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Abstract

Let {Xn, n ≥ 1} be a strictly stationary r--mixing sequence of positive random

variables with EX1 = μ > 0 and Var(X1) = s2 < ∞. Denote Sn =
n∑
i=1

Xi and γ =
σ

μ
the

coefficient of variation. Under suitable conditions, by the central limit theorem of
weighted sums and the moment inequality we show that

∀x = lim
n→∞

1
log n

n∑
k=1

1
k
I

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(

k∏
i=1

Si
iμ

) 1
γ σk

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= F(x) a.s.,

where σ 2
k = Var

(
Sk,k
)
, Sk,k =

k∑
i=1

bi,kYi, bi,k =
k∑
j=i

1
j , i ≤ k with

bi,k = 0, i > k, Yi =
Xi−μ

σ
, F(x) is the distribution function of the random variable

e
√
2N , and N is a standard normal random variable.

MR(2000) Subject Classification: 60F15.

Keywords: almost sure central limit theorem, r?ρ?--mixing, products of partial sums

1 Introduction and main results
For a random variable X, define ∥X∥p = (E|X|p)1/p. For two nonempty disjoint sets S,T

⊂ N, we define dist(S,T) to be min{|j - k|; j Î S, k Î T}. Let s(S) be the s-field gener-

ated by {Xk, k Î S}, and define s(T) similarly. Let C be a class of functions which are

coordinatewise increasing. For any real number x, x+, and x- denote its positive and

negative part, respectively, (except for some special definitions, for examples, r-(s), r-

(S,T), etc.). For random variables X, Y, define

ρ−(X,Y) = 0 ∨ sup
Cov(f (X), g(Y))(

Varf (X)
) 1
2
(
Varg(Y)

)1
2

,

where the sup is taken over all f , g ∈ C such that E(f(X))2 < ∞ and E(g(Y))2 < ∞.

A sequence {Xn, n ≥ 1} is called negatively associated (NA) if for every pair of disjoint

subsets S, T of N,

Cov
{
f (Xi, i ∈ S), g

(
Xj, j ∈ T

)} ≤ 0,
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whenever f , g ∈ C .

A sequence {Xn, n ≥ 1} is called r*-mixing if

ρ ∗ (s) = sup
{
ρ (S,T) ; S,T ⊂ N, dist(S,T) ≥ s

}→ 0 as s → ∞,

where

ρ(S,T) = sup
{∣∣E(f − Ef )(g − Eg)/

(∥∥f − Ef
∥∥
2 · ∥∥g − Eg

∥∥
2

)∣∣ ; f ∈ L2(σ (S)), g ∈ L2(σ (T))
}
.

A sequence {Xn, n ≥ 1} is called r--mixing, if

ρ (s) = sup
{
ρ (S,T); S,T ⊂ N, dist(S,T) ≥ s

}→ 0 as s → ∞.

where,

ρ (S,T) = 0 ∨ sup{ Cov
{
f (Xi, i ∈ S) , g

(
Xi, j ∈ T

)}
√
Var
{
f (Xi, i ∈ S)

}
Var
{
g
(
Xi, j ∈ T

)} ; f , g ∈ C}.

The concept of r--mixing random variables was proposed in 1999 (see [1]). Obviously,

r--mixing random variables include NA and r*-mixing random variables, which have a

lot of applications, their limit properties have aroused wide interest recently, and a lot of

results have been obtained, such as the weak convergence theorems, the central limit

theorems of random fields, Rosenthal-type moment inequality, see [1-4]. Zhou [5] stu-

died the almost sure central limit theorem of r--mixing sequences by the conditions pro-

vided by Shao: on the conditions of central limit theorem, and if

ε0 > 0, Var
(

n∑
i=1

1
i
f
(
Si
σi

))
= O

(
log2−ε0n

)
, where f is Lipschitz function. In this article,

we study the almost sure central limit theorem of products of partial sums for r--mixing

sequence by the central limit theorem of weighted sums and moment inequality.

