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1  Introduction
Deterioration accumulation is inevitable during the life-cycle service of bridges sub-
jected to harsh environments, and the failure of bridges will result in considerable 
losses of both human life and property. Monitoring the bridge condition and detecting 
their damages are essential to ensure their serviceability and safety. Traditionally, visual 
inspection conducted by experienced inspectors is the main method adopted for this 
mission (Xu and Xia 2012). Nevertheless, the visual inspection is labor-intensive, time-
consuming, subjective, and hard to reflect real structure condition alteration in time 
(Sun et al 2020). Therefore, structural health monitoring (SHM) systems are developed 
and installed on some bridges with the aims to timely find structural damage or degrada-
tion (Housner et al 1997).

SHM lies in sensing and communication technologies, and the recent advancements 
in both technologies provide chances to acquire monitoring data at an unprecedented 
speed and amount. Analyzing the accumulated monitoring data to realize SHM has 
naturally become the priority of SHM research. The methods developed for analyzing 
the monitoring data can be distinguished into two categories: model-based methods 
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and data-driven methods (Sun et al 2020). The former attempts to update the finite-
element model (FEM) of the undamaged bridge in terms of some key parameters 
against the measurement data, and the differences between its predictions and the 
measurements indicates the existence of damages (Xiao et al 2015; Zhu et al 2015). 
However, it is a hard task due to simplifying assumptions when modeling bridge 
structures and uncertainties of material and geometric properties (Sun et  al 2020). 
Data-driven methods regard the mission as a statistical pattern recognition problem 
(Farrar and Worden 2012) and have been applied substantially, but their complex-
ity and computation requirements are generally of polynomial order concerning data 
size (Sun et al 2020). Moreover, computer vision (CV) technologies are also used to 
detect local damage, such as cracks, spalling, delamination, and rust, and to extract 
global information, like displacement, acceleration, loads, from images or videos cap-
tured by cameras. The CV technologies usually face disturbances caused by light, dis-
tortion, weather, and occlusion in the outdoor environment.

The appearance of machine learning (ML) provides a possible solution for the trou-
bles mentioned above. As a branch of artificial intelligence, ML aims to develop train-
able algorithms to learn from data, based on which predictions can be made (Pan et al 
2017; Pan et al 2018). The artificial neural network (ANN) is a classical ML method 
and has been applied to civil engineering since 1989 (Adeli and Yeh 1989). However, 
using ML requires knowledge and experience in designing features for a specific 
SHM, which may not be practical as the monitored systems become more complex 
(Zhao et al 2019). In recent years, along with the significant improvement of network 
architecture and computing capacity, deep learning (DL), which aims to automatically 
extract features from raw data via stacked blocks of deep neural network (DNN) lay-
ers (Cha et  al 2018; Mosalam et  al 2019), has drawn researchers’ attention and has 
been successfully applied in various areas including CV, natural language processing 
and audio recognition. Each layer in a DL model will learn a new feature from the 
data, and thus DL is an end-to-end system that does not need human intervention 
in the design of features, which makes DL-based SHM applicable widely with mini-
mum knowledge about the specific features (Azimi et al 2020). Some DL models, such 
as fully connected neural network (FCN), long short-term memory network (LSTM), 
convolutional neural network (CNN), autoencoder (AE), deep belief network (DBN), 
deep Boltzmann machine, and generative adversarial network (GAN) have already 
shown their reliability in analyzing vibration data. The efforts trying to improve the 
robustness and generalization of CV techniques using DL have also obtained desir-
able achievements, which accelerate the development of vision based SHM.

Although there are several reviews about recent advances in SHM (Ahmed et  al 
2020; Azimi et al 2020; Jeong et al 2020; Sun et al 2020; Bao and Li 2021; Dong and 
Catbas 2021; Pal et  al 2021; Sofi et  al 2022; Zhang et  al 2022a), this article focuses 
on the application of DL in bridge health monitoring in the last 4 years and tries to 
provide promising directions after summarizing current challenges and trends. The 
remaining of this paper is organized as follows: Section2 and Section3 summarize the 
general studies of DL in vibration- and vision-based SHM, respectively. In Section 4, 
the SHM systems with DL successfully applied in practice are listed and commented. 
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Finally, this paper ends with a summary of current limitations and some directions 
required to be noted and pursued.

2 � Vibration‑based structural health monitoring
Vibration-based SHM has been investigated since the 1990s as its advantages includ-
ing the global coverage of structural topology and natural availability of vibration sig-
nals (Li et al 2015). All of the methods in this area are founded on the premise that any 
damage occurring on structures will result in changes in vibration signals (Xu 2018), 
which makes identifying and locating damages viable by monitoring structural vibration 
signals.

For data-driven methods in this area, damage identification can be disposed as a sta-
tistical pattern recognition problem (Farrar and Worden 2012). Some characteristic 
indexes are selected and extracted from the measured data, based on which the state of 
the structure is classified into the scenario with the closest values. These methods have 
been substantially applied, but some insufficiencies should not be ignored. For instance, 
because the computation burden coming from big data, the traditional methods usually 
consider small datasets that are assumed to be sampled from a particular distribution 
(Sun et al 2020). Another drawback is that their complexity and memory requirement 
are generally of polynomial order to data size (James et al 2011).

As an end-to-end system, DL provides a powerful solution for the challenges and 
gained so much attention from the engineering community, because of its excellent 
capability in extracting features from raw data. This section will review the application 
of DL in data driven SHM methods from the perspective of data preprocessing, damage 
classification, and data novelty detection. The studies taking spatial information, which 
is essential but not emphasized before, are concluded at the end of this section.

