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Abstract
We give some necessary and sufficient conditions for (global) continuity of the limit
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1 Introduction
In the literature there have been several studies about cone metric spaces, namely ab-
stract structures endowed with a distance function taking values in an ordered vector or
a normed space, which includes in particular metric semigroups, whose an example is
the set of fuzzy numbers, which is not a group (see for instance [–]). These structures
are closely related with order vector spaces endowed with abstract convergences satisfy-
ing suitable axioms, but in which in general convergence of subsequences of convergent
sequences is not required, like filter convergence (see also [–]). A comprehensive his-
torical survey on main properties of these structures and several (recent) results about
abstract convergences, distances with values in normed, solid or Hausdorff topological
vector spaces and fixed point theorems, which have several applications to differential,
functional and stochastic equations and reconstruction of signals can be found in [–
]. In this paper we investigate some properties of continuity of the limit of a net of func-
tions, taking values in conemetric spaces, in terms ofweak filter exhaustiveness, extending
earlier results proved in [–], and relate filter exhaustiveness with filter uniform con-
vergence (on compact subsets). Moreover, we give some Ascoli-type theorems for lattice
group-valued functions defined on metric or topological spaces, extending previous re-
sults proved in [] (see also []), and consider also asymmetric distances (see also [,
]) and extended real-valued distances, like Lipschitz metrics, dealing with functions
which are not necessarily contractions and extending earlier results proved for real-valued
or metric space-valued functions in [, ] and [], respectively. We present some ex-
amples to support the results obtained in our setting. Asymmetric distance has different
applications in several branches of mathematics and in physics, for example in gradient
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flowmodels (see also [] and the bibliography therein), and is related also with the study
of several semicontinuity properties of functions (see for instance []). Observe that ex-
tended Lipschitz metrics are complete and extended Lipschitz metric convergence is, in
general, strictly stronger than uniform convergence on bounded sets. Moreover, extended
Lipschitz metrics are equivalent with the supremum metrics when the topological space
X in which the involved functions are defined is bounded and uniformly discrete (in its
own metric), and they are also equivalent with the Sherbert and Weaver metrics when X
is just bounded (see also [, –]). Furthermore, note that, since in lattice groups the
order convergence is in general not generated by any topology (see also []), in our con-
text it is not advisable to deal with concepts like closedness and compactness in terms of
topologies. So we formulate the corresponding notions directly in the setting of conver-
gence and in terms of function nets, including the classical concepts as particular cases
and giving some relations between filter pointwise convergence and filter uniform con-
vergence on compact sets. In the literature, there have been several recent studies about
abstract Ascoli-type theorems, which extend earlier results given in []. In [], different
Ascoli-type theorems are proved, in connection with various kinds of convergence and
exhaustiveness of function nets. In [] and [] these convergences, together with the
concept of exhaustiveness, are considered in the filter/ideal context, and in this setting
some Ascoli-type theorems for real-valued functions are extended. Some other versions
of the Ascoli theorem can be found, for instance, in [, –]. Our approach is di-
rect, simple and easy to handle in the context of our considered structures, that is, when
it is dealt with nets of functions taking values in cone metric spaces, defined in general
Hausdorff topological spaces and with filter exhaustiveness instead of metric spaces and
equicontinuity, respectively, and it allows us to give direct necessary and sufficient condi-
tions. We consider symmetric or asymmetric distances with values in lattice groups and
use the tool of (weak) filter exhaustiveness in connection with (global) continuity of the
limit function and uniform convergence on compact sets. One of the main used methods
is to use some kinds of convergence of suitable subnets of the given net to deduce some
compactness properties. This is given in a very abstract context, comparing two kinds of
compactness for function nets, and after a particular case is presented, using compact-
ness of suitable sets, properties of convergence and boundedness in metric spaces and the
Tychonoff theorem. Furthermore we consider Lipschitz-type metrics using completeness
properties an a ‘total boundedness’ argument in terms of subsequence, without using a
topological approach. Finally, we pose some open problems.

2 Preliminaries
We begin with some fundamental properties of convergence and continuity in the lattice
group context.
A nonempty set � = (�,≥) is said to be directed iff ≥ is a reflexive and transitive binary

relation on �, such that for any two elements λ,λ ∈ � there is λ ∈ � with λ ≥ λ and
λ ≥ λ.
A cone metric space is a nonempty set R endowed with a function ρ : R×R→ Y , where

Y is a Dedekind complete lattice group, satisfying the following axioms:
• ρ(r, r) ≥  and ρ(r, r) =  if and only if r = r;
• ρ(r, r) = ρ(r, r) (symmetric property);
• ρ(r, r) ≤ ρ(r, r) + ρ(r, r) (triangular property), for all rj ∈ R, j = , , 

http://www.journalofinequalitiesandapplications.com/content/2014/1/420


Boccuto and Dimitriou Journal of Inequalities and Applications 2014, 2014:420 Page 3 of 16
http://www.journalofinequalitiesandapplications.com/content/2014/1/420

(see also [, ]). Such a function ρ will be called a distance function. If ρ satisfies only the
first and the third of the above axioms, but not necessarily the symmetric property, thenwe
say that ρ is an asymmetric distance function and that (R,ρ) is an asymmetric cone metric
space (for literature on the asymmetric case, see also [] and the related bibliography).
Note that any Dedekind complete (�)-group Y is a cone metric space: indeed, it is enough
to take ρ(y, y) = |y – y|, y, y ∈ Y (the absolute value).
When R is a semigroup and Y = R, we say that R is a metric semigroup. An example of

metric semigroup which is not a group is the set L(R) of the fuzzy numbers (see also [,
]).

Example . Let T any arbitrary nonempty set, R = {f : T → R, f is bounded}, and fix a
positive real number a �= . For every t ∈ T and f, f ∈ R, put

dt
(
f(t), f(t)

)
=

{
f(t) – f(t), if f(t) ≤ f(t),
a(f(t) – f(t)), if f(t) > f(t),

and set d(f, f) = supt∈T dt(f(t), f(t)). It is not difficult to check that d is an asymmetric
distance function (see also []).

