenic expression of matrix metallo-
proteinase-9 causes adult-onset emphysema in mice
associated with the loss of alveolar elastin. Am | Physiol Lung Cell
Mol Physiol 2008, 294(6):L1149-L1157.

Hogg JC, Senior RM: Chronic obstructive pulmonary disease -
part 2: pathology and biochemistry of emphysema. Thorax
2002, 57:830-834.

Atkinson JJ, Senior RM: Matrix metalloproteinase-9 in lung
remodeling. Am J Respir Cell Mol Biol 2003, 28:12-24.

Welgus HG, Campbell E}, Cury D, Eisen AZ, Senior RM, Wilhelm SM,
Goldberg Gl: Neutral metalloproteinases produced by human
mononuclear phagocytes. Enzyme profile, regulation, and
expression during cellular development. | Clin Invest 1990,
86(5):1496-1502.

Ma Z, Shah RC, Chang M, Benveniste EN: Coordination of cell sig-
naling, chromatin remodeling, histone modifications, and
regulator recruitment in human matrix metalloproteinase 9
gene transcription. Mol Cell Biol 2004, 24:5496-5509.

Barnes PJ, Adcock IM: Transcription factors and asthma. Eur
Respir | 1998, 12:221-234.

Morales V, Giamarchi C, Chailleux C, Moro F, Marsaud A, Le
Ricousse S, Richard-Foy H: Chromatin structure and dynamics:
functional implications. Biochimie 2001, 83:1029-1039.

Zhang Y, McCluskey K, Fujii K, Wahl LM: Differential regulation
of monocyte matrix metalloproteinase and TIMP-1 produc-
tion by TNF-o, granulocyte-macrophage CSF, and IL-I1j

Page 13 of 14

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15314185
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15494529
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15494529
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15494529
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19235541
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19235541
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19235541
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11238012
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11238012
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15663794
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15663794
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15663794
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15599404
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15599404
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11751215
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11751215
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11751215
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4003921
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4003921
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2913883
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2913883
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2913883
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12527706
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12527706
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12527706
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5337140
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15640318
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15640318
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=651978
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=651978
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15576632
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15576632
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15576632
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9351904
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9351904
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9351904
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16965565
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18001475
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18001475
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12010845
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3874905
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3874905
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14582923
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14582923
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9759652
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9759652
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9759652
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12668802
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12668802
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14583334
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14583334
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14583334
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12871640
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12871640
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9769292
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9769292
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9769292
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17322026
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17322026
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17322026
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16002568
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16002568
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15377395
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15377395
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15377395
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18706086
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18706086
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18706086
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16191192
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10489845
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10489845
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18408070
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18408070
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18408070
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12200530
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12200530
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12495928
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12495928
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2173721
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2173721
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2173721
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15169910
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15169910
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15169910
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9701442
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11879731
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11879731

Respiratory Research 2009, 10:79

64.

65.

66.

through prostaglandin-dependent and -independent mecha-
nisms. | Immunol 1998, 161:3071-3076.

Gearing AJ, Beckett P, Christodoulou M, Churchill M, Clements J,
Davidson AH, Drummond AH, Galloway WA, Gilbert R, Gordon JL:
Processing of tumor necrosis factor-alpha precursor by met-
alloproteinases. Nature 1994, 370:555-557.

Fujita M, Shannon JM, Irvin CG, Fagan KA, Cool C, Augustin A, Mason
RJ: Overexpression of tumor necrosis factor-o. produces an
increase in lung volumes and pulmonary hypertension. Am |
Physiol Lung Cell Mol Physiol 2001, 280:L39-L49.

Ogawa K, Chen F, Kuang C, Chen Y: Suppression of matrix met-
alloproteinase-9 transcription by transforming growth fac-
tor-p is mediated by a nuclear factor-kB site. Biochem | 2004,
381 (Pt 2):413-422.

http://respiratory-research.com/content/10/1/79

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here: O BioMedcentral

http://www.biomedcentral.com/info/publishing_adv.asp

Page 14 of 14

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9743373
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9743373
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8052310
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8052310
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8052310
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11133493
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11133493
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15086314
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Introduction
	Materials and methods
	NF-kB decoy ODNs
	Animals
	Chronic exposure to cigarette smoke
	Respiratory function
	Bronchoalveolar lavage cytology, and cytokine assays
	Tissue Processing
	Preparation and analysis of lung homogenates for chemokine determination
	Morphologic and Morphometric Analyses
	Analysis of small airways fibrosis and inflammation
	Flow cytometry
	Nuclear Protein Extraction
	Electrophoretic Motility Shift Assay
	Protein Assay
	Statistical Analysis

	Results
	Respiratory function was unaltered after 52 days of smoke exposure
	Administration of NF-kB decoy ODNs intratracheally reduced NF-kB activity in the lungs after 92 days smoke exposure
	NF-kB decoy ODNs were capable of entry into alveolar macrophages on day 52 of smoke exposure
	NF-kB decoy ODNs attenuated macrophage aggregation in smoke-induced chronic inflammation, improved lung function, and reduced MIP-1a and MCP-1 expression
	NF-kB decoy ODNs treatment induced pro-MMP-9 in BALF, but did not affect pathological changes in small airways and alveoli

	Discussion
	1. Intratracheal delivery of NF-kB decoy ODNs reduced macrophage influx and prevented lung dysfunction in smoking mice
	2. Intratracheal delivery of NF-kB decoy ODNs did not prevent pathological changes in small airways and alveolar space in smoking mice

	Conclusion
	Competing interests
	Authors' contributions
	Acknowledgements
	References

