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Abstract
This paper is concerned with the numerical properties of Runge-Kutta methods for
the alternately of retarded and advanced equation ẋ(t) = ax(t) + a0x(2[ t+12 ]). The
stability region of Runge-Kutta methods is determined. The conditions that the
analytic stability region is contained in the numerical stability region are obtained.
A necessary and sufficient condition for the oscillation of the numerical solution is
given. And it is proved that the Runge-Kutta methods preserve the oscillations of the
analytic solutions. Some numerical experiments are illustrated.
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1 Introduction
This paper deals with the numerical solution of the alternately of retarded and advanced
equation with piecewise continuous arguments (EPCA)

ẋ(t) = f
(
x(t),x

(

[
t + 


]))
, (.)

where [·] is the greatest integer function. Differential equations of this form have stim-
ulated considerable interest and have been studied by Cooker and Wiener [], Jayasree
and Deo [], Wiener and Aftabizadeh []. In these equations the argument deviation
T(t) = t – [ t+ ] is a piecewise linear periodic function with periodic . Also, T(t) is nega-
tive for n– ≤ t < n and positive for n≤ t < n+ . Therefore, (.) is of advanced type
on [n – , n) and of retarded type on (n, n + ).
EPCA describe hybrid dynamical systems, combine properties of both differential and

difference equations and have applications in certain biomedical models in the work of
Busenberg and Cooke []. For these equations of mixed type, the change of sign in the
argument deviation leads not only to interesting periodic properties, but also to compli-
cations in the asymptotic and oscillatory behavior of solutions. Oscillatory, stability and
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periodic properties of the linear EPCA alternately of retarded and advanced form have
been investigated in [].
There are some papers concerning the stability of numerical solutions of delay differen-

tial equations with piecewise continuous arguments, such as [–]. Also, there have been
results concerning oscillations of delay differential equations and delay difference equa-
tions, even including delay differential equations with piecewise continuous arguments
[]. But there is no paper concerned with the stability and oscillation of the numerical
solutions of Eq. (.).
In this paper, we investigate the numerical properties, including the stability and oscil-

lation, of Runge-Kutta methods of delay differential equations with piecewise continuous
arguments.
We consider the following equation:

{
ẋ(t) = ax(t) + ax([ t+ ]),
x() = x,

(.)

where a, a are constants and [·] is the greatest integer function.

Definition . [] A solution of (.) on [,∞) is a function x(t) that satisfies the condi-
tions:

. x(t) is continuous on [,∞).
. The derivative ẋ(t) exists at each point t ∈ [,∞), with the possible exception of the

points t = n –  for n ∈N, where one-sided derivatives exist.
. (.) is satisfied on each interval [n – , n + ) for n ∈N.

In the following, we use these notations

m(t) = eat +
(
eat – 

)
a–a, m =m(), m– =m(–).

The following theorems give existence and uniqueness of solutions and provide neces-
sary and sufficient conditions for the asymptotic stability and the oscillation of all solutions
of (.).

Theorem . [] Assume that a,a,x ∈ R. Then the initial value problem (.) has on
[,∞) a unique solution x(t) given by

x(t) =m
(
T(t)

)( m

m–

)[ t+ ]

x,

where T(t) = t – [ t+ ], x() = x.

Theorem . [] The solution x(t) =  of (.) is asymptotically stable (limt→∞ x(t) = ) if
and only if any one of the following hypotheses is satisfied:

. a < , a > – a(ea+)
(ea–) or a < –a;

. a > , – a(ea+)
(ea–) < a < –a;

. a = , a < .
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In the following, we give the definition of oscillation and non-oscillation.

Definition . A nontrivial solution of (.) is said to be oscillatory if there exists a se-
quence {tk}∞k= such that tk → ∞ as k → ∞ and x(tk)x(tk–) ≤ . Otherwise, it is called
non-oscillatory. We say (.) is oscillatory if all nontrivial solutions of (.) are oscillatory.
We say (.) is non-oscillatory if all nontrivial solutions of (.) are non-oscillatory.

Consider the difference equation

an+k + pan+k– + · · · + pkan = , n = , , , . . . , (.)

where k = , , . . . , pi ∈R, i = , , . . . ,k, and its associated characteristic equation is

λk + pλk– + · · · + pk–λ + pk = . (.)

Definition . A nontrivial solution {an} of (.) is said to be oscillatory if there exists a
sequence {nk} such that nk → ∞ as k → ∞ and ankank– ≤ . Otherwise, it is called non-
oscillatory. Equation (.) is said to be oscillatory if all nontrivial solutions of Eq. (.) are
oscillatory. Equation (.) is called non-oscillatory if all nontrivial solutions of Eq. (.) are
non-oscillatory.