Let R be a (possibly asymmetric) cone metric space and Y be its associated Dedekind
complete (�)-group. A sequence (σp)p in Y is called an (O)-sequence iff it is decreasing
and

∧
p σp = . A net (xλ)λ∈� in R (that is an indexed system of elements of R such that

the index set � is directed) is forward order convergent or forward (O)-convergent (resp.
backward order convergent or backward (O)-convergent) to x ∈ R iff there exists an (O)-
sequence (σp)p in Y such that for every p ∈ N there is λ ∈ � with ρ(x,xζ ) ≤ σp (resp.
ρ(xζ ,x) ≤ σp) for all ζ ∈ �, ζ ≥ λ. We say that (xλ)λ∈� order converges or (O)-converges to
x ∈ R iff it is both forward and backward (O)-convergent to x, and in this case we will write
(O) limλ∈� xλ = x.
Let X be a Hausdorff topological space. A function f : X → R is said to be forward (resp.

backward) continuous at a point x ∈ X iff there exists an (O)-sequence (σp)p in Y (depend-
ing on x) such that for every p ∈ N there is a neighborhood Ux of x with ρ(f (x), f (z)) ≤ σp

(resp. ρ(f (z), f (x))≤ σp) whenever z ∈Ux.
A function f : X → R is globally forward (resp. backward) continuous on X iff there is

an (O)-sequence (σp)p in Y such that for any p ∈ N and x ∈ X there is a neighborhood
Ux of x with ρ(f (x), f (z)) ≤ σp (resp. ρ(f (z), f (x)) ≤ σp) for each z ∈ Ux. We say that f ∈
RX is (globally) continuous on X iff it is both (globally) forward and (globally) backward
continuous on X.
We now recall some basic notions on ideals and filters.
Let � be any nonempty set, and P(�) be the class of all subsets of �. A family of sets

I ⊂ P(�) is called an ideal of � iff A ∪ B ∈ I whenever A,B ∈ I and for each A ∈ I and
B ⊂ A we get B ∈ I . A class of sets F ⊂ P(�) is a filter of � iff A∩ B ∈ F for all A,B ∈ F
and for every A ∈F and B⊃ A we have B ∈F .
An ideal I (resp. a filter F ) of � is said to be non-trivial iff I �= ∅ and � /∈ I (resp. F �= ∅

and ∅ /∈F ).
Let (�,≥) be a directed set. A non-trivial ideal I of � is said to be (�)-admissible iff

�\Mλ ∈ I for each λ ∈ �, whereMλ := {ζ ∈ � : ζ ≥ λ}.
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A non-trivial filter F of � is (�)-free iffMλ ∈F for every λ ∈ �.
Given an ideal I of �, we call dual filter of I the family F = {�\I : I ∈ I}. In this case

we say that I is the dual ideal of F and we get I = {�\F : F ∈F}.
When � = N endowed with the usual order, the (N)-admissible ideals and the (N)-free

filters are called simply admissible ideals and free filters, respectively. The filter Fcofin is
the filter of all subsets of N whose complement is finite, and its dual ideal Ifin is the family
of all finite subsets of N. The filter Fst is the filter of all subsets of N having asymptotic
density , while its dual ideal Ist is the family of all subsets of N, having null asymptotic
density. Note thatFst is a P-filter, namely a filterF ofN such that for every sequence (An)n
in F there is another sequence (Bn)n in F , such that the symmetric difference An�Bn is
finite for all n ∈ N and

⋂∞
n= Bn ∈F (see also [, ]).

A nonempty family B′ ⊂P(�) is said to be a filter base of � iff for every A,B ∈ B′ there
is an element C ∈ B′ with C ⊂ A ∩ B. Note that, if B′ is a filter base of �, then the family
F = {A ⊂ � : there is B ∈ B′ with B ⊂ A} is a filter of �. We call it the filter generated
by B′.
If B′ = {Mλ : λ ∈ �}, then B′ is a filter base of �, and the filter F� generated by B′ is a

(�)-free filter of � (see also []).
Let F be a (�)-free filter of � and choose y ∈ R. A net (sλ)λ∈� in R is said to be F -

forward bounded (resp. F -backward bounded) with respect to y iff there is k ∈ Y , k ≥ 
such that {λ ∈ � : ρ(y, sλ) ≤ k} ∈ F (resp. {λ ∈ � : ρ(sλ, y) ≤ k} ∈ F ). We say that (sλ)λ
is F -bounded with respect to y iff it is both F -forward and F -backward bounded with
respect to y, and that (sλ)λ is bounded (resp. forward bounded, backward bounded) iff it is
Fcofin-bounded (resp. Fcofin-forward bounded, Fcofin-backward bounded).
Wenowgive the fundamental notions of filter convergence and related topics in the cone

metric space setting. Without loss of generality, we consider the symmetric case. Analo-
gously it is possible to deal with the corresponding ‘backward’ and ‘forward’ concepts in
the asymmetric case (see also []).
A net (xλ)λ∈� in a conemetric spaceR (OF )-converges to x ∈ R (shortly, (OF ) limλ xλ = x)

iff there exists an (O)-sequence (σp)p in Y with {λ ∈ � : ρ(xλ,x) ≤ σp} ∈F for each p ∈ N.
A net (xλ)λ∈� in R is (OF )-Cauchy iff there is an (O)-sequence (τp)p in Y such that for
every p ∈ N there is F ∈ F with ρ(xλ,xξ ) ≤ τp for each λ, ξ ∈ F. Note that, since R is
Dedekind complete, a net (fλ)λ in R is (OF )-convergent if and only if it is (OF )-Cauchy
(see also [, ]).
Let � be any nonempty set. We say that a family {(xλ,ξ )λ : ξ ∈ �} in R (OF )-converges to

xξ ∈ R uniformly with respect to ξ ∈ � (shortly, (UOF )-converges to xξ ) as λ varies in � iff
there is an (O)-sequence (vp)p in Y with

{
λ ∈ � :

∨
ξ∈�

ρ(xλ,ξ ,xξ )≤ vp
}

∈F for every p ∈N.