2.1 � Data preprocessing

2.1.1 � Anomaly identification

At present, various sensors in a SHM system are the main source of vibration data. How-
ever, sensor failure, transmission interruption, and so forth, inevitably ruin the data, 
which seriously affects the data analysis results. To detect structural damage and assess 
structural condition correctly, identifying and eliminating anomalies in monitored sig-
nals are the first task.

Anomaly identification for vibration signals can be disposed as time series classifi-
cation, for which the effectiveness of one-dimensional (1D) CNN has been proved by 
some researchers (Jian et al 2021; Zhang and Lei 2021). Visualizing the time signals into 
images is an effective approach to leverage two-dimensional (2D) CNN for this mission. 
And drawing their curves directly is the most frequently adopted method, while other 
feature engineering approaches, like the spectrogram analysis, the probability density 
function and so on, were also employed to enhance the network’s robustness (Jian et al 
2021; Shajihan et al 2022). For example, Tang et al (2019) visualized time series data in 
time and frequency domain and stacked them as a single dual-channel image before it 
was inputted into a 2D CNN to classify data anomalies (see Fig. 1).

It is noteworthy that imbalanced time series are common in practical engineering 
as normal data are always larger than abnormal ones. CNN is difficult to reach high 
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classification accuracy in class-imbalanced situations since it is based on class-bal-
ance hypothesis (Yin and Gai 2015). To overcome the problem, Liu et al (2022) devel-
oped a GAN- and CNN-based data anomaly detection framework, which includes 
three modules: (i) three-channel input based on visualization, fast Fourier transform 
(FFT) and Gramian angular field of time series signals; (ii) GAN trained to extract 
features from normal samples; (iii) CNN employed to distinguish the types of anoma-
lies. Adopting the focal loss function was also a method to soften the class imbalance-
induced classification bias (Du et al 2022).

Although satisfying performance has been achieved in classifying anomaly pat-
terns, differentiating sensor faults and structure damages had not been considered 
until Li et al (2021a) proposed an isolation strategy. In the proposed strategy, a fully 
connected stateful LSTM network, which was an improvision of LSTM by adding 
fully connected layers, was used to predict acceleration signals of the selected sensor, 
and the residual between the prediction and the measured values was regarded as an 
anomaly index. An anomaly occurring on all sensors of a substructure indicates the 
existence of structural damage. Otherwise, a fault in one of the sensors is found.

2.1.2 � Missing data recovery

Not only can sensor failure and communication error lead to data loss, but also the 
anomalous signals are often processed as missing data, yet too much missing data, 
have unfavorable influences on SHM results. Correction analysis between different 
sensors, built by the partial least square method (Lu et al 2017), nonparametric copu-
las (Chen et al 2019), and so on, is the frequently used methods to recover the missing 
data. The DL potential in mining the relationship between the inputs and making pre-
dictions also makes it widely adopted for this mission.

Fig. 1  The anomaly detection method proposed by Tang et al (2019)
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The strain data measured before the occurrence of data loss was converted into a 
grayscale image and then used to train a CNN so that the net could recover the strain 
responses of the failed sensors according to the remaining sensors’ data (Byung et  al 
2020). Fan et  al (2019) proposed a novel CNN architecture with bottleneck architec-
ture and skip connection to construct the nonlinear relationships between the incom-
plete signal and the complete true signal and proved its outstanding capability for data 
recovery, even when the signals have severe data loss ratios up to 90%. Liu et al (2020) 
verified the accuracy of LSTM in recovering temperature data and demonstrated that 
incorporating more intact sensor data and selecting the sensor data highly correlating 
with the missing data as the input would further improve the recovery accuracy. Li et al 
(2021b) proposed a “divide and conquer” strategy for this mission. The core concept of 
the strategy was the prediction of the subsequences of the measured data, which were 
decomposed by empirical mode decomposition (EMD), rather than directly predicting 
the time series, as the decomposition could assist in the modeling of the irregular peri-
odic changes of the measured signals using LSTM.

After the spatial correlations among the sensors were considered, temporal correla-
tions drew the attention of Jeong et al (2019), and a bidirectional recurrent neural net-
work using spatiotemporal correlations to recover missing data was developed. Jiang 
et al (2021a) also used GAN to directly compute the missing data based on the remain-
ing observed data with the spatial-temporal relationship considered.

2.2 � Damage scenario classification

Simulating damage scenarios composed of different locations and discrete levels in FEM 
or experimental structures is the most frequent method adopted recently to generate 
training samples, based on which various DL models were trained to classify the signals 
from unknown bridge state. Ibrahim et al (2020) investigated the impact of noise on the 
performance of several ML algorithms in classifying structural damage severity accord-
ing to acceleration data and demonstrated that CNN could resist noise better than the 
K-nearest neighbor, support vector machine, and traditional high-pass filter noise can-
cellation methods.

Integrating vibration signals from multi-sensors into a multi-channel time sequence 
and segmenting it via a sliding window is one of the approaches to leverage 2D CNN 
in this area (Khodabandehlou et al 2019; Lee et al 2020a). Teng et al (2020) combined 
acceleration signals collected by 13 accelerometers and inputted them into 2D CNN to 
conduct structural damage identification (see Fig. 2). The CNN trained using finite ele-
ment analysis data reached 94% accuracy for damages in the numerical model and 90% 
for damages in the real steel frame.