Theorem . [] Eq. (.) is oscillatory if and only if the characteristic equation (.) has
no positive roots.

Theorem . [] A necessary and sufficient condition for all solutions of Eq. (.) to be
oscillatory is either a < – aea

ea– or a >
a

ea– .

2 Runge-Kutta methods
In this section we consider the adaptation of the Runge-Kutta methods (A,b, c). Let h = 

m
be a given step-size with an integerm ≥ , and let the grid-points tn be defined by tn = nh
(n = , , , . . .).
For the Runge-Kutta methods, we always assume that b + b + · · · + bν =  and  ≤ c ≤

c ≤ · · · ≤ cν ≤ .
The adaptation of the Runge-Kutta methods to (.) leads to a numerical process of the

following type:

{
xn+ = xn + h

∑ν
i= bi(ay

(n)
i + az(n)i ),

y(n)i = xn + h
∑ν

j= aij(ay
(n)
j + az(n)j ),

(.)

where the matrix A = (aij)ν×ν , vectors b = (b,b, . . . ,bν)T , c = (c, c, . . . , cν)T , and xn is an
approximation to x(t) at tn (n = , , , . . .). y(n)i and z(n)i are approximations to x(tn+ cih) and
x([ tn+cih ]) respectively. Let n = km+ l, l = –m, –m+, . . . ,m– for k ≥ , l = , , . . . ,m–
for k = . Then z(km+l)

i can be defined as xkm according to Definition . (i = , . . . ,ν).
Let Y (n) = (y(n) , y(n) , . . . , y(n)ν )T . Then (.) reduces to

{
xkm+l+ = xkm+l + habTY km+l + haxkm,
Y km+l = xkm+le + haAY km+l + haAexkm,

(.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/290
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where e = (, , . . . , )T . Hence we have

xkm+l+ = R(x)xkm+l +
a
a

(
R(x) – 

)
xkm, (.)

where x = ha, R(x) =  + xbT (I – xA)–e is the stability function of the method.
We can obtain from (.)

xkm+l =
(
Rl(x) +

a
a

(
Rl(x) – 

))
xkm, (.)

x(k+)m =
Rm(x) + a

a (R
m(x) – )

R–m(x) + a
a (R–m(x) – )

xkm, (.)

x(k+)m =
 + a
 – a

xkm, a = . (.)

3 Stability and oscillation of the Runge-Kutta methods
In this section we discuss stability and oscillation of the Runge-Kutta methods.

3.1 Numerical stability
Definition . The Runge-Kutta method is called asymptotically stable at (a,a) if there
exists a constant M such that xn defined by (.) tends to zero as n → ∞ for all h = 

m
(m >M) and any given x.

Definition . The set of all points (a,a) at which the Runge-Kutta method is asymp-
totically stable is called an asymptotic stability region denoted by S.

For any given Runge-Kutta method, R(x) = P(x)
Q(x) , where P(x) and Q(x) are polynomials.

R(x) is a continuous function at the neighborhood of zero, and R() = R′() = . So there
are δ <  < δ such that

{
 < R(x) < ∞ for  < x < δ,
 < R(x) <  for δ < x < ,

(.)

which implies

 <
R(x) – 

x
< ∞ for δ < x < δ. (.)

Remark . It is known from [] that R(x) is an increasing function in [–, ], and  <
R(x) < ∞ for  < x ≤ ,  < R(x) <  for – ≤ x < . Hence we can take δ = –, δ =  for
simplicity.

In the following, we always suppose h < 
|a| .

It is easy to see from (.) and (.) that xn →  as n → ∞ if and only if xkm →  as
k → ∞. Hence we have the following theorem.

Theorem . The Runge-Kutta method is asymptotically stable if any one of the following
hypotheses is satisfied:

(i) – a(Rm(x)+)
(Rm(x)–) < a < –a, a > ;

http://www.journalofinequalitiesandapplications.com/content/2012/1/290


Song and Liu Journal of Inequalities and Applications 2012, 2012:290 Page 5 of 13
http://www.journalofinequalitiesandapplications.com/content/2012/1/290

(ii) – a(Rm(x)+)
(Rm(x)–) < a or a < –a, a < ;

(iii) a < , a = .

Proof In view of (.), the Runge-Kutta method is asymptotically stable if and only if

– <
(a + a)Rm(x) – aRm(x)

(a + a) – aRm(x)
< , a �= ,

a < , a = .
(.)

If (a + a) – aRm(x) > , then (.) reduces to

a > –
a(Rm(x) + )
(Rm(x) – )

and (a + a)Rm(x) < a + a,

which is equivalent to

a > –
a(Rm(x) + )
(Rm(x) – )

, a≤ ,

–
a(Rm(x) + )
(Rm(x) – )

< a < –a, a > .
(.)