A family {(xλ,ξ )λ : ξ ∈ �} (ROF )-converges to xξ ∈ R (as λ varies in �) iff there exists an
(O)-sequence (σp)p in Y such that for each p ∈ N and ξ ∈ � we get {λ ∈ � : ρ(xλ,ξ ,xξ ) ≤
σp} ∈ F . By (RO)-convergence we will denote the (ROF�)-convergence. Observe that,
when R = Y =R, (ROF )-convergence coincides with usual filter convergence (see also [,
, ]).
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Let x ∈ X. A net fλ : X → R, λ ∈ �, is said to be F -exhaustive at x iff there is an (O)-
sequence (σp)p such that for any p ∈ N there exist a neighborhood U of x and a set F ∈F
such that for each λ ∈ F and z ∈U we have ρ(fλ(z), fλ(x))≤ σp.
A net fλ : X → R, λ ∈ �, is weakly F -exhaustive at x iff there is an (O)-sequence (σp)p

such that for each p ∈ N there is a neighborhood U of x such that for every z ∈ U there is
Fz ∈F with ρ(fλ(z), fλ(x))≤ σp whenever λ ∈ Fz.
We say that fλ : X → R, λ ∈ �, is (weakly) F -exhaustive on X iff it is (weakly) F -

exhaustive at every x ∈ X with respect to a single (O)-sequence, independent of x ∈ X.
Similarly as above it is possible to formulate the concepts of (weak) F -forward (back-

ward) exhaustiveness (see also []).
Of course the concepts of (weak, forward, backward) filter exhaustiveness can be given

also analogously for sequences of functions, by taking � =N with the usual order.
In the next section we will see that, in general, the notion of weak F -exhaustiveness

is strictly weaker than that of F -exhaustiveness (for the case R = Y = R see also [, Re-
mark .]).

3 Themain results
We now give, in the context of filter convergence and lattice groups, a necessary and suf-
ficient condition under which the limit of a pointwise convergent net (fλ)λ is (globally)
continuous, extending [, Proposition ] to nets of lattice group-valued functions.

Theorem . Under the same above notations and assumptions, let F be a (�)-free filter
of �, fix x ∈ X, and suppose that fλ : X → R, λ ∈ �, (ROF )-converges to f : X → R on X
with respect to a single (O)-sequence (σ ∗

p )p in Y . Then the following are equivalent:
(i) (fλ)λ is weakly F -exhaustive at x;
(ii) f is continuous at x.

Proof (i) ⇒ (ii) Let (σp)p be an (O)-sequence in Y associated with weakF -exhaustiveness
of (fλ)λ at x, and pick p ∈ N. By hypothesis, there exists a neighborhood Ux of x, related
with weak F -exhaustiveness. Fix arbitrarily z ∈ Ux. There is a set F ∈F (depending on x
and z) with ρ(fλ(x), fλ(z)) ≤ σp for all λ ∈ F. Moreover, thanks to (ROF )-convergence with
respect to the (O)-sequence (σ ∗

p )p, there exists a set F ∈ F (depending on x and z) with
ρ(fλ(z), f (z)) ≤ σ ∗

p and ρ(fλ(x), f (x)) ≤ σ ∗
p whenever λ ∈ F. Thus for every λ ∈ F ∩ F we

get

ρ
(
f (x), f (z)

) ≤ ρ
(
f (x), fλ(x)

)
+ ρ

(
fλ(x), fλ(z)

)
+ ρ

(
fλ(z), f (z)

) ≤ σ ∗
p + σp.

(ii) ⇒ (i) Since f is continuous at x, there exists an (O)-sequence (τp)p such that for each
p ∈ N there is a neighborhood Ux of x with

ρ
(
f (x), f (z)

) ≤ τp ()

whenever z ∈Ux.
By (ROF )-convergence of (fλ)λ to f on X with respect to the (O)-sequence (σ ∗

p )p, there
is a set F∗ ∈F with

ρ
(
fλ(x), f (x)

) ≤ σ ∗
p and ρ

(
fλ(z), f (z)

) ≤ σ ∗
p ()
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for each λ ∈ F∗. From () and () we obtain

ρ
(
fλ(x), fλ(z)

) ≤ ρ
(
fλ(x), f (x)

)
+ ρ

(
fλ(z), f (z)

)
+ ρ

(
f (x), f (z)

) ≤ σ ∗
p + τp ()

for every λ ∈ F∗. From () we get the existence of an (O)-sequence (vp)p with the property
that for every z ∈ Ux there is a set F∗ ∈ F (depending on x and z) with ρ(fλ(x), fλ(z)) ≤ vp
whenever λ ∈ F∗. Thus the net (fλ)λ is weakly F -exhaustive at x. This ends the proof. �

Analogously as Theorem ., it is possible to prove the following.

Theorem . Under the same notations and assumptions as in Theorem ., suppose that
fλ : X → R, λ ∈ �, (ROF )-converges to f : X → R on X with respect to a single (O)-sequence
(σ ∗

p )p in Y . Then the following are equivalent:
(i) (fλ)λ is weakly F -exhaustive on X ;
(ii) f is globally continuous on X .

We now use Theorem . to show that, in general, F -exhaustiveness is strictly stronger
than weak F -exhaustiveness.

Example . Let F be any fixed free filter of N, X = [–, ] be endowed with the usual
distance, � be the σ -algebra of all Borel subsets of X, ν be the Lebesgue measure on X,
andR be the space of all bounded ν-measurable functions onX, with identification up to ν-
null sets. Note that order convergence in R coincides with almost everywhere convergence
dominated by an element of R, which does not have a topological nature (see also []).
For each real number a, let a the function which associates to every element x ∈ X the
constant a.
We consider the sequence fn : X → R, n ∈ N, defined as follows:

fn(x) =

⎧⎪⎨
⎪⎩
, if x ∈ [–, ],
n, if x = 

n ,

n , if x ∈ (, ],x �= 

n .

