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Abstract

The purpose of this paper is to study non-L%linear perturbations of random
isometries in random normed modules. Let (€2, F, P) be a probability space, K the
scalar field R of real numbers or C of complex numbers, L°(F, K) the equivalence
classes of K-valued F-measurable random variables on €, (£, | - |I1) and (&5, || - I|2)
random normed modules over K with base (€2, F, P). In this paper, we first establish
the Mazur-Ulam theorem in random normed modules. Making use of this theorem
and the relations between random normed modules and classical normed spaces, we
show thatif f : £ — E is a surjective random g-isometry with f(0) = 0 and has the
local property, where & € L°(F,R) and & > 0, then there is a surjective L°-linear
random isometry U: £y — £, such that ||f(x) - U)||» < 4e, forall x € £;. We do not
obtain a sharp estimate as the classical result, since random normed modules have
a complicated stratification structure, which is the essential difference between
random normed modules and classical normed spaces.
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1 Introduction

Random metric theory originated from the theory of probabilistic metric spaces [1]. The
random distance between two points in an original random metric space (briefly, an RM
space) is a nonnegative random variable defined on some probability space, similarly, the
random norm of a vector in an original random normed space (briefly, an RN space) is
a nonnegative random variable defined on some probability space. The development of
RN spaces in the direction of functional analysis led Guo to present a new version of RM
and RN spaces in [2], where the random distances or random norms are defined to be
the equivalence classes of nonnegative random variables according to the new versions.
Based on the new version of an RN space, Guo presented a definitive definition of the
random conjugate space for an RN space. Along with the deep development of the the-
ory of random conjugate spaces, Guo established the notion of a random normed module
(briefly, an RN module) in [3]. In the past ten years, as the central part of random metric
theory, random normed modules and random locally convex modules (briefly, RLC mod-
ules) together with their random conjugate spaces have been deeply studied under the
(e, 1)-topology in the direction of functional analysis, ¢f. [4—19] and the related references
in these papers.
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The purpose of this paper is to study non-L°-linear perturbations of random isometries
in random normed modules. For the readers’ convenience, let us first recall some classical
results as follows.

Let X, Y be two Banach spaces and ¢ a nonnegative real number. A mapping f : X — Y
is said to be an e-isometry provided

@) -fo)| - llx=yll| <& forallx,yeX.

The study of surjective e-isometry has been divided into two cases:

(1) f is surjective and € = 0;

(2) f is surjective and ¢ # 0.

A celebrated result, known as the Mazur-Ulam theorem [20], is a perfect answer to
case (1).

Theorem 1.1 (Mazur-Ulam) Let X and Y be two Banach spaces, f : X — Y a surjective
isometry with f(0) = 0. Then f is linear.

For case (2), after many efforts of a number of mathematicians, the following sharp es-
timate was finally obtained by Omladi¢-Semrl [21].

Theorem 1.2 (Omladi¢-Semrl) Let X and Y be two Banach spaces, f : X — Y a surjective

e-isometry with f(0) = 0. Then there is a surjective linear isometry U : X — Y such that
Hf(x) - U(x) || <2 forallxeX.

In order to introduce the main results of this paper, we need some notation and termi-
nology as follows:
K: the scalar field R of real numbers or C of complex numbers.
(2, F, P): a probability space.
LO(F,K) = the algebra of equivalence classes of K-valued JF-measurable random
variables on (2, F, P).
LO(F) = L°(F,R).
L°(F) = the set of equivalence classes of extended real-valued F-measurable random
variables on (2, F, P).

As usual, L°(F) is partially ordered by & < 7 iff £°(w) < n°%(w) for P-almost all w € Q
(briefly, a.s.), where £° and n° are arbitrarily chosen representatives of £ and 7, respec-
tively. Then (L°(F), <) is a complete lattice, \/ H and /\ H denote the supremum and infi-
mum of a subset H, respectively. (L°(F), <) is a conditionally complete lattice. Please refer
to [1] or [9, p.3026] for the rich properties of the supremum and infimum of a set in L°(F).

Let £ and 5 be in L°(F). £ < n is understood as usual, namely £ < 1 and £ # 1. In this pa-
per we also use ‘€ < 1 (or &£ < n) on A’ for ‘€%(w) < n°(w) (resp., £°(w) < n°(w)) for P-almost
allw € A, where A € F,and £° and n° are representatives of £ and 5, respectively. We have

LYF)={gel’(F) g =0},
LY(F)={£eLl’(F)|1E=0)},
L9,(F) =& e [°(F) | £ >0 on Q},
L (F)=1{£ € L°(F) | £ >00n Q).
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Besides, I, always denotes the equivalence class of Iy, where A € F and I is the
characteristic function of A. When A denotes the equivalence class of A (€ F), namely
A={BeF|PAAB)=0} (here, AAB=(A\B)U(B\A)), we also use I; for I4.