Here and in the sequel, let bk,n =
n∑
i=k

1
i
, k ≤ n with bk,n = 0, k >n. Suppose {Xn, n ≥ 1}

be a strictly stationary r--mixing sequence of positive random variables with EX1 = μ >

0 and Var(X1) = s2 < ∞. Let S̃n =
n∑

k=1
Yk and Sn,n =

n∑
k=1

bk,nYk, where Yk =
Xk − μ

σ
, k ≥ 1 .

Let σ 2
n = Var

(
Sn,n
)
, and C denotes a positive constant, which may take different values

whenever it appears in different expressions. The following are our main results.

Theorem 1.1 Let {Xn, n ≥ 1} be a defined as above with 0 <E|X1|
r < ∞ for a certain

r > 2, denote Sn =
n∑
i=1

Xi and γ =
σ

μ
the coefficient of variation. Assume that

(a1) σ 2
1 = EX2

1 + 2
∞∑
n=2

Cov (X1,Xn) > 0,

(a2)
∞∑
n=2

|Cov (X1,Xn)| < ∞,

(a3) r-(n) = O(log-δn), ∃ δ > 1,

(a4) inf
n∈N

σ 2
n

n
> 0.

Then

∀x lim
n→∞

1
log n

n∑
k=1

1
k
I
{
Sk,k
σk

≤ x
}
= �(x) a.s. (1:1)
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Here and in the sequel, I{·} denotes indicator function and F(·) is the distribution

function of standard normal random variable N .

Theorem 1.2 Under the conditions of Theorem 1.1, then

∀x = lim
n→∞

1
log n

n∑
k=1

1
k
I

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(

k∏
i=1

Si
iμ

) 1
γ σk

≤ x

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= F(x) a.s. (1:2)

Here and in the sequel, F(·) is the distribution function of the random variable e
√
2N .

2 Some lemmas
To prove our main results, we need the following lemmas.

Lemma 2.1 [3] Let {Xn, n ≥ 1} be a weakly stationary r--mixing sequence with

EXn = 0, 0 < EX2
1 < ∞, and

(i) σ 2
1 = EX2

1 + 2
∞∑
n=2

Cov (X1,Xn) > 0,

(ii)
∞∑
n=2

|Cov (X1,Xn)| < ∞,

then

ES2n
n

→ σ1
2,

Sn
σ1

√
n

d→N (0, 1) as n → ∞.

Lemma 2.2 [4] For a positive real number q ≥ 2, if {Xn, n ≥ 1} is a sequence of r--
mixing random variables with EXi = 0, E|Xi|

q < ∞ for every i ≥ 1, then for all n ≥ 1,

there is a positive constant C = C(q, r-(·)) such that

E
(
max
1≤j≤n

∣∣Sj∣∣q
)

≤ C

⎧⎪⎨
⎪⎩

n∑
i=1

E|Xi|q +
(

n∑
i=1

EX2
i

) q
2

⎫⎪⎬
⎪⎭ .

Lemma 2.3 [6]
n∑
i=1

b2i,n = 2n − b1,n.

Lemma 2.4 [[3], Theorem 3.2] Let {Xni, 1 ≤ i ≤ n, n ≥ 1} be an array of centered ran-

dom variables with EX2
ni < ∞ for each i = 1,2,...,n. Assume that they are r--mixing. Let

{ani, 1 ≤ i ≤ n, n ≥ 1} be an array of real numbers with ani = ±1 for i = 1, 2,..., n.

Denote σ 2
n = Var

(
n∑
i=1

aniXni

)
and suppose that

sup
n

1
σ 2
n

n∑
i=1

EX2
ni < ∞,

and

lim sup
n→∞

1
σ 2
n

∑
i,j:|i−j|≥A

1≤i,j≤n

Cov
(
Xni,Xnj

)− → 0 as A → ∞,
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and the following Lindeberg condition is satisfied:

1
σ 2
n

n∑
i=1

EX2
niI {|Xni| ≥ εσn} → 0 as n → ∞

for every ε > 0. Then

1
σn

n∑
i=1

aniXni
d→N (0, 1) as n → ∞.