It is easy to see that (fn)n (OF )-converges pointwise to  with respect to an (O)-sequence
independent of x ∈ X (for example, σp = 

p , p ∈N) and thus, by Theorem ., (fn)n is weakly
F -exhaustive on [–, ]. On the other hand, it is not hard to see that, if (σp)p is any (O)-
sequence in R, then there is a positive real numberM with σp(x)≤M for every p ∈N and
x ∈ X. In correspondence withM, for each set F ∈F there is an integer n ∈ F , n >M.
So we get fn (


n
) = n, and hence fn (


n
) � σ. From this it follows that (fn)n is not F -

exhaustive at . Moreover, it is not difficult to check that (fn)n is F -backward exhaustive
at , but not F -forward exhaustive at .

The following two propositions extend [, Proposition .] and will be useful in the
sequel.

Proposition . Let F , X, R be as in Theorem ., fλ : X → R, λ ∈ �, be a function net,
F -exhaustive on X and (ROF )-convergent to f ∈ RX on X.
Then f is globally continuous on X , and the net (fλ)λ (UOF )-converges on every compact

subset C ⊂ X with respect to a single (O)-sequence, independent of C.

http://www.journalofinequalitiesandapplications.com/content/2014/1/420
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Proof Global continuity of f on X follows from Theorem ..
Let now (σp)p, (σ ∗

p )p, (τp)p be three (O)-sequences in Y , related with F -exhaustiveness
of (fλ)λ, (ROF )-convergence on X and global continuity of f on X respectively, let C ⊂ X
be any compact set, and choose arbitrarily p ∈ N and x ∈ C. As (fλ)λ is F -exhaustive at x
and f is globally continuous, there exist Fx ∈F and an open neighborhood Ux of x, with

ρ
(
fλ(z), fλ(x)

) ≤ σp and ρ
(
f (z), f (x)

) ≤ τp ()

for each λ ∈ Fx and z ∈Ux. By compactness of C there is a finite family {Ux ,Ux , . . . ,Uxk },
with xj ∈ X for every j ∈ [,k], whose union contains C. Since (fλ)λ (ROF )-converges to f
on X, in correspondence with p ∈N and x, . . . ,xk there is a set F ∈F with

ρ
(
fλ(xj), f (xj)

) ≤ σ ∗
p for each j ∈ [,k] and λ ∈ F. ()

Let F := F ∩ (
⋂k

j= Fxj ): note that F ∈F . Pick arbitrarily z ∈ C: there exists at least j ∈ [,k]
with z ∈Uxj . Then from () and () we get

ρ
(
fλ(z), f (z)

) ≤ ρ
(
fλ(z), fλ(xj)

)
+ ρ

(
fλ(xj), f (xj)

)
+ ρ

(
f (xj), f (z)

) ≤ σp + σ ∗
p + τp

for each λ ∈ F . This ends the proof. �

Proposition . LetF , X, R be as above. If fλ : X → R, λ ∈ �, is a net of functions, globally
continuous with respect to a single (O)-sequence independent of λ and (UOF )-convergent
to f ∈ RX on X, then f is globally continuous and (fλ)λ is F -exhaustive on X.

Proof We begin with proving global continuity of f on X. Let x ∈ X, (σp)p and (τp)p be two
(O)-sequences, related with (UOF )-convergence of (fλ)λ to f and global continuity of the
fλ’s, respectively, and fix arbitrarily x ∈ X and p ∈ N. By hypothesis there is a set F ∈ F
with ρ(fλ(z), f (z)) ≤ σp for each λ ∈ F and z ∈ X. Fix λ ∈ F . By global continuity of fλ there
are a neighborhood U of x with ρ(fλ(z), fλ(x))≤ τp for each z ∈ U . Thus for such z’s we get

ρ
(
f (z), f (x)

) ≤ ρ
(
f (z), fλ(z)

)
+ ρ

(
fλ(z), fλ(x)

)
+ ρ

(
fλ(x), f (x)

)
≤ σp + τp, ()

namely global continuity of f with respect to the (O)-sequence (vp)p, where vp := σp + τp,
p ∈ N.
WenowproveF -exhaustiveness of the net (fλ)λ onX. Choose arbitrarily x ∈ X. By global

continuity of f with respect to (vp)p, in correspondence with p ∈ N and x ∈ X there is a
neighborhood Ux of x with ρ(f (z), f (x)) ≤ vp whenever z ∈ Ux. By (UOF )-convergence of
(fλ)λ to f on X with respect to (σp)p, there is F∗ ∈F with

ρ
(
fλ(z), f (z)

) ≤ σp and ρ
(
fλ(x), f (x)

) ≤ σp for all λ ∈ F∗. ()

From () and () we get

ρ
(
fλ(z), fλ(x)

) ≤ ρ
(
fλ(z), f (z)

)
+ ρ

(
fλ(x), f (x)

)
+ ρ

(
f (z), f (x)

) ≤ σp + vp

for every λ ∈ F∗ and z ∈Ux. This ends the proof. �
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Remark . Proceeding analogously as above, it is possible to see that Theorems ., .
and Propositions ., . hold even when the distance function ρ does not satisfy neces-
sarily symmetric property, and (ROF )- ((UOF )-) convergence, (weak) F -exhaustiveness
and continuity are replaced by (ROF )- ((UOF )-) forward (backward) convergence, (weak)
F -forward (backward) exhaustiveness and forward (backward) continuity, respectively,
under the hypothesis that the forward and backward convergences are equivalent.

Example . In general, the hypothesis that forward convergence implies backward con-
vergence is essential. Indeed, let X = [, ] be endowed with the usual distance, R =
[, ]× [, ] be endowed with the following distance function:

d
((
y′
, y

′

)
,
(
y′′
 , y

′′

))

=

⎧⎪⎨
⎪⎩
, if (y′

, y′
) = (y′′

 , y′′
),√

(y′
 – y′′

 ) + (y′
 – y′′

), if y′
 ≤ y′′

 and y′′
 > ,

, otherwise.