Definition 1.3 Let (Ey, || - ||1) and (Es, || - ||2) be two random normed modules over K with
base (2, F,P) and ¢ € L(F). A mapping f : E; — E, is said to be a random &-isometry
provided

f@ —f)|, - le=ylh| <& forallx,yeEy.

If £ = 0, then the mapping f is called a random isometry; and it is said to be a surjective
random e-isometry if, in addition, f(E;) = E,.

Now, we give the main results of this paper, namely Theorems 1.4 and 1.5 below. For The-
orem 1.4, it is easy to see that it has the same shape as the classical Mazur-Ulam theorem,
but it is not trivial since we must make full use of the relations between random normed
modules and classical normed spaces in the process of the proof. For Theorem 1.5, we do
not get a sharp estimate as the classical result, namely Theorem 1.2, since the complicated
stratification structure in the random setting needs to be considered, which is the essential
difference between random normed modules and classical normed spaces.

Theorem 1.4 Let (Ey, || - ||1) and (E, || - |l2) be two complete random normed modules over
K with base (Q,F,P), f : E| — E, a surjective random isometry. Then f is an L°-linear
function.

Theorem 1.5 Let (Ey, | - |11) and (Es, || - ||2) be two complete random normed modules over

K with base (2, F,P). If f : E; — E; is a surjective random e-isometry with f(0) = 0 and
has the local property. Then there is a surjective L°-linear random isometry U : E| — E,
such that

fx) - U)||, <4e forallxeX.

The remainder of this paper is organized as follows: in Section 2 we will briefly collect
some necessary well-known facts; in Section 3 we will give the proofs of the main results
in this paper.

2 Preliminaries
Definition 2.1 ([2, 9]) An ordered pair (E, || - ||) is called a random normed space (briefly,
an RN space) over K with base (2, F, P) if E is a linear space over K and || - || is a mapping
from E to LY(F) such that the following are satisfied:

(RN-1) |lax| = ||||lx]l, Va € K and x € E;

(RN-2) |lx|| = 0 implies x = 6 (the null element of E);

(RN-3) flx+yll < llxll + llyll, Vx,y € E.
Here | - || is called the random norm on E and ||x|| the random norm of x € E (if || - || only
satisfies (RN-1) and (RN-3) above, it is called a random seminorm on E).

Furthermore, if, in addition, E is a left module over the algebra L%(F,K) (briefly, an
L°(F,K)-module) such that

(RNM-1) [|Ex| = €|, Y& € L°(F,K) and x € E.
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Then (E, || - ||) is called a random normed module (briefly, an RN module) over K with base
(Q, F, P), the random norm || - || with the property (RNM-1) is also called an L°-norm on
E (a mapping only satisfying (RN-3) and (RNM-1) above is called an L°-seminorm on E).

Definition 2.2 ([2]) Let (E, || - ||) be an RN space over K with base (€2, F,P). A linear
operator f from E to L°(F, K) is said to be an a.s. bounded random linear functional if
there is & € LO(F) such that ||f(x)|| < &||x||, Vx € E. Denote by E* the linear space of a.s.
bounded random linear functionals on E, define || - || : E* — L(F) by ||[f || = A{§ € L%(F) |
IIf )|l < &|lx|| for all x € E} for all f € E*, then it is easy to check that (E*, || - ||) is also an
RN module over K with base (2, F, P), called the random conjugate space of E.

Definition 2.3 Let (Ey, ||-|l1) and (Es, || - ||2) be two RN modules over K with base (2, F, P),
a module homomorphism f : E| — E, is said to be L-linear.

Example 2.4 ([2]) Let L°(F,B) be the L°(F, K)-module of equivalence classes of F-ran-
dom variables (or, strongly F-measurable functions) from (€2, F,P) to a normed space
(B,|| - |I) over K. || - || induces an L°-norm (still denoted by || - ||) on L°(F, B) by |lx| := the
equivalence class of ||x°(-)| for all x € L°(F, B), where x°(-) is a representative of x. Then
(L°(F,B), | - ||) is an RN module over K with base (2, F, P). Specially, L°(F,K) is an RN
module, the L°-norm || - || on L°(F, K) is still denoted by | - |.