If a + a – aRm(x) < , then (.) reduces to

a < –
a(Rm(x) + )
(Rm(x) – )

and (a + a)Rm(x) > a + a,

which is equivalent to

a < –a, a < . (.)

By virtue of (.) and (.), the theorem is proved. �

3.2 Numerical oscillations
Theorem . The following statements are equivalent:

. {xn} is oscillatory;
. {xkm} is oscillatory;
. a < –aRm(x)

Rm(x)– , or a >
a

Rm(x)– .

Proof {xkm} is not oscillatory if and only if

Rm(x) + a
a (R

m(x) – )
R–m(x) + a

a (R–m(x) – )
> ,

i.e.,

–aRm(x)
Rm(x) – 

< a <
a

Rm(x) – 
.
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Hence for any l = , , . . . ,m – 

–aRl(x)
Rl(x) – 

<
–aRm(x)
Rm(x) – 

< a <
a

Rm(x) – 
<

a
Rl(x) – 

,

which is equivalent to

Rl(x) +
a
a

(
Rl(x) – 

)
> ,

R–l(x) +
a
a

(
R–l(x) – 

)
> .

We obtain from (.) that {xn} is not oscillatory.
Moreover, {xkm} is oscillatory if and only if

Rm(x) + a
a (R

m(x) – )
R–m(x) + a

a (R–m(x) – )
< ,

which is equivalent to

a <
–aRm(x)
Rm(x) – 

, or a >
a

Rm(x) – 
. �

4 Preservation of stability and oscillations
In this section, we investigate the conditions under which the analytic stability region is
contained in the numerical stability region and the conditions under which the numerical
solution and the analytic solution are oscillatory simultaneously.We also study the stability
and oscillation of the Runge-Kutta method with the stability function which is given by
the (r, s)-Padé approximation to ez .
In order to do this, the following lemmas and corollaries will be useful to determine

conditions.

Lemma . [, ] The (r, s)-Padé approximation to ez is given by

R(z) =
Pr(z)
Qs(z)

, (.)

where

Pr(z) =  +
r

r + s
z +

r(r – )
(r + s)(r + s – )

z

!
+ · · · + r!s!

(r + s)!
zr

r!
,

Qs(z) =  –
r

r + s
z +

s(s – )
(r + s)(r + s – )

z

!
– · · · + (–)s

s!r!
(r + s)!

zs

s!
,

with error

ez – R(z) = (–)s
s!r!

(r + s)!(r + s + )!
zr+s+ +O

(
zr+s+

)
. (.)

It is the unique rational approximation to ez of order r + s, such that the degree of a numer-
ator and a denominator are r and s respectively.

http://www.journalofinequalitiesandapplications.com/content/2012/1/290
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Lemma . [, ] If R(z) is the (r, s)-Padé approximation to ez , then
(i) there are s bounded star sectors in the right-half plane, each containing a pole of

R(z);
(ii) there are r bounded white sectors in the left-half plane, each containing a zero of

R(z);
(iii) all sectors are symmetric with respect to the real axis.

Corollary . [, ] Suppose R(z) is the (r, s)-Padé approximation to ez . Then
. x > 

R(x) < ex for all x >  if and only if s is even.
R(x) > ex for all  < x < ξ if and only if s is odd.

. x < 
R(x) > ex for all x <  if and only if r is even.
R(x) < ex for all η < x <  if and only if r is odd.

Where ξ >  is a real zero of Qs(z) and η < – is a real zero of Pr(z).

4.1 Preservation of stability
We introduce the set H consisting of all pairs (a,a) ∈ R

 at which the Runge-Kutta
method is asymptotically stable. In the following we investigate the conditions which lead
to H ⊆ S. For convenience, we divide the region H into three parts

H =
{
(a,a) ∈H : a = 

}
,

H =
{
(a,a) ∈H \H : a < 

}
,

H =
{
(a,a) ∈H \H : a > 

}
,

and in the similar way we denote

S =
{
(a,a) ∈ S : a = 

}
,

S =
{
(a,a) ∈ S \ S : a < 

}
,

S =
{
(a,a) ∈ S \ S : a > 

}
.

It is easy to see that H =H ∪H ∪H, S = S ∪ S ∪ S and

Hi ∩Hj =∅, Si ∩ Sj =∅, Hi ∩ Sj =∅, i �= j, i, j = , , .

Therefore, we can conclude that H ⊆ S is equivalent to Hi ⊆ Si, i = , , .

Theorem . Suppose that the stability function R(x) of the Runge-Kutta method is given
by the (r, s)-Padé approximation to ex. Then H ⊆ S if and only if r is odd and H ⊆ S if
and only if s is even.