Observe that (R,d) is an asymmetric metric space (see also [, Example .]). Let
fn : X → R, n ∈ N, be defined by setting fn(x) = ( n ,x), n ∈ N, x ∈ [, ]. Note that
d((,x), ( n ,x)) =


n and d(( n ,x), (,x)) = . Thus, it is not difficult to check that for any free

filter F of N the sequence (fn(x))n F -forward converges uniformly on [, ] to the func-
tion f : [, ] → R defined by f (x) = (,x), x ∈ [, ] and that the F -forward limit is unique,
while theF -backward limit of (fn(x))n does not exist in R for any x ∈ [, ].Moreover, since
d((,x), (, )) = d((, ), (,x)) =  for each x ∈ (, ], we find that f is neither forward nor
backward continuous at . Furthermore, as

d
(
fn(x), fn()

)
= d

((

n
,x

)
,
(

n
, 

))
= x = d

((

n
, 

)
,
(

n
,x

))
= d

(
fn(x), fn()

)

for every x ∈ [, ], it follows that for any free filter F of N the sequence (fn(x))n is both
F -forward and F -backward exhaustive at .

We now give some versions of Ascoli-type theorems in the context of lattice groups and
filter exhaustive nets, extending earlier results proved in [] and []. Note that in our
context, since we deal with abstract structures which are not necessarily by a topology, it
will be advisable to deal with suitable notions of ‘filter closedness’ and ‘filter compactness’
in relation with convergences, which are not necessarily generated by a Hausdorff topol-
ogy. For example, note that in the space L([, ],�,ν) of all measurable functions on [, ]
with respect to the σ -algebra � of all Borel subsets of [, ] and the Lebesgue measure ν ,
with identification up to ν-null sets, order convergence coincides with almost everywhere
convergence, which does not have a topological nature. Moreover, there exist Dedekind
complete vector lattices which do not have any Hausdorff compatible vector topology, for
which every bounded monotone increasing sequence converges to its supremum (see for
instance []).
Given a directed set �, a (�)-free filter F of �, a topological space X, a cone metric

spaceR and a nonempty set� ⊂ RX , we say that� is (ROF )-compact (resp. (cF )-compact)
iff every net (fλ)λ∈� in � admits a subnet (fλκ )κ∈�, (ROF )-convergent to an element f ∈
� (resp. (UOF )-convergent to an element f ∈ � on every compact subset C ⊂ X with
respect to a single (O)-sequence independent ofC).We say that� is (ROF )-closed iff f ∈ �

http://www.journalofinequalitiesandapplications.com/content/2014/1/420
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whenever (fλ)λ is a net in �, (ROF )-convergent to f ∈ RX . The (ROF )-closure of � is the
set of the functions f ∈ RX , having a net (fλ)λ in �, (ROF )-convergent to f . Analogously
as above, it is possible to formulate the notions of (cF )-closedness and of (cF )-closure.
Note that � is (ROF )-closed (resp. (cF )-closed) if and only if it coincides with its (ROF )-
closure (resp. (cF )-closure).
When R =R, (ROF )-convergence coincides with F -pointwise convergence, and hence

we denote the related above concepts by F -compactness, F -closedness and F -closure, re-
spectively.
We now are in a position to give the following abstract Ascoli-type theorem.

Theorem . Under the same notations and hypotheses as above, if � ⊂ � ⊂ RX , where
� is (cF )-closed and � is (ROF )-compact, and

(H′) every (ROF )-convergent net (hλ)λ∈� in� has a subnet (hλξ
)ξ∈�, (ROF )-convergent (in

RX ) and F -exhaustive on X ,

then � is (cF )-compact.
Moreover, if � is (cF )-compact, then � satisfies condition (H′).

Proof We begin with the first part. Let � ⊂ RX be (cF )-closed, and (fλ)λ∈� be a net in �.
Since � ⊂ � and � is (ROF )-compact, (fλ)λ has a (ROF )-convergent subnet (fλκ )κ∈�. By
condition (H′), this subnet has a sub-subnet (fλκζ

)ζ∈�, (ROF )-convergent to a function f ∈
RX and F -exhaustive on X. By Proposition ., the net (fλκζ

)ζ F -converges to f uniformly
on every compact subset C ⊂ X, with respect to an (O)-sequence independent of C. Since
� is (cF )-closed, then f ∈ �. Therefore, � is (cF )-compact.
We now turn to the last part. Let� be (cF )-compact and (fλ)λ∈� be a (ROF )-convergent

net in �. Then it admits a subnet (fλκ )κ∈�, (UOF )-convergent to a function f ∈ RX on ev-
ery compact subsetC ⊂ X with respect to an (O)-sequence, independent ofC. By Proposi-
tion ., we find that (fλκ )κ∈� (ROF )-converges to f and isF -exhaustive on every compact
set C with respect to a single (O)-sequence, and hence, by arbitrariness of C, it (ROF )-
converges to f and is F -exhaustive on X. This ends the proof. �

Remark. Observe that, in general, condition (H′) is strictlyweaker than equicontinuity
(see also [, Remark ..]).

A consequence of Theorem . is the following (see also []).

Theorem . Let (X,dX) and (R,dR) be asymmetric metric spaces, such that dX and dR
are real-valued distance functions, y be a fixed element of R, F be any free filter of N and
suppose that
(..) each subset of R, F -closed and F -forward bounded with respect to y, is

F -compact.
Let � ⊂ RX be such that

(..) every sequence (fn)n in �, pointwise convergent in RX , has a Fcofin-exhaustive
subsequence;

(..) every sequence (fn)n in � has a subsequence (fnr )r , F -pointwise forward
bounded in R with respect to y.
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Then every sequence (fn)n in � admits a subsequence, uniformly convergent on every com-
pact subset C ⊂ X in the usual sense.