Encoding time series into images through various algorithms, such as wavelet trans-
form (WT) (Mangalathu and Jeon 2020), continuous wavelet transform (Chen et  al 
2021), FFT (He et  al 2021a), Fourier amplitude spectra (Duan et  al 2019), is another 
method to employ 2D CNN. Mantawy and Mantawy (2022) encoded time-series data, 
including accelerations, drift rations, and both, into images using three approaches: Gra-
mian angular summation field, Gramian angular difference field, and Markov transition 
field (MTF) (see Fig.  3). The comparison showed that CNN trained on MTF encoded 
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images reaches 100% accuracy during the training phase and more than 94% for the test-
ing phase.

Considering that the overall dynamic vibration of a structure may be insensitive to 
local damage, He et al (2021b) employed wavelet packet transform to extract more sen-
sitive damage features from structural acceleration signals and used recurrence analy-
sis to obtain the periodicity, non-stationarity, and chaos of the signals, whose result can 
be visualized by a recurrence graph. Then, the recurrency graph was fed into a CNN 

Fig. 2  The time series integration scheme adopted by Teng et al (2020)

Fig. 3  Time series encoding scheme adopted by Mantawy and Mantawy (2022)
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to classify the structural damage conditions. Compared with traditional methods, the 
proposed method showed excellent accuracy in identifying the location and degree of 
minor damages.

Most of the methods mentioned above rely on the stationary assumption, which 
fails in practice since non-stationary ambient excitations are inevitable. Li et al (2021c) 
proposed a new recurrence plot, named un-threshold assembled recurrence distance 
matrix, to reveal intrinsic dynamic characteristics of the structure (see Fig. 4). Different 
from traditional single-label model that regards each combination of damage location 
and level as one objective class, they developed a multi-label CNN to decouple the iden-
tification process of damage location and levels. Every sub-branch of the net was trained 
using an independent dataset to evaluate the damage level at each location before the 
damage location was identified by fusing information from all of the sub-branches.

Inspired by the excellent performance of 2D CNN as shown above, 1D CNN was also 
employed to detect tiny local structural stiffness and mass changes according to the 
acceleration records from a single sensor and achieved perfect performance (Zhang et al 
2019a; Sharma and Sen 2020). For example, Teng et al (2021) trained seven 1D CNNs 
using the acceleration signals collected by corresponding sensors and fused all of their 

Fig. 4  Flowchart of structural damage identification using the multi-label CNN model Li et al (2021c)
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classification results at the decision level to obtain the integrated detection results. 
Compared with data-level fusion, in which all acceleration signals were integrated into a 
multi-channel time sequence, the decision-level fusion improved the classification accu-
racy by 10% and 16–30% for the numerical and experimental models, respectively.

Except for CNN, other DL models, like deep residual network (Alazzawi and Wang 
2022), ANN (Hormozabad and Soto 2021), recurrent neural network (RNN) (Jena and 
Parhi 2020), stacked Autoencoder (SAE) (Silva et al 2021) can also exert their influence 
in this purpose. A sequence of windowed samples extracted from acceleration responses 
was used to train a LSTM for damage scenario classification by Sony et al (2022) (see 
Fig. 5). The experimental results demonstrated that the method outperforms 1D CNN 
on the Z24 bridge. Xiao et  al (2021) optimized a deep autoencoder (DAE) using gray 
relational analysis to extract high-level features from raw signals, according to which a 
classifier, Softmax, was trained for the classification. Considering the difficulties in opti-
mizing the weights of deep neural network, Pathirage et al (2018) developed a frame-
work with two components for this mission. The first component was used to reduce the 
dimensionality of the vibration signals while preserving the necessary information, and 
the second part is to learn the relationship between the features and the damages. Rastin 
et al (2021a) presented a two-stage method for this mission, in which a deep convolu-
tional GAN trained using the intact state data was firstly used to detect the existence of 
damage that could be quantified by the discriminator’s output. The detected damage was 
then localized via a conditional GAN trained by labeled data from damaged states.

Fig. 5  The sequence of windowed samples extracted for the training of LSTM (Sony et al 2022)
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Other structural modal information, such as natural frequencies and mode shapes 
(Pathirage et al 2019; Wang et al 2021), are also sensitive to damage. Yang and Huang 
(2021) introduced the flexibility curvature index that did not need the information of 
intact structures as the input of a CNN to realize damage identification. Nguyen et al 
(2020) trained a CNN using the images from the damage index of the gapped smoothing 
method to classify the damage location in a numerical beam.

To solve the problem of poor anti-noise ability faced by traditional methods, Guo et al 
(2020) developed a damage identification method based on DBN. After three restricted 
Boltzmann machines were pre-trained using the damage index, modal curvature differ-
ence, a Softmax classifier and a neural network were employed to identify the damage 
location and degree, respectively. The experimental results showed that DBN had strong 
anti-noise ability, compared with backpropagation neural networks.

Compared with the number of degrees of freedom of a structure, the number of sen-
sors in a SHM system is often finite or even insufficient. Continuous deflection of a 
bridge measured by fiber-optic gyroscope, which could cover the whole structure, was 
thus mentioned, and an 1D CNN was employed to analyze it for damage classification by 
Li et al (2020) and Li and Sun (2020). Distributed optical fiber sensor based on Brillouin 
optical time-domain analysis technology exhibited a great facility to measure strain dis-
tributions along the whole surface of structures, but its low signal-to-noise ratio limited 
its application in crack detection. Song et al (2020) thus employed SAE to extract fea-
tures from its raw data and trained a Softmax classifier to decide whether micro-cracks 
exist.