Proof In view of Theorem . and Theorem ., we have that H ⊆ S if and only if

–
a(Rm(x) + )
(Rm(x) – )

≤ –
a(ea + )
(ea – )

,

http://www.journalofinequalitiesandapplications.com/content/2012/1/290
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which is equivalent to

R(x)≤ ex

since f (x) = x+
(x–) is increasing in [, ) and decreasing in (,∞).

According to Corollary ., the proof is complete. �

Theorem . For all Runge-Kutta methods, we have H = S.

Corollary . For the A-stable higher order Runge-Kutta methods, it is easy to see from
Theorem . that

. For the ν-stage Radau IA and IIA methods, H ⊆ S if and only if ν is even;
. For the ν-stage Lobatto IIIA and IIIB methods, H ⊆ S if and only if ν is even and

H ⊆ S if and only if ν is odd;
. For the ν-stage Gauss-Legerdre and Lobatto IIIC methods, H ⊆ S if and only if ν is

odd and H ⊆ S if and only if ν is even.

It is known that all ν-stage explicit Runge-Kutta methods with p = ν = , , ,  possess
the stability function (see [])

R(x) =  + x +
x

!
+ · · · + xp

p!
,

which is the (ν, )-Padé approximation to ex.

Theorem . For the ν-stage explicit Runge-Kutta methods with p = ν = , , , ,H ⊆ S if
and only if ν is odd.

4.2 Preservation of oscillations
Definition . We call that the Runge-Kutta methods preserve oscillations of Eq. (.) if
(.) oscillates, which implies that there is an h such that (.) oscillates for h < h.

Owing to Theorem . and Theorem ., the Runge-Kutta method preserves the oscil-
lation of (.) if and only if

–aea

ea – 
≤ –aRm(x)

Rm(x) – 
or

a
ea – 

>
a

Rm(x) – 
. (.)

Theorem . Suppose that the stability function R(x) is given by the (r, s)-Padé approx-
imation to ex, then the Runge-Kutta method preserves the oscillation of (.) if and only
if

R(x)≥ ex for a > 

and

R(x)≤ ex for a < .

http://www.journalofinequalitiesandapplications.com/content/2012/1/290
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Figure 1 2-Gauss method for (5.1).

Figure 2 Explicit Euler method for (5.1).

Proof The proof is completed by (.) and noting that x
x– is decreasing in [, ). �

Corollary .
. The ν-stage Gauss-Legendre and Lobatto IIIC methods preserve the oscillation of Eq.

(.) if and only if ν is odd.
. The ν-stage Lobatto IIIA and IIIB methods preserve the oscillation of Eq. (.) if and

only if ν is even.
. The ν-stage Radau IA and IIA methods preserve the oscillation of Eq. (.) if ν is odd

for a >  and if ν is even for a < .

Theorem . The ν-stage explicit Runge-Kutta methods with p = ν = , , ,  preserve
the oscillation of Eq. (.) with a <  if ν is odd.

http://www.journalofinequalitiesandapplications.com/content/2012/1/290
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Figure 3 2-Lobatto IIIA method for (5.2).

Figure 4 1-Radau IA method for (5.2).

Remark . We consider

x′(t) = ax(t) + ax
(
M

[
t +N
M

])
,

x() = x,
(.)

whereM, N are positive integers andM = N .
We can obtain the same results about the stability and oscillation as Eq. (.), i.e.,
(i) The Runge-Kutta method preserves the asymptotic stability of Eq. (.) if R(x)≤ ex.
(ii) The Runge-Kutta method preserves the oscillation of Eq. (.) if

R(x)≥ ex for a > , R(x)≤ ex for a < .

http://www.journalofinequalitiesandapplications.com/content/2012/1/290
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Figure 5 3-Gauss method for (5.3).

Figure 6 Explicit Euler method for (5.4).

Hence the Corollary ., . and Theorem ., . hold.

5 Numerical experiments
In this section, we give some examples to illustrate the conclusions in the paper. To illus-
trate the stability, we consider the following two problems:

{
ẋ(t) = x(t) – .x([ t+ ]), t > ,
x() = ,

(.)

{
ẋ(t) = –x(t) – x([ t+ ]), t > ,
x() = .

(.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/290
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Figure 7 2-Radau IA method for (5.4).

In Figure  to Figure , we draw the numerical solutions for Eq. (.) and Eq. (.) re-
spectively. It is easy to see that the numerical solutions are asymptotically stable.
To illustrate the oscillation, we consider the following two problems:

{
ẋ(t) = x(t) – .x([ t+ ]), t > ,
x() = ,

(.)

{
ẋ(t) = –x(t) + .x([ t+ ]), t > ,
x() = .

(.)

In Figure  to Figure , we draw the numerical solutions for Eq. (.) and Eq. (.) re-
spectively. It is easy to see that the numerical solutions are oscillatory.
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