Proof Choose arbitrarily x ∈ X, set �x := {f (x) : f ∈ �}, and let �x be the closure of �x

in R. We claim that �x is compact in R. Indeed, let y ∈ �x. There exists a sequence (yn)n in
�x, convergent to y with respect to dR. So, in correspondence with ε =  there is a natural
number n ∈ N with dR(y, yn) ≤  whenever n ≥ n. Moreover, there is a sequence (fn)n in
� such that fn(x) = yn for each n ∈N. By (..), there exist a subsequence (fnr )r of (fn)n, a
positive real number kx and a set Fx ∈ F with dR(y, ynr ) ≤ kx whenever r ∈ Fx. Thus there
exists r ∈ N with

dR(y, y) ≤ dR(y, ynr ) + dR(ynr , y) ≤ kx + ,

getting forward boundedness of �x and hence F -compactness of �x, thanks to the hy-
potheses. This implies that �x is also compact: indeed, by proceeding analogously as in
[, Proposition .], it is possible to prove that everyF -convergent sequence in an asym-
metric metric space (X,d) has a subsequence, convergent in the usual sense. As �x is
compact in R, then, by virtue of the Tychonoff theorem, the set

∏
x∈X �x is compact in RX

with respect to the pointwise convergence. Since � ⊂ ∏
x∈X �x, then we find that every

sequence (fn)n in � has a subsequence (fnk )k , pointwise convergent to a suitable function
h ∈ RX . From (..) and Theorem . used with Y =R, � =N and F =Fcofin, where the
roles of � and � are played by the (cF )-closure � of � and

∏
x∈X �x respectively, we get

the assertion. �

Note that Theorem . extends [, Theorem .] and [, Theorem .]. Indeed, we
get the following.

Corollary . Under the same hypotheses and notations as in Theorem ., let F be a
P-filter of N. Let � ⊂ RX satisfy (..), (..) and be such that
(..) every sequence in �, pointwise convergent in RX , has a F -exhaustive

subsequence.
Then every sequence (fn)n has a subsequence, uniformly convergent on X in the usual

sense.

Proof Let (fn)n be any function sequence in �. Arguing analogously as in the proof of
Theorem ., we see that (fn)n has a subsequence (fnk )k , pointwise convergent in the usual
sense to a function h ∈ RX . By (..), (fnk )k has a F -forward exhaustive subsequence, say
(hn)n. Since F is a P-filter, proceeding analogously as in [, Lemma .], it is possible
to see that (hn)n has a Fcofin-forward exhaustive subsequence. The assertion follows from
Theorem .. �

Example . In general, in Theorem ., the condition (..) cannot be dropped. In-
deed, let X, (R,d) and fn : X → R, n ∈N, be as in Example .. Note that (R,d) is bounded
and closed (with respect to itself ), and also F -closed and F -bounded for any free fil-
ter F of N. Let A = {xn := (, n ) : n ∈ N}: since d((, n ), (,b)) =  whenever b �= 

n and
d((, n ), (a,b))≥ a for every a ∈ (, ], b ∈ [, ] and n ∈N, it is not difficult to see that, for
each free filter F of N, every subsequence (xnr )r of (xn)n does not admit F -forward limit
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as r → +∞. From this it follows that (R,d) is not F -forward compact and hence it does
not fulfil condition (..). Let now � : {fn : n ∈ N}: it is not hard to check that the con-
ditions (..) and (..) are satisfied. Note that, as seen in Example ., the sequence
(fn)n does not have any subsequence, uniformly (backward) convergent in the usual sense,
and so the thesis of Theorem . is false.

We now give some versions of abstract Ascoli-type theorems with respect to Lipschitz-
type metrics. For a related literature, we refer to [] and the bibliography therein.
Let (X,d) be a metric space endowed with a real-valued distance function, R be a

Dedekind complete vector lattice, Y = R endowed with the absolute value, and let us add
to R an extra element +∞, satisfying the properties analogous to those of the element +∞
of the extended real line. We say that f : X → R is Lipschitz iff there is a positive element
M ∈ R with |f (x) – f (x)| ≤ d(x,x)M whenever x,x ∈ X, and in this case we set

�(f ) :=
∨{ |f (x) – f (x)|

d(x,x)
: x,x ∈ X : x �= x

}
. ()

If f : X → R is not Lipschitz, then we put �(f ) := +∞. Note that, even if X is a compact
metric space, R = R and f : X → R is continuous, it may happen that �(f ) = +∞: indeed,
it is enough to take f (x) = x/, x ∈ [, ].
We now fix a point x ∈ X and consider the following extended metric:

dL(f, f) :=
∣∣f(x) – f(x)

∣∣ ∨ �(f – f), f, f : X → R. ()

Given a directed set (�,≥) and a (�)-free filter F of �, we say that

(F ) lim
λ∈�

dL(fλ, f ) =  or (FdL) lim
λ∈�

fλ = f

iff there is an (O)-sequence (σp)p, with

{
λ ∈ � : dL(fλ, f ) ≤ σp

} ∈F for every p ∈N.

In this case, we say that the net (fλ)λ (FdL)-converges to f . The net (fλ)λ is (FdL)-Cauchy
iff there is an (O)-sequence (σp)p in R with the property that for every p ∈N there is F ∈F
with dL(fξ , fζ )≤ σp whenever ξ , ζ ∈ F .
It is easy to check that every (FdL)-convergent net is (FdL)-Cauchy. We will prove also

the converse implication. To this aim, we first give the following extension of [, Propo-
sition .] to the setting of filters and vector lattices.

Proposition . Let fλ : X → R, λ ∈ �, be a function net, (FdL)-convergent to f , and x
be related with dL. Then, for every k > , (fλ)λ (UOF )-converges to f on the set S(x,k) :=
{x ∈ X : d(x,x) < k}.

Proof By hypothesis, there is an (O)-sequence (σp)p such that for every p ∈N there is a set
F ∈F with

∣∣fλ(x) – f (x)
∣∣ ≤ σp and

∣∣(fλ – f )(x) – (fλ – f )(x)
∣∣ ≤ d(x,x)σp ()
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for every λ ∈ F and x ∈ X. From () we get

∣∣fλ(x) – f (x)
∣∣ ≤ ( + k)σp

whenever λ ∈ F and x ∈ S(x,k). This ends the proof. �

Example . Observe that, in general, (FdL)-convergence is strictly stronger than
(UOF )-convergence on compact sets. Indeed, let (X,d) be a compact metric space, fix
a point x ∈ X, and suppose that there exists at least a sequence (xn)n in X, convergent to x
with respect to d in the usual sense. Let R be any Dedekind complete vector lattice, u be
a strictly positive element of R, and put fn(t) = d(t,xn)u, f (t) = d(t,x)u for every n ∈N and
t ∈ X. It is not difficult to check that |fn(t) – f (t)| = |d(t,xn)u – d(t,x)u| ≤ d(x,xn)u for any
n ∈ N and t ∈ X. From this it follows that the sequence (fn)n (UOF )-converges on X for
every free filter F of N. On the other hand, we get