Lemma 2.5 Let {Xn, n ≥ 1} be a strictly stationary sequence of r--mixing random

variables with EXn = 0 and
∞∑
n=2

|Cov (X1,Xn)| < ∞, {ani, 1 ≤ i ≤ n,n ≥ 1} be an array

of real numbers such that sup
n

n∑
i=1

a2ni < ∞ and max
1≤i≤n

|ani| → 0 as n ® ∞. If

Var
(

n∑
i=1

aniXi

)
= 1 and

{
X2
n

}
is an uniformly integrable family, then

n∑
i=1

aniXi
d→N (0, 1) as n → ∞.

Proof Notice that

n∑
i=1

aniXi =
n∑
i=1

ani
|ani|

|ani|Xi =:
n∑
i=1

bniYni,

where bni =
ani
|ani| and Yni = |ani|Xi. Then {Yni, 1 ≤ i ≤ n, n ≥ 1} is an array of r--mixing

centered random variables with EY2
ni = a2niEX

2
i < ∞ and bni = ±1 for i = 1, 2,..., n and

σ 2
n = Var

(
n∑
i=1

bniYni

)
= 1. Note that

{
X2
n

}
is an uniformly integrable family, we have

sup
n

1
σ 2
n

n∑
i=1

EY2
ni = sup

n

n∑
i=1

a2niEX
2
i ≤ sup

n

n∑
i=1

a2ni · sup
i

EX2
i < ∞,
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and

lim sup
n→∞

1
σ 2
n

∑
i,j:|i−j|≥A

1≤i,j≤n

Cov
(
Yni,Ynj

)−

= lim sup
n→∞

∑
i,j:|i−j|≥A

1≤i,j≤n

Cov
(|ani|Xi,

∣∣anj∣∣Xj
)−

≤ lim sup
n→∞

∑
i,j:|i−j|≥A

1≤i,j≤n

|ani| · ∣∣anj∣∣ · ∣∣Cov (Xi,Xj
)∣∣

≤ C

⎛
⎜⎜⎝lim sup

n→∞

⎛
⎜⎜⎝ ∑

i,j:|i−j|≥A
1≤i,j≤n

|ani|2 · ∣∣Cov (Xi,Xj
)∣∣ + ∑

i,j:|i−j|≥A
1≤i,j≤n

|ani|2 · ∣∣Cov (Xi,Xj
)∣∣
⎞
⎟⎟⎠
⎞
⎟⎟⎠

≤ C sup
n

n∑
i=1

|ani|2 ·
∑
i>A

∣∣Cov(X1,Xi)
∣∣

→ 0 as A → ∞,

and ∀ ε > 0, we get

1
σ 2
n

n∑
i=1

EY2
niI {|Yni| ≥ εσn}

=
n∑
i=1

a2niEX
2
i I {|ani| · |Xi| ≥ ε}

≤ sup
n

n∑
i=1

a2ni · EX2
1I {|ani| · |X1| ≥ ε}

≤ sup
n

n∑
i=1

a2ni · EX2
1I
{
max
1≤i≤n

|ani| · |X1| ≥ ε

}
→ 0 as n → ∞,

thus the conclusion is proved by Lemma 2.4.

Lemma 2.6 [2] Suppose that f1(x) and f2(y) are real, bounded, absolutely continuous

functions on R with
∣∣f ′

1(x)
∣∣ ≤ C1 and

∣∣f ′
2(y)

∣∣ ≤ C2. Then for any random variables X

and Y,∣∣Cov (f1(X), f2(Y))∣∣ ≤ C1C2
{−Cov(X,Y) + 8p−(X,Y)‖X‖2,1‖Y‖2,1

}
,

where ‖X‖2,1 =
∫∞
0 P

1
2 (|X| > x) dx.