Definition 2.5 ([2]) Let (E,| - ||) be an RN space over K with base (2, F, P). For any pos-
itive numbers ¢ and A with 0 <A <1, let Ny(e,1) = {x € E | P{lw € Q| ||x]|(w) < €} >1 =1},
then {Ny(e,1) | € > 0,0 < A <1} forms a local base at 8 of some Hausdorff linear topology
on E, called the (g, 1)-topology induced by || - ||.

From now on, we always denote by 7, the (g, 1)-topology for every RN space if there
is no possible confusion. Clearly, the (g, 1)-topology for the special class of RN modules
L°(F,B) is exactly the ordinary topology of convergence in measure, and (L°(F, K), 7;.,)
is a topological algebra over K. It is also easy to check that (E, 7, ;) is a topological module
over (L°(F,K), T;,) when (E,| - ||) is an RN module over K with base (2, F, P), namely
the module multiplication operation is jointly continuous.

Let E be an L°(F, K)-module. A sequence {x,,# € N} in E is countably concatenatable
in E with respect to a countable partition {A4,,n € N} of Q to F if there is x € E such that
jAnx = jAnx,, for each n € N, in which case we define ) 7, jAnx,, as x. A subset G of E is
said to have the countable concatenation property if each sequence {x,,n € N} in G is
countably concatenatable in E with respect to an arbitrary countable partition {4,,# € N}
of Q to F and Y % I,x, € G. It is easy to see that a complete RN module E under 7;
has the countable concatenation property.

The following definition is very important for the main results of this paper.

Definition 2.6 ([9]) Let (E1, | - |l1) and (Es, || - ||2) be two RN modules over K with base
(2, F,P). A mapping f : E; — E, is said to have the local property if

Iif (%) = Iuf (Tax)

forany A € F and x € E;.
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3 Proofs of main results
In order to give the proof of Mazur-Ulam theorem on random normed modules, we need

the following lemmas and readers can find the proofs of them in [9].

Lemma 3.1 ([9]) Let E be a left module over the algebra L°(F,R), f : E — L°(F,R) a ran-
dom linear functional and p : E — L°(F,R) an L°-linear function such that f(x) < p(x),
Vx € E. Thenf is an L°-linear function. If R is replaced by C and p is an L°-seminorm such
that |f (x)| < p(x), Vx € E, then f is also an L°-linear function.

Lemma 3.2 ([2]) Let (E, |- ||) be an RN module over K with base (2, F,P) and 1 < p < +0o0.
Let IP(E) = {x € E | ||x||r < +00}, where || - |1 : E — [0, +00] is defined by

I (fq Nxl? dP)Il?, when 1 < p < +00;
1r =
inf{M € [0, +o0] | ||x|| <M}, whenp=+0c0
forallx e E.
Then (LP(E), || - |I1¢) is a normed space and L?(E) is T, -dense in E.

Remark 3.3 It is easy to see that if (E, || - ||) is complete under the (¢, 1)-topology, then

(LP(E), || - llzr) is also complete, for 1 < p < co.
With the above preparations, we can give the proof of Theorem 1.4.

Proof of Theorem 1.4 Since f : E; — E, is a random isometry with f(0) = 0, we see that f
is random norm preserving and f|;2,) is a mapping from L2(Ey) to L*(E,). 1t is clear that
(2(E0), | - ll2) and (L*(Ea), | - 1 2) are two Banach spaces and flz2(z,) : (L*(E1), I - l2) =
(L*(Ey), || - ll;2) is a surjective isometry with £(0) = 0. By classical Mazur-Ulam theorem,
we see that f|;2,) is linear. Since L*(E;) is dense in E; and f is continuous under 7; , it is
clear that f is a random linear functional. Since |f(x)| = ||x|, we see that f is an L°-linear
function from Lemma 3.1. d

Making use of Theorem 1.4 and the relations between random normed modules and
classical normed spaces, we give the proof of Theorem 1.5.
Proof of Theorem 1.5 Let A = [e = 0], B; = [2""! <& <2/],and C; = [% <e< 2%_1] for any
i € N. Since ¢ € L(F), it is clear that A, B;, and C;, i € N, is a countable partition of Q
to F.ForanyieN, letﬁ« :jBi -E;] — jBi - E; be defined byj_”i(x) = jBi -f(x) for any x € jBiEl.
Forany t € jBl, - Ey, since f is surjective, there is s € E; such that f(s) = ¢. It is easy to see
that

t =f(s) = Ipf (s) = In,f (Is,5) = fillp,s).