�(fn – f ) ≥ |(fn – f )(xn) – (fn – f )(x)|
d(xn,x)

=
|d(xn,xn)u – d(x,xn)u – d(xn,x)u + d(x,x)u|

d(xn,x)
= u

for every n ∈ N. This implies that, for any free filter F of N, the sequence (�(fn – f ))n
does not converge to . Otherwise there exists an (O)-sequence (σp)p in R such that {n ∈
N : �(fn – f ) ≤ σp} ∈ F for every p ∈ N, and so for each p ∈ N there is np ∈ N with u ≤
�(fnp – f ) ≤ σp. By arbitrariness of p it follows that u = , but this is impossible. Thus
(�(fn – f ))n does not (OF )-converge to , and hence (fn)n is not (FdL)-convergent to f
(see also [, Example .]).

As a consequence of Proposition ., we prove the following completeness result, which
extends [, Proposition .].

Proposition . Under the same above notations and hypotheses, let fλ : X → R, λ ∈
�, be an (FdL)-Cauchy net of functions, globally continuous with respect to a single (O)-
sequence. Then (fλ)λ (FdL)-converges to a globally continuous function f : X → R.

Proof Let fλ : X → R, λ ∈ �, be a (FdL)-Cauchy net, and x be related with dL. Then the
net (fλ(x))λ is (OF )-Cauchy, and so it is (OF )-convergent, since R is Dedekind complete
(see also []). Moreover, for every λ, ξ ∈ � and x ∈ X we get

∣∣fλ(x) – fξ (x)
∣∣ ≤ ∣∣fλ(x) – fξ (x)

∣∣ + d(x,x)�(fλ – fξ )

≤ ∣∣fλ(x) – fξ (x)
∣∣ + d(x,x)dL(fλ, fξ ). ()

From (), the hypotheses and since the net (fλ(x))λ is (OF )-Cauchy, it follows that for
every x ∈ X the net (fλ(x))λ is (OF )-Cauchy, and so (OF )-convergent. For each x ∈ X, set
f (x) := (OF ) limλ fλ(x).
We now prove that (F ) limλ �(fλ – f ) = . Choose arbitrarily p ∈ N. Since by hypothesis

(fλ)λ is dL-Cauchy, there is F ∈F with dL(fλ, fξ )≤ σp, and hence

�(fλ – fξ )≤ σp, whenever λ, ξ ∈ F . ()
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From (), since fλ(x) – f (x) = (OF ) limξ (fλ(x) – fξ (x)) for every x ∈ X and λ ∈ �, it follows
that

�(fλ – f ) ≤ σp whenever λ ∈ F . ()

From Propositions ., . and () we get global continuity of f . This ends the proof.
�

The next step is to give anAscoli-type theorem involving dL.We say that a net fλ : X → R,
λ ∈ �, is F -finitely dL-bounded iff there exists a finite number q of globally continuous
functions h, . . . ,hq ∈ RX , of elements r, . . . , rq ∈ R, of sets E, . . . ,Eq with � =

⋃q
j= Ej, and

a set F ∈F such that dL(fλ,hj) ≤ rj for every j ∈ [,q] and whenever λ ∈ F ∩ Ej.

Theorem . Let X be a metric space. If � ⊂ � ⊂ RX , where � is (cF )-closed and � is
(ROF )-compact, and if we assume that
(..) every (ROF )-convergent net in � is F -finitely dL-bounded,

then � is (cF )-compact.

Proof Choose arbitrarily a net (fλ)λ∈�. By (ROF )-compactness of � , (fλ)λ∈� has a sub-
net (fλζ

)ζ∈�, (ROF )-convergent to a function f ∈ RX . By (H′), (fλζ
)ζ∈� is F -finitely dL-

bounded. Pick arbitrarily x ∈ X and let q, F and hj, rj, Ej, j ∈ [,q], be according toF -finite
dL-boundedness of (fλζ

)ζ . Since the hj ’s are globally continuous, we find an (O)-sequence
(τp)p such that for each p ∈N there is a neighborhood Ux of x with

∣∣hj(z) – hj(x)
∣∣ ≤ τp whenever z ∈ Ux and j ∈ [,q]. ()

If ζ ∈ F ∩ Ej and z ∈Ux, then from () we get

∣∣fλζ
(z) – fλζ

(x)
∣∣

=
∣∣(fλζ

(z) – hj(z)
)
+

(
hj(z) – hj(x)

)
+

(
hj(x) – fλζ

(x)
)∣∣

≤ ∣∣hj(z) – hj(x)
∣∣ + ∣∣(fλζ

– hj)(z) – (fλζ
– hj)(x)

∣∣
≤ τp + d(z,x)�(fλζ

– hj) ≤ τp + d(z,x)dL(fλζ
,hj) ≤ τp + d(z,x)rj, ()

getting F -exhaustiveness of (fλζ
)ζ∈�. By Proposition ., the net (fλζ

)ζ∈� (UOF )-
converges to f on every compact subset C ⊂ X with respect to a single (O)-sequence,
independent of C. This ends the proof. �

When R = R and � = N, it is possible to prove the following extension of [, Theo-
rem .].

Theorem . Let F be any free filter of N, X be a separable metric space, � ⊂ RX be
(cFcofin)-closed, and such that every sequence fn : X → R, n ∈ N, in � is F -finitely dL-
bounded. Then � is (cFcofin)-compact.