2.3 � Novelty detection and quantification

Despite the excellent success of DL models achieved in damage scenario classification, 
the lack of training data restricts their application in practice. Preparing sufficient train-
ing data is not only laborious and uneconomical in the laboratory, but also impossible 
in real engineering. Generally, only normal vibration data can be obtained from new 
structures since damages cannot be applied to structures under commercial operation, 
which encourages the application of unsupervised learning. For this kind of methods, 
DL models are trained to reconstruct the vibration signals. Because only signals from 
intact structures are available, the reconstructed signals will be away from the measure-
ments when damages exist, which means the reconstruction error is sensitive features 
indicating the existence of damages.

After seasonal patterns were removed by variational mode decomposition (VMD) 
algorithm, Mousavi and Gandomi (2021a) used the natural frequency and correspond-
ing Johansen cointegration residuals of a structure to train RNN, and the prediction 
errors for new measurements were regarded as the index of damages (see Figs. 6 and 7). 
They also trained a bidirectional LSTM with healthy structure signals denoised by VMD 
and their Mahalanobis distances calculated by minimum covariance determinant for 
this mission (Mousavi and Gandomi 2021b). The method required only a couple of low 
structural natural frequencies. Therefore, it is recommended for cases when the meas-
urements from the environmental and operational variations are not available.

Apart from the reconstruction errors, Lee et al (2021) trained a one-class CNN to detect 
novelty in acceleration data that had been transformed into images through WT. It was 
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found that the minimum damage the method could find was at least a 15% reduction of the 
stiffness. Based on the essential features extracted from acceleration history by variational 
autoencoder, Ma et al (2020) adopted the features of Euclidean distance between the first 
segment and others as the damage index, whose curve could be used to observe whether 
there was a sudden change caused by the damage.

Fig. 6  Flowchart of the novelty detection strategy proposed by Mousavi and Gandomi (2021b)

Fig. 7  Prediction results and errors in the numerical example conducted by Mousavi and Gandomi (2021b)
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To quantify damage, Rastin et al (2021b) trained a convolutional autoencoder using the 
multi-channel signals acquired from a healthy structure to extract sensitive features and 
calculated the distance between the features and the reference vectors, but a threshold 
for the distance needs to be specified according to engineers’ experience. Silva et al (2019) 
trained an AE to eliminate the influence of environmental factors, and then the structure 
damage was quantified by calculating the residual between its inputs and outputs.

2.4 � The function of spatial information

The methods mentioned above use either spatial relation (e.g., using CNN) or temporal 
relation (e.g., using LSTM) only rather than the combination of them, which may improve 
the damage identification accuracy significantly. CNN and gated recurrent unit (GRU) 
were combined by Yang et al (2020) to model both spatial and temporal relations for dam-
age detection and the enhancement it brings was also demonstrated. CNN was utilized to 
model the spatial relations and the short-term temporal dependency among sensors while 
its output features were fed into the GRU to learn the long-term temporal dependency 
jointly. Fu et al (2021) fused the features extracted by CNN and LSTM by FCN for bridge 
damage scenario classification (see Fig.  8). The combined model, named CNN-LSTM, 
reached 94% accuracy for damage localization and only 8.0% of the average relative iden-
tification error for damage severity identification, both better than CNN. Dang et al (2021) 
combined underlying features extracted by autoregression model, discrete wavelet trans-
form, and EMD from measured acceleration signals, and inputted them into the proposed 
hybrid DL framework, named 1D CNN-LSTM for damage identification. Through three 
case studies, they demonstrated that the framework achieved accuracy as high as 2D CNN 
but with lower time and memory complexity. Zhang et al (2022b) leveraged LSTM-FCN by 
assigning the time series of cable forces and their ratios between cable pairs under intact 
conditions as the input and the identity number of cable as the corresponding labels to rec-
ognize damaged cables.

Graph neural network (GNN) provides another approach to model spatial correlations 
among sensors. Li et al (2021d) developed a spatiotemporal graph convolutional network 
to analyze spatiotemporal correlations among cable forces, in which the spatial dependency 
of the sensors was represented as a directed graph with cable dynamometers as vertices. 
The learnable adjacency matrix was used to capture the spatial dependency of the locally 
connected vertices and a 1D CNN was operated along the time axis to capture the tempo-
ral dependency. Son et al (2021) mapped cable tension to graph vertices and the connec-
tion relationship between sensors to its edges, and trained a GNN framework, the message 
passing neural network, to localize the damaged cables and estimate their area.

3 � Vision‑based structural health monitoring
Vibration-based methods rely on dynamic responses measured by contact sensors, such 
as accelerometers, strain gauges, and fiber optic sensors, which are expensive in instal-
lation and maintenance. The appearance of non-contact sensors, including digital and 
high-speed cameras, unmanned ground vehicles, and mobile sensors, which are more 
cost-effective and easier to deploy, provides another promising solution for the SHM 
of bridges and has attracted much attention in recent years. Unlike contact sensors, 
non-contact sensors yield images or videos that require advanced image processing 
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techniques to interpret. Traditional image processing methods rely on various edges 
or boundary detection techniques, such as Sobel edge detector, morphological detec-
tor, and template matching to extract features from the images. However, these methods 
often result in ill-posed problems due to disturbances created by environmental condi-
tions including light, distortion, weather, shade, and occlusion in outdoor environment 
(Yao et al 2014).