Hence,ﬁ» is surjective from igi - E; to jB,» - E5. Since f is a random e-isometry and has the

local property, we see that

i) - o), — ls=ylli| <& foranyx,yels - Ey,
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andﬁhw(ig,sl) is also surjective from L>(Iz, - E;) to L®(Ip, - E5). On one hand, for any

X,y € L°°(fBi - E1), since I[f,»(x) —f,'(y)||2 <|lx =yl + ¢, it is easy to see that |[]?i(x) —ﬁ(y)”z <
[l = ¥l +2 - 201, Thus, by Lemma 3.2, it follows that

1@ =fi) e < llx =yl +2- 27
On the other hand, it is easy to see that
1@ =fi0) | e = llx =yl =227
Hence, we can see thatﬂm(igi Ep) :L®(Ip, - Ey) — L®(Ip, - E,) is surjective with
ﬁ'LOO(fBl.»El)(O) =0
and
| Wil ioo i, 0 ) =Fil ooy 2y O e = 1 = ylzoe | <2277

By Theorem 1.1, we see that there exists a surjective linear isometry g; : Loo(jBl. - Ep) —
L>®(Ip, - E;) such that

“f_”Loo(jBi‘E)(x) —g,»(x)HLoo <4.271 for any x € L“(Zgi -Ey).

Next, we prove j@cgri(jgx) =0 foranyx € L“(]Bl. -E;) and G € F with G C B; and P(G) > 0.
By Lemma 3.2, it is clear that

Vil iy, £/®) =&, = [filioy @) =80 | o0 <427
Thus, we see that
&%) < fil oo gy gy () + 427
and for any G € F with G C B; and P(G) > 0,
Tgegi(I6x) < Iefil o (5, (Tgx) + 4 - 27 e,
Since f has the local property, it is easy to see that
Ioegi(gx) < 4 - 27 ge.
Since x is an arbitrary element in L°°(j ;- £1) and g; is linear, we see that
Igegi(Igx) = 0

for any x € Loo(jBl. -E1) and G € F with G C B; and P(G) > 0. Since g;(x) =§i(7Gx +Igex), it
is easy to check that

168:(%) = Igi(Igx) = GiIgx).
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Now, we prove that ||g;(x)|, = ||x]l; for any x € Loo(jgi - E1). Assume by way of contra-
diction that ||g;(x)]l2 # [#]l1. Then P([||lg;(x)ll2 # lx]l1]) > 0. Let, without loss generality,
H =[|lg®)ll2 > llxl1], and P(H) > 0. It is clear that H C B; and | Iyg;(®)|lz~ > |[Tyx| 1
on H. Then we see that

|2:T1) | oo = [ 108 o0 > Mrill oo

It is a contradiction, because g; is an isometry from LOO(ZBL. -Ej) to Loo(jB[ - E5). Therefore,
we see that ||g;(x)[|2 = ||x|l; and g; is continuous under the (g, 1)-topology. Since L“(igi -Eq)
is dense in jgi - E; under the (g, A)-topology, thus we can define g; :Zgi -E;] — jBl. - E; by

gilx) = nlirggo gi(xn)

forany x € 78; - E1, where {x,,n € N} is a sequence in LOO(?B; - E1) and converges to x under
the (g, A)-topology. From Theorem 1.4, it is easy to see that g; is a surjective L°-linear
random isometry from jBi -E; to jBi - E; and

Ifix) - gi@)], < 427" < 4e

for anyxejgi - E;. ) B
ForanyieN, letfi :jci -E; — jci - E5 be defined byﬁ(x) = ici - f(x) for any x € jciEl. By
the same method as above, we can prove that forany i € N, there exists /; : jci -E; —> jc,- -Ey

such that /; is a surjective L-linear random isometry from jc,v -E; to jc,v -E; and

= 1
[fi@) - i), <4~ o < 4e
for any x € jci - E;.Let U : E; — E, be defined by

U(x) = f(Tax) + £5,61T5,%x) + 22 hi(Ic,x).

i=

Then we see that U is a surjective random isometry from E; to E; with U(0) = 0 and
@) - U], <4¢

for any x € E;. By Theorem 1.4, U is a surjective L°-linear random isometry. It completes
the proof. O

Remark 3.4 In Theorem 1.5, we do not obtain a sharp estimate as the classical result,
namely Theorem 1.2, since random normed modules have a complicated stratification
structure, which is the essential difference between random normed modules and classical
normed spaces.
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