Lemma 2.7 Let {Xn, n ≥ 1} be a strictly stationary sequence of r--mixing random

variables with EX1 = 0, 0 < EX2
1 < ∞ and

0 < σ 2
1 = EX2

1 + 2
∞∑
n=2

Cov (X1,Xn) < ∞,

∞∑
n=2

|Cov (X1,Xn)| < ∞,
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then for 0 <p < 2, we have

n
− 1

p Sn → 0 a.s. as n → ∞.

Proof By Lemma 2.1, we have

lim
n→∞

ES2n
n

= σ 2
1 . (2:1)

Let nk = ka, where α > max
{
1,

p
2 − p

}
. By (2.1), we get

∞∑
k=1

P

{
|Snk| ≥ εn

1
p
k

}
≤

∞∑
k=1

ES2nk

ε2n
2
p
k

≤
∞∑
k=1

C

ε2k
α
( 2
p −1

) < ∞.

From Borel-Cantelli lemma, it follows that

n
− 1

p
k Snk → 0 a.s. as k → ∞. (2:2)

And by Lemma 2.2, it follows that

∞∑
k=1

P

⎧⎨
⎩ max

nk≤n<nk+1

∣∣Sn − Snk
∣∣

n
1
p

≥ ε

⎫⎬
⎭ ≤

∞∑
k=1

E max
nk≤n<nk+1

∣∣Sn − Snk
∣∣2

ε2n
2
p
k

=
∞∑
k=1

E max
nk≤n<nk+1

∣∣∣∣∣
n∑

i=nk+1
Xi

∣∣∣∣∣
2

ε2n
2
p
k

≤ C
∞∑
k=1

(nk+1 − nk)

ε2n
2
p
k

≤ C
∞∑
k=1

1

k
α
( 2
p−1

) < ∞.

By Borel-Cantelli lemma, we conclude that

max
nk≤n<nk+1

∣∣Sn − Snk
∣∣

n
1
p

→ 0 a.s. as n → ∞. (2:3)

For every n, there exist nk and nk+1 such that nk ≤ n <nk+1, by (2.2) and (2.3), we

have

|Sn|
n
1
p

=

∣∣Sn − Snk + Snk
∣∣

n
1
p

≤
∣∣Snk ∣∣
n
1
p
k

+ max
nk≤n<nk+1

∣∣Sn − Snk
∣∣

n
1
p

→ 0 a.s. as n → ∞.

The proof is now completed.

3 Proof of the theorems
Proof of Theorem 1.1 By the property of r--mixing sequence, it is easy to see that

{Yn} is a strictly stationary r--mixing sequence with EY1 = 0 and EY2
1 = 1. We first

prove
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Sn,n
σn

d→N (0, 1) as n → ∞. (3:1)

Let ani =
bi,n
σn

, 1 ≤ i ≤ n,n ≥ 1. Obviously,

Var

(
n∑
i=1

aniYi

)
= 1.

From condition (a4) in Theorem 1.1 and Lemma 2.3, we have

sup
n

n∑
i=1

a2ni = sup
n

n∑
i=1

b2i,n
σ 2
n

= sup
n

2n − b1,n
σ 2
n

≤ C sup
n

2n − b1,n
n

< ∞,

and

max
1≤i≤n

|ani| = max
1≤i≤n

bi,n
σn

≤ b1,n
σn

≤ C log n√
n

→ 0 as n → ∞.

By stationarity of {Yn, n ≥ 1} and E |X1|
2 < ∞, we know that

{
Y2
n

}
is uniformly integr-

able, and from condition (a2) in Theorem 1.1, we get
∞∑
n=2

|Cov (Y1,Yn)| < ∞, so apply-

ing Lemma 2.5, we have

n∑
i=1

aniYi
d→N (0, 1).