CV aided by DL helps researchers and engineers overcome the challenges due to their 
reduced sensitivity to external disturbances and excellent capability in feature extrac-
tion. Dong and Catbas (2021) presented a general overview of CV-based SHM at the 
local level (SHM-LL) and global level (SHM-GL). The former includes applications 
such as crack, rust, and loose bolt detection or quantification, while the latter means 
displacement measurement, structural behavior analysis, load monitoring, and damage 
identification. The relation between SHM-LL and SHM-GL is bidirectional: (i) the pro-
cess of understanding the input-output structural behavior, which is one of the tasks of 
SHM-GL, can benefit from the condition assessment from SHM-LL; and (ii) the global 
condition evaluation and damage detection from SHM-GL can assist the SHM-LL to 
understand how localized conditions and damage affect the complete system (Dong and 
Catbas 2021). This section will review the recent applications of DL in CV-based SHM 
from the two perspectives.

Fig. 8  The CNN-LSTM-based damage identification proposed by Fu et al (2021)
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3.1 � SHM‑LL

3.1.1 � Image classification

Identifying whether defects exist in the image and classifying images according to the 
defects they contain are effective ways of detecting surface damage. Benefiting from 
DL’s excellent performance in image classification, many researchers pay attention to its 
application in SHM and have obtained impressive achievements.

Quqa et  al (2022) trained a CNN to classify the images of the welding joints of a 
long-span steel bridge as damaged or undamaged. Ebenezer et al (2021) developed an 
ensemble of three CNN models, custom CNN, Xception, and AlexNet, using the major-
ity voting scheme to improve the classification accuracy for the concrete deteriora-
tion in bridges, and a validation accuracy of 87.1% was achieved. Transfer learning is 
an effective way to accelerate the DL models’ training and improve their accuracy even 
with fewer training data. Several pre-trained nets, including VGG-16 (Perez et al 2019), 
Inception v3 (Zhu et al 2020), GoogLe Net have been used for this purpose (Holm et al 
2020; Chen 2021; Savino and Tondolo 2021). Savino and Tondolo (2021) fine-tuned eight 
pre-trained CNNs, including AlexNet, SqueezeNet, ShuffleNet, ResNet-18, GoogLeNet, 
ResNet-50, MobileNet-v2, and NASNet-mobile, to conduct concrete surface damage 
classification, and the GoogLeNet reached 94%, the highest accuracy. The appearance 
of the attention mechanism further improves the performance of DL models, and some 
new methods integrating it have yet been proposed. For example, a convolution-based 
multi-damage recognition neural network combined CNN with an attention network 
and hybrid pooling layers was developed by Shin et al (2020) to classify the five damage 
types and an accuracy of 98.9% was achieved. Cui et al (2021a) proposed a geometric 
attention regulation method, in which the bearing location information was marked by 
a bounding box worked as an attention mechanism to indicate the important part of 
the input image. The experiments proved that the method could enhance CNN’s perfor-
mance effectively.

Most of the existing methods perform well in detecting surface defects according to 
optical images, but there is still a lack of systems that are able to identify subsurface 
damages, such as concealed cracks (particularly, bottom-up cracks) and debonding 
between paint and steel surfaces. To overcome the trouble, Ali and Cha (2019) tried to 
feed thermal images into a deep inception neural network to detect subsurface damage 
of a steel truss bridge, including corrosion and debonding between paint and steel sur-
face (see Fig. 9).

Despite the advantages CNN shows in the area of image classification, environmental 
impacts still hinder its application in practice. To further improve the accuracy, Qiao 
et al (2021) designed a new algorithm, called EMA-DenseNet, by adding the expected 
maximum attention (EMA) module to a DenseNet. Besides, a new loss function con-
sidering the connectivity of pixels was designed to reduce the breaking point of fracture 
prediction. The experiments showed that the mean pixel accuracy, mean intersection 
over union, precision, and frames per second of the Net reached 87.42%, 92.59%, 81.97%, 
and 25.4, respectively.

Another trouble CNN faces is that its receptive field generally is so small that many 
stacked layers are needed to cover the whole image. Compared with CNN, transformer 
has great flexibility in modeling global context and introduces less inductive bias, but 
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its self-attention mechanism brings heavy computational cost. To address this issue in 
classifying defects of reinforced concrete bridge, Wang and Su (2022) proposed a hybrid 
network by inserting a transformer into the CNN backbone, and the multilayer per-
ceptron following them generated the final classification results. Experimental results 
showed 0.949, 0.896, 0.776, 0.844, 0.745 and 0.899 F1_score for the six damage types, 
respectively, which are greater than the four networks: EfficientNet B1, RegNetX-800MF, 
MobileNet V3, and ReXNet.

3.1.2 � Object detection

Different from image classification, the techniques developed for object detection pro-
vide tools to identify several types of damage contained in the same image. Region-CNN 
(R-CNN) and you only look once (YOLO) are the most models adopted for this purpose.

Deng et  al (2020a, 2021) applied Faster R-CNN and YOLO v2 to label cracks and 
handwriting contained in raw images, respectively, and the comparative study showed 
that YOLO v2 performs better in terms of both accuracy and inference speed. Cui et al 
(2021b) trained YOLO v3 to identify wind erosion areas on the concrete surface, and 
an accuracy of 96.32% was achieved. Zhang et  al (2020) transferred YOLO v3 with 
fully pre-trained weights from a geometrically similar dataset to detect four types of 
concrete damages (i.e. crack, pop-out, spalling, and exposed rebar), and proved that it 
outperforms the original YOLO v3 and Faster R-CNN with ResNet-101. Mondal et  al 
(2020) compared the performance of four Faster R-CNN models, including Inception 
v2, ResNet-50, ResNet-101, and Inception-ResNet-v2, in detecting four different damage 
types and found that Inception-ResNet-v2 significantly outperforms the other networks 
in the mission.