Proof Let (fn)n be an F -finitely dL-bounded sequence, x be related to dL, and F , q, hj, rj,
Ej, j ∈ [,q], be associated with F -finite dL-boundedness of (fn)n. By arguing analogously
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as in the proof of Theorem ., formula (), it is possible to show that the sequence fn,
n ∈N, satisfies condition (..) with respect to the filterFcofin. To prove (..), observe
that

∣∣fn(x) – hj(x)
∣∣

≤ ∣∣fn(x) – hj(x)
∣∣ + ∣∣fn(x) – hj(x) –

(
fn(x) – hj(x)

)∣∣
≤ rj + d(x,x)rj for every x ∈ X, j ∈ [,q],n ∈ F ∩ Ej. ()

From () it follows that

∣∣fn(x)∣∣ ≤
∨
j∈[,q]

∣∣hj(x)∣∣ + rj + d(x,x)
∨
j∈[,q]

rj

for each n ∈ F and x ∈ X. Thus the sequence fn, n ∈ F , satisfies (..) with respect to
Fcofin. By Theorem ., the sequence fn, n ∈ F , and so even the sequence fn, n ∈ N, has
a subsequence, uniformly convergent to f on every compact subset C ⊂ X in the usual
sense. By (cFcofin)-closedness of �, it follows that f ∈ �. This ends the proof. �

Example . Observe that, in Theorem ., in general the hypothesis of F -finite dL-
boundedness cannot be dropped. Indeed, let fn : [–, ] → R, n ∈ N, be a function se-
quence, such that fn([–,– 

n ]) = fn([ n , ]) = , fn() = n and fn is linear in [– 
n , ] and in

[, n ] for each n ∈ N. It is not difficult to check that for every free filter F of N, for any
F ∈ F , for each q ∈ N and for any choice of real numbers r, . . . , rq, of functions h, . . . ,hq,
continuous on [–, ], and of sets E, . . . ,Eq with

⋃q
j= Ej = N, there exists at least an index

j ∈ [,q] such that F ∩ Ej is infinite: otherwise F should be finite, but this is impossible,
since F is a free filter of N. Thus there is a sufficiently large integer n ∈ F ∩ Ej, with

�(fn – hj) = sup

{ |(fn – hj)(x) – (fn – hj)(x)|
|x – x| : x,x ∈ [–, ] : x �= x

}
> rj.

Thus, for any free filter F of N, the sequence (fn)n is not F -finitely dL-bounded. Further-
more, it is not hard to see that the sequence (fn)n has no subsequence convergent uniformly
on [–, ], and so the set � := {fn : n ∈N} is (cFcofin)-closed, but not (cFcofin)-compact (see
also [, Example .]).

Remark . The results here obtained hold, even if Y is a weakly σ -distributive lattice
group endowed with (D)-convergence (see for instance []).

Open problems
(a) Prove similar results on (weak) filter exhaustiveness in other abstract structures.
(b) Find further versions of Ascoli-type theorems, by considering different kinds of

convergences in various kinds of abstract spaces.

4 Conclusion
We have first given, for cone metric space function nets, a characterization of continu-
ity of the limit function in terms of filter weak exhaustiveness and some relation between
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filter exhaustiveness and uniform convergence (on compact sets). These relations have
been used in proving our main abstract Ascoli-type theorem. Indeed, the condition on
existence of a (filter pointwise convergent with respect to a single order sequence and)
filter exhaustive subnet is necessary and sufficient for compactness with respect to the
uniform convergence of compact sets, given the compactness with respect to the point-
wise convergence. In the classical case, it is possible to treat these subjects by dealing with
the compact-open topology (which corresponds to convergence uniformly on compacta;
see also []). But in a general Dedekind complete lattice group it may happen the non-
existence of Hausdorff topologies ‘compatible’ with the order (see also []), and we need
an approach different from the classical one, by considering concepts like closedness and
compactness by means of nets (or sequences) of functions rather than by topologies. In
Theorem . and Corollary ., we have extended earlier results proved in [] and [],
including both the symmetric and the asymmetric case.
Furthermore, we have dealt with Lipschitz-type metrics and considered also extended

distance-type functions, which are related with not necessarily Lipschitz functions. The
main Ascoli-type results given in [] have been extended in the lattice group setting and
in the context of filter convergence and exhaustiveness (and also a concept similar to ‘total
boundedness’ has been presented in terms of filters), giving some compactness result again
with respect to uniform convergence on compact sets. We have given also some examples
to support the results proved in our setting.
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4. Riečan, B, Neubrunn, T: Integral, Measure and Ordering. Kluwer Academic, Dordrecht (1997)
5. Vrábel, P, Vrábelová, M: I-Convergence and I-continuity of the fuzzy number-valued functions. Acta Math. (Nitra)

16, 237-243 (2013)
6. Bardaro, C, Boccuto, A, Dimitriou, X, Mantellini, I: Abstract Korovkin-type theorems in modular spaces and

applications. Cent. Eur. J. Math. 11, 1774-1784 (2013)
7. Boccuto, A, Candeloro, D: Integral and ideals in Riesz spaces. Inf. Sci. 179, 2891-2902 (2009)
8. Boccuto, A, Dimitriou, X, Papanastassiou, N: Basic matrix theorems for I-convergence in (�)-groups. Math. Slovaca 62,

885-908 (2012)
9. Boccuto, A, Dimitriou, X, Papanastassiou, N: Schur lemma and limit theorems in lattice groups with respect to filters.

Math. Slovaca 62, 1145-1166 (2012)
10. Candeloro, D, Sambucini, AR: Filter convergence and decompositions for vector lattice-valued measures. Mediterr.

J. Math. (2014). doi:10.1007/500009-014-0431-0
11. Proinov, PD: A unified theory of cone metric spaces and its applications to the fixed point theory. Fixed Point Theory

Appl. 2013, Article ID 103 (2013). doi:10.1186/1687-1812-2013-103
12. Zabrejko, PP: K -Metric and K -normed linear spaces: a survey. Collect. Math. 48, 825-859 (1997)
13. Boccuto, A, Candeloro, D: Several types of equations in Riesz spaces and applications. Acta Math. (Nitra) 8, 7-21 (2005)
14. Boccuto, A, Candeloro, D: The contraction principle in Riesz spaces and applications to differential and stochastic

equations. Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 55, 13-31 (2007)

http://www.journalofinequalitiesandapplications.com/content/2014/1/420
http://dx.doi.org/10.1007/500009-014-0431-0
http://dx.doi.org/10.1186/1687-1812-2013-103


Boccuto and Dimitriou Journal of Inequalities and Applications 2014, 2014:420 Page 16 of 16
http://www.journalofinequalitiesandapplications.com/content/2014/1/420
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