Notice that

n∑
i=1

aniYi =
n∑
i=1

bi,nYi
σn

=
Sn,n
σn

,

so (3.1) is valid. Let f(x) be a bounded Lipschitz function and have a Radon-Nikodyn

derivative h(x) bounded by Γ. From (3.1), we have

Ef
(
Sn,n
σn

)
→ Ef (N (0, 1)) as n → ∞,

thus

1
log n

n∑
k=1

1
k
Ef
(
Sk,k
σk

)
− Ef (N (0, 1)) → 0 as n → ∞. (3:2)

On the other hand, note that (1.1) is equivalent to

lim
n→∞

1
log n

n∑
k=1

1
k
f
(
Sk,k
σk

)
=
∫ ∞

−∞
f (x)d�(x) = Ef (N (0, 1)) a.s. (3:3)

from Section 2 of Peligrad and Shao [7] and Theorem 7.1 on P42 from Billingsley [8].

Hence, to prove (3.3), it suffices to show that

Tn =
1

log n

n∑
k=1

1
k

[
f
(
Sk,k
σk

)
− Ef

(
Sk,k
σk

)]
→ 0 a.s. n → ∞ (3:4)
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by (3.2). Let ξk = f
(
Sk,k
σk

)
− Ef

(
Sk,k
σk

)
, 1 ≤ k ≤ nm we have

ET2
n =

1

log2n
E

(
n∑

k=1

ξk

k

)2

≤ 1

log2n

∑
1≤k≤l≤n,2k≥l

|Eξkξl|
kl

+
1

log2n

∑
1≤k≤l≤n,2k≥l

|Eξkξl|
kl

:= I1 + I2.

(3:5)

By the fact that f is bounded, we have

I1 ≤ C

log2n

n∑
k=1

2k∑
l=k

1
kl

=
C

log2n

n∑
k=1

1
k

2k∑
l=k

1
l

≤ C(log−1n). (3:6)

Now we estimate I2, if l > 2k, we have

Sl,l − S2k,2k =
(
b1,lY1 + b2,lY2 + · · · + bl,lYl

)− (b1,2kY1 + b2,2kY2 + · · · + b2k,2kY2k
)

=
(
b2k+1,lY2k+1 + · · · + bl,lYl

)
+ b2k+1,lS̃2k,

and

|Eξkξl| =
∣∣∣∣Cov

(
f
(
Sk,k
σk

)
, f
(
Sl,l
σl

))∣∣∣∣
≤
∣∣∣∣∣Cov

(
f
(
Sk,k
σk

)
, f
(
Sl,l
σl

)
− f

(
Sl,l − S2k,2k − b2k+1,l S̃2k

σl

))∣∣∣∣∣
+

∣∣∣∣∣Cov
(
f
(
Sk,k
σk

)
, f

(
Sl,l − S2k,2k − b2k+1,l S̃2k

σl

))∣∣∣∣∣ .
By Lemma 2.3 and condition (a2) in Theorem 1.1, we have

Var(Sk,k) =
k∑
i=1

b2i,kEY
2
i + 2

k−1∑
j=1

k∑
i=j+1

bi,kbj,kCov
(
Yi,Yj

)

≤
k∑
i=1

b2i,k + 2
k∑
j=1

b2j,k

k∑
i=j+1

∣∣Cov(Yi,Yj)∣∣
≤ Ck,

(3:7)

and

Var
(
Sl,l − S2k,2k − b2k+1,l S̃2k

)

=
l∑

i=2k+1

b2i,lEY
2
i + 2

l−1∑
j=2k+1

l∑
i=j+1

bi,lbj,lCov
(
Yi,Yj

)

≤
l∑

i=2k+1

b2i,l + 2
l∑

j=1

b2i,l

l∑
i=j+1

∣∣Cov(Yi,Yj)∣∣
≤ Cl.
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By Lemma 2.6, the definition of r--mixing sequence and condition (a4), we have∣∣∣∣∣Cov
(
f
(
Sk,k
σk