3.1.3 � Semantic segmentation

Semantic segmentation that can label each pixel of the image with the pre-defined 
labels enables researchers to mark the damage location and shape more pre-
cisely. Ye et  al (2019) demonstrated the superiority of DL-based methods in crack 

Fig. 9  The subsurface damage detection method proposed by Ali and Cha (2019)
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segmentation by comparing the performance of the FCN called Ci-Net and that 
of traditional edge detection algorithms. Rubio et  al (2019) used FCN to segment 
delamination and rebar exposure from bridge inspection images, but the method 
could not accurately detect small damages.

For increasing the segmentation accuracy for cracks in images with complicated 
backgrounds, non-uniform illumination, irregular shapes, and interference, various 
modifications have been explored for standard networks. A crack-like kernel, which 
is rectangular rather than square, was introduced by Lee et al (2020b) to SegNet so 
that it could extract features representing cracks more precisely. Miao et  al (2019) 
inserted a combined sequence-and-excitation (SE) and ResNet block into a U-Net 
to improve its performance in segmenting spalls and cracks. Jiang et al (2021a) pro-
posed HDCB-Net, a network with the hybrid dilated convolutional block (HDCB), 
to expand the receptive field of convolution kernel and to avoid the gridding effect 
generated by the dilated convolution. Furthermore, a two-stage strategy was pro-
posed to realize fast crack detection: in the first stage, YOLO v4 was employed to 
filter out images without cracks and generate coarse region proposals, from which 
the HDCB-Net then detected pixel-level cracks in the second stage.

The digital images acquired through unmanned aerial vehicles (UAVs) often suf-
fer from motion blur, which may degrade the corresponding crack detectability. Bae 
et al (2021) proposed an end-to-end deep super-resolution crack network for resolve 
this problem. In the first stage, a super-resolution image was generated for the corre-
sponding raw images using a CNN with residual groups and upscaling layers, which 
was segmented by a DAE composed of CNN in the following stage. The validation 
test on concrete bridges demonstrated that 24% improvement in detection accuracy 
was achieved, compared with the crack detection results using raw digital images.

Considering the significant imbalance between background and crack pixels, 
which results in good performance in classifying background pixels while perform-
ing poorly in identifying cracks, Sajedi and Liang (2019) investigated three different 
optimization strategies, including UW (uniform weights) -MAP (maximum a-poste-
riori probabilities), MFW (median frequency weight) -MAP and UW-ML (maximum 
likelihood), in improving a fully convolutional encoder-decoder neural network’s 
robustness against the imbalance, and found that UW-ML strategy achieved the best 
results among them. Han et al (2020) designed a crack segmentation network com-
bining U-Net with a ternary classifier, which significantly reduced the false positive 
rate, to overcome the same challenge. Deng et  al (2020b) adopted the weight bal-
anced intersection over union (IoU) loss function rather than cross-entropy loss or 
focal loss in the training process of the link atrous spatial pyramid pooling (ASPP) 
network, in which a modified ASPP module was introduced to LinkNet for segment-
ing tiny damages.

3.1.4 � Damage quantification

After damages are detected, quantifying their severity becomes another important mis-
sion for evaluating structures’ condition correctly. For cracks, width and length are the 
most typical parameters. The segmentation results display cracks clearly and, thus, have 
become the basis of most crack quantification methods. After the binary maps of cracks 
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were obtained by a dual-scale CNN, Ni et al (2019) proposed a crack width estimation 
method based on the Zernike moment operator, but its performance for cracks narrower 
than 2 pixels and under adverse conditions (e.g., dark lighting) seems not very well, and 
time-consuming is another drawback. Yang et al (2021) employed CNN combined with 
U-Net to extract crack pixels and their midline. The non-uniform width along the crack 
was extracted according to the proposed crack-width direction identification method, 
and pixel calibration experiments were then conducted to establish the nonlinear map-
ping model among pixel size, shooting distance, and focal length, based on which the 
actual width of the cracks could be obtained. The results of the verification experiments 
showed that the recognition precision has achieved at 0.01 mm.

Counting the proportion of the pixels belonging to diseases in all pixels is a work-
able method to quantify damages like corrosion. Wang et al (2020) proposed a stand-
ardized structural health evaluation method and based on it to quantify the damages 
in the photos of a steel box girder, which were synthesized into panoramas by image 
stitching technology, and a U-Net was employed to segment the diseases in it. For bolt 
losing quantification, the Hough line transform -based image processing algorithm was 
designed to estimate the bolt angles according to the bolt images cropped by R-CNN 
(Huynh et al 2019). Huynh (2021) designed an autonomous vision-based bolt-looseness 
detection method with a Faster R-CNN-based bolt detector, an automatic distortion cor-
rector, an adaptive bolt-angle estimator, and a bolt-looseness classifier. Then, the method 
was applied in a realistic joint of the Dragon Bridge in Danang, Vietnam.

3.2 � SHM‑GL

3.2.1 � Vibration monitoring

Apart from visible damages, vision-based methods are also efficient ways to provide 
vibration signals to identify invisible damages. Deng et  al (2020c) developed an intel-
ligent non-contact remote sensing method in which a uniaxial automatic cruise acqui-
sition device was designed to collect image sequences from bridge surface before they 
were inputted into a three-dimensional (3D) CNN to identify the envelope spectrum 
of the holographic deformation. Then, the deflection curvature difference was used to 
identify the change of damage location and degree. Their experiments demonstrated 
that the holographic deformation is higher sensitive in damage identification than the 
limited number of measuring points.

Furthermore, cable forces estimation of urban bridges, according to the drone-cap-
tured video, has been realized by Zhang et  al (2021). Firstly, a pre-trained FCN was 
adopted to identify bridge cables and further extract their displacement. Then, EMD 
was employed for extracting cable vibration signals and eliminating the effect of drone 
motion. Finally, natural frequencies of the cables were obtained by performing Fourier 
analysis on extracted cable vibration and further adopted for cable force estimation.

In traditional vision-based vibration measurement methods, template matching algo-
rithm and corner detection algorithm are usually used to track and locate the target, 
but they are sensitive to the quality of images, which often is poor due to insufficient 
illumination or fog. Xu et al (2021) thus proposed a distraction-free displacement meas-
urement approach by integrating DL-based Siamese tracker with correlation-based 
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template matching. The DL-based Siamese tracker applied deep feature representations 
and learned similarity measures for image matching and also considered adaptive tem-
plate updates with time. The method was then implemented on a short-span footbridge 
and a long-span road bridge, where its potential to handle challenging scenarios includ-
ing illumination changes, background variations, and shade effects, was demonstrated. 
Shao et  al (2021) combined the MagicPoint network and the SuperGlue network to 
achieve target-free full-field 3D vibration displacement measurement and demonstrated 
the combination’s accuracy compared with traditional sensors, while the combination is 
more cost effective. Furthermore, they (Shao et al 2022) employed a phased-based video 
motion magnification algorithm to achieve a higher accuracy of tiny vibrations at the 
submillimeter level.

3.2.2 � Component identification

After various damages are detected, the rating of a structure needs to be provided by 
a comprehensive assessment in which importance of different components should be 
considered (Zhu et  al 2010). This requires spatially relating identified damages with 
structural elements. However, inspection images, especially captured by aerial inspec-
tion platforms, usually contain complex scenes, wherein structural elements mix with a 
cluttered background. Extracting structural elements from complex images and sorting 
them is thus meaningful for SHM.

With a small dataset labeled by inspectors, Karim et  al (2021) transferred a Mask 
R-CNN to segment multi-class bridge components from the videos captured by an UAV. 
False negatives were recovered by the temporal coherence analysis and a semi-super-
vised self-training method was developed to engage experienced inspectors in refining 
the network. The model’s performance reached 91.8% precision, 93.6% recall, and 92.7% 
F1-score.

Point clouds in 3D space can also provide sufficient information for this purpose. Kim 
et al (2020) extracted a high-resolution set of point clouds from the full-scale bridge by 
subspace partition and employed PointNet to classify the points in each subspace. Kim 
and Kim (2020) compared the performance of three DL models, PointNet, PointCNN, 
and dynamic graph CNN (DGCNN), in the classification of a point cloud of the bridge 
components and found that the mean interval over the unit of DGCNN was 86.85, 
which is higher than the others (see Fig. 10).

3.2.3 � External load

Moving vehicles are one of the main sources of live loads on bridges, and gathering their 
information is essential for SHM. Bridge weigh-in-motion that exploits bridge compo-
nents, e.g., decks, girders, and vertical stiffeners, as weighting scales, is the most fre-
quently adopted solution for this purpose, and DL brings efficient solutions for some of 
its drawbacks.

Zhang et  al (2019b) proposed a novel methodology for the mission, in which a 
Faster R-CNN transferred from ImageNet was employed to detect different types of 
vehicles frame by frame. Multiple objects tracking algorithm tracked vehicles among 
different frames and generated the information sequence about each vehicle’s coordi-
nate, type, lane number, and frame number. Then, the image calibration method based 
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on moving standard vehicles was developed to calculate the vehicle length and speed. 
After acquiring the parameters, the spatiotemporal information could be obtained by 
vehicle location and the hypothesis of constant speed (see Fig. 11).

However, the weight of vehicles cannot be obtained using the method proposed by 
Zhang et al (2019b). Jian et al (2019) combined CV with the influence line theory to 
acquire the time-spatial distribution of the vehicle loads on bridges. YOLO V3 was 
used to identify vehicle positions, types, and axle numbers. Then, vehicle weight was 
calculated by combining the strain influence line calibrated by field tests and the strain 
time-history. However, since only three scenarios of vehicle distribution were taken 
into consideration, the method may face obstacles in complicated traffic scenarios. To 
overcome this problem, a least square-based identification method that can utilize the 

Fig. 10  Identification results of points clouds in the research of Kim and Kim (2020)

Fig. 11  The framework for obtaining the spatiotemporal information of vehicles by Zhang et al (2019b)
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redundant strain data measured by a network of strain sensors was proposed to distin-
guish complicated traffic modes and reduced the recognition errors through solving 
the overdetermined inverse influence equations (Pathirage et al 2019).

An approach for obtaining spatiotemporal information of vehicles on bridges based on 
3D bounding box reconstruction was also proposed by Zhu et al (2021), in which CNN and 
YOLO were used to detect vehicles and get their 2D bounding box. A 3D bounding box 
reconstruction method based on the relationship between 2D and 3D bounding box was 
then developed to get the size and position of vehicles, and the spatiotemporal information 
of the vehicle could be finally obtained by using multiple objects tracking algorithm.

4 � Application of DL in real bridges
The capability of DL encourages the exploration of various approaches that are able to 
overcome the challenges in traditional SHM, but most of them were verified just in sim-
ulation or laboratory. It cannot be denied that more details, like the platform used to 
collect images and the programs with user interface, need to be taken into consideration 
for promoting the application of these methods in practice (Xu 2018). This section sum-
marized some efforts devoted to dealing with important details and the systems with DL 
that have been applied in actual structures.