)
, f

(
Sl,l − S2k,2k − b2k+1,l S̃2k

σl

))∣∣∣∣∣
≤ C

{
−Cov

(
Sk,k
σk
, Sl,l−S2k,2k−b2k+1,l S̃2k

σl

)
+8ρ−

(
Sk,k
σk
, Sl,l−S2k,2k−b2k+1,l S̃2k

σl

)
·
∥∥∥ Sk,k

σk

∥∥∥
2,1

·
∥∥∥ Sl,l−S2k,2k−b2k+1,l S̃2k

σl

∥∥∥
2,1

}

≤ Cρ−(k)
(
Var
(
Sk,k
σk

)) 1
2
(
Var
(
Sl,l−S2k,2k−b2k+1,l S̃2k

σl

)) 1
2

+ Cρ−(k)
∥∥∥ Sk,k

σk

∥∥∥
2,1

·
∥∥∥ Sl,l−S2k,2k−b2k+1,l S̃2k

σl

∥∥∥
2,1

≤ Cρ−(k) + Cρ−(k)
∥∥∥ Sk,k

σk

∥∥∥
2,1

·
∥∥∥ Sl,l−S2k,2k−b2k+1,l S̃2k

σl

∥∥∥
2,1

.

By the inequality ‖X‖2,1 ≤ r
r−2‖X‖r(r > 2) (cf. Zhang [[2], p. 254] or Ledoux and

Talagrand [[9], p. 251]), we get∥∥∥∥Sk,kσk

∥∥∥∥
2,1

≤ r
r − 2

∥∥∥∥Sk,kσk

∥∥∥∥
r
=

r
r − 2

1
σk

(
E
∣∣Sk,k∣∣r) 1r ,

and

E
∣∣Sk,k∣∣r = E|

k∑
j=1

bj,kYj|r

≤ C

⎧⎪⎨
⎪⎩

k∑
j=1

brj,kE
∣∣Xj
∣∣r +

⎛
⎝ k∑

j=1

b2j,kEX
2
j

⎞
⎠

r
2
⎫⎪⎬
⎪⎭

≤ C
{
k
(
logrk

)
+ k

r
2
}
,

thus

∥∥∥∥Sk,kσk

∥∥∥∥
2,1

≤ C

(
r

r − 2
· log k

k
1
2−1

r

+
r

r − 2

)
< C,

similarly,∥∥∥∥∥Sl,l − S2k,2k − b2k+1,l S̃2k
σl

∥∥∥∥∥
2,1

< C,

hence∣∣∣∣∣Cov
(
f
(
Sk,k
σk

)
, f

(
Sl,l − S2k,2k − b2k+1,l S̃2k

σl

))∣∣∣∣∣ ≤ Cρ−(k).
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Similarly to (3.7), we have

Var
(
S2k,2k

)
=

2k∑
i=1

b2i,2kEY
2
i + 2

2k−1∑
j=1

2k∑
i=j+1

bi,2kbj,2kCov
(
Yi,Yj

)

≤
2k∑
i=1

b2i,2k + 2
2k−1∑
j=1

b2i,2k

2k∑
i=j+1

∣∣Cov (Yi,Yj)∣∣
≤ Ck,

and

Var
(
S̃2k
)
= Var

(
2k∑
i=1

Yi

)

=
2k∑
i=1

EY2
i + 2

2k−1∑
i=1

2k∑
j=i+1

∣∣Cov (Yi,Yj)∣∣

= 2k + 2
2k−1∑
i=1

2k−i+1∑
j=2

Cov
(
Yi,Yj

)
≤ Ck.

Since f is a bounded Lipschitz function, we have∣∣∣∣∣Cov
(
f
(
Sk,k
σk

)
, f
(
Sl,l
σl

)
− f

(
Sl,l − S2k,2k − b2k+1,l S̃2k

σl

))∣∣∣∣∣
≤ CE

∣∣∣S2k,2k + b2k+1,lS̃2k
∣∣∣

σl

≤ C

(
Var
(
S2k,2k

)) 1
2

σl
+ C

b2k+1,l
(
Var
(
S̃2k
)) 1

2

σl

≤ C
(
k
l

) 1
2
+ C
(
k
l

) 1
2
log 1

2k

≤ C
(
k
l

)ε

,

where 0 < ε <
1
2
. Hence if l > 2k, we have

|Eξkξl| ≤ C
[
ρ−(k) +

(
k

l

)ε]
.
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Thus

I2 ≤ C

log2n

n∑
l=2

l−1∑
k=1

1
k1−ε l1+ε

+
C

log2n

n∑
l=2

1
l

l−1∑
k=1

ρ−(k)
k

≤ C

log2n

n∑
l=2

1
l1+ε

(l − 1)ε

ε
+

C

log2n

n∑
l=2

1
l

n∑
k=1

log−δk
k

≤ C

log2n

n∑
l=2

1
l
+

C

log2n

n∑
l=2

1
l

n∑
k=1

log−δk

k

≤ Clog−1n.

(3:8)

Associated with (3.5), (3.6), and (3.8), we have

ET2
n ≤ Clog−1n. (3:9)

To prove (3.4), let nk = ek
τ, where τ > 1. From (3.9), we have

∞∑
k=1

ET2
nk ≤ C

∞∑
k=1

log−1nk = C
∞∑
k=1

1
kτ

< ∞.

Thus ∀ε > 0, we have

∞∑
k=1

P
{∣∣Tnk ∣∣ ≥ ε

} ≤
∞∑
k=1

ET2
nk

ε2
< ∞.

By Borel-Cantelli lemma, we have

Tnk→0 a.s. as k → ∞.

Note that

log nk+1
log nk

=
(k + 1)τ

kτ
→ 1 as k → ∞.

For every n, there exist nk and nk+1 satisfying nk <n ≤ nk+1, we have

|Tn| ≤ 1
log nk

∣∣∣∣∣
nk∑
i=1

ξi

i

∣∣∣∣∣ + 1
log nk

nk+1∑
i=nk

|ξi|
i

≤ ∣∣Tnk ∣∣ + C
(
log nk+1
log nk

− 1
)

→ 0 a.s. as n → ∞,

(3.4) is completed, so the proof of Theorem 1.1 is completed.

Proof of Theorem 1.2 Let Ci =
Si
μi
, we have

1
γ σk

k∑
i=1

(Ci − 1) =
1

γ σk

k∑
i=1

(
Si
μi

− 1
)
=

1
σk

k∑
i=1

bi,kYi =
Sk,k
σk

.

Hence (1.1) is equivalent to

∀x lim
n→∞

1
log n

n∑
k=1

1
k
I

{
1

γ σk

k∑
i=1

(Ci − 1) ≤ x

}
= �(x) a.s. (3:10)
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On the other hand, to prove (1.2), it suffices to show that

∀x lim
n→∞

1
log n

n∑
k=1

1
k
I

{
1

γ σk

k∑
i=1

logCi ≤ x

}
= �(x) a.s. (3:11)

By Lemma 2.7, for enough large i, for some
4
3

< p < 2 we have

|Ci − 1| =
∣∣∣∣ Siμi

− 1

∣∣∣∣ ≤ Ci
1
p −1

a.s.

It is easy to know that log(1+ x) = x + O(x2) for |x| <
1
2
, thus

∣∣∣∣∣
n∑

k=1

logCk −
n∑

k=1

(Ck − 1)

∣∣∣∣∣ ≤ C
n∑

k=1

(Ck − 1)2 ≤ C
n∑

k=1

k
2
p−2 ≤ Cn

2
p−1

a.s.,

and

n∑
k=1

(Ck − 1) − Cn
2
p −1 ≤

n∑
k=1

logCk ≤
n∑

k=1

(Ck − 1) + Cn
2
p−1

a.s.

Hence for arbitrary small ε > 0, there is n0 = n0(ω, ε), such that for every n >n0 and

arbitrary x,

I

{
1

γ σk

k∑
i=1

(Ci − 1) ≤ x − ε

}
≤ I

{
1

γ σk

k∑
i=1

logCi ≤ x

}
≤ I

{
1

γ σk

k∑
i=1

(Ci − 1) ≤ x + ε

}
,

so by (3.10), we know that (3.11) is true, and (3.11) is equivalent to (1.2), thus the

proof of Theorem 1.2 is complete.
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