A framework for autonomous bridge inspection using a UAV was proposed and 
applied to the Pahtajokk Bridge by Mirzazade et al (2021). Planning the most efficient 
flight path that could cover the damaged field with the minimum number of images was 
the first step. Then, three CNN models, SegNet, Inception v3, and U-Net, were trained 
to conduct bridge component detection, damage area recognition, and crack segmenta-
tion, respectively. The third step was to generate a dense point cloud for the damaged 
areas via intelligent hierarchical dense structure from motion and align it to the overall 
point cloud for the construction of the digital model of the bridge. Finally, damages were 
quantified based on the global coordinates of the detected damages.

Kruachottikul et  al (2021) described a DL-based visual defect inspection system for 
reinforced concrete bridges, which consisted of four components. A mobile phone that 
could take photos was the first part. The second part identified images with defects via 
a modified ResNet-50, and the defects was classified using another modified ResNet-50 
in the third part. Finally, damage severity was quantified by an ANN in the last part. The 
system’s accuracy for defect detection, classification, and severity prediction were 90.4%, 
81%, and 78%, respectively, which had been accepted by Thailand’s Department of High-
ways for practical use.

Jang et al (2021) developed a ring-type climbing robot system composed of multiple 
cameras, a climbing robot, and a control computer. The raw images captured under 
close-up scanning conditions were proposed through feature control-based image 
stitching, DL-based semantic segmentation, and Euclidean distance transform-based 
crack quantification algorithms, based on which a digital crack map of the target bridge 
pier could be established. The test results conducted on the Jang-Duck bridge in South 
Korea revealed that the method successfully evaluated cracks of the bridge pier with a 
precision of 90.92% and recall of 97.47%.

Considering the difficulty to approach some parts of bridges by workforce, such as 
the bottom of decks, He et al (2022) proposed a smart unmanned surface vessel (USV) 
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system for damage detection (see Fig. 12). A novel anchor-free network, CenWholeNet, 
which focused on center points and holistic information, was proposed, and a parallel 
attention module was introduced into the model innovatively. For the platform, a USV 
system without the global positioning systems (GPS) navigation, supporting real-time 
transmission of lidar and video information was designed.

Vehicle-assisted monitoring is a promising alternative for rapid and low-cost 
bridge health monitoring compared with instrumentation installed on bridges. Sar-
war and Cantero (2021) developed an indirect bridge monitoring system, in which 
a DAE was trained by the vertical acceleration responses of a fleet of vehicles pass-
ing over a healthy bridge. Then, the Kullback-Leibler divergence between the meas-
ured and the reconstructed signals was used for damage detection and severity 
quantification.

Mobile devices such as smartphones can be not only a sensing platform but also a 
computing platform to conduct on-site damage detection. However, due to the limited 
computing resources of mobile devices, the size of the DNN needs to be reduced. Ye 
et al (2022) developed pruned crack recognition network by reducing DNN size via the 
pruning method and designed a DL-based crack detection program for smartphones. In 
order to conduct crack detection by Internet of Things (IoT) devices in real-time, Kim 
et al (2021) proposed OleNet by fine-tuning the hyperparameters of LeNet-5. Compared 
with other pretrained DL models, including VGG16, Inception, and ResNet, OleNet 
achieved the maximum accuracy of 99.8% in the minimum computation. Shrestha and 
Dang (2020) developed a program integrated with CNN to realize accurate and real-
time bridge vibration classification according to the multi-channel time-series signals 
acquired by the built-in accelerometers of smart phones.

5 � Conclusions
In this paper, the applications of DL models in SHM, particularly damage detection of 
bridges, have been summarized systematically. It is easy to find that the excellent capa-
bility of DL models in addressing obstacles in the traditional SHM methods of the 
bridges has been demonstrated by the applications not only in laboratories but also in 
real bridges. Each of the DL models promotes the realization of a more intelligent SHM. 
However, it cannot be denied that drawbacks exist in every method. Some of the chal-
lenges can be listed as follows:

1.	 Most of the current studies consider only one type of monitoring data in damage 
detection. If this type of monitoring data is anormal, the damage detection will fail 
no matter how good the damage detection method is.

2.	 Although several attempts have been conducted to realize the targets by unsuper-
vised learning, most of the applications still rely on pre-defined damage scenarios 
and training data, which pose a considerable requirement of engineering experience 
and labor.

3.	 The conditions of laboratories, where the majority of methods were validated, are 
idealized. The robustness of DL models needs to be further enhanced to combat 
environmental interference in practice, such as the vibration induced by external 
loads and motion blur when UAVs are employed.
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4.	 The weak connection between the two levels of vision-based SHM results in difficul-
ties in comprehensive condition assessment, for which visible defects and invisible 
damages need to be considered at the same time.

Fig. 12  The system developed by He et al (2022)
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After considering the limitations listed above and recent achievements in DL, the fol-
lowing directions are promising and worthy to be further investigated:

1.	 Fusing multiple types of information collected by SHM system: With advances of 
multiple types of sensors, the SHM system can provide multiple types of structural 
information. Fusing and leveraging the multiple types of information in structural 
condition assessment via DL methods is a promising way to enhance the methods’ 
practicality.

2.	 Building larger training databases collected from the real world: Training DL mod-
els with the data containing actual interference is an efficient path to improve their 
robustness, and the availability of advanced sensors and UAVs nowadays makes it 
possible to build larger databases consisting of real samples.

3.	 Utilization of mobile and IoT devices: Mobile devices, such as smartphones, can be 
not only a sensing platform with various built-in sensors, including magnetometer, 
gyroscope, accelerometer, and GPS, but also a computing platform. Leveraging them 
by deploying lightweight DL models makes on-site damage detection available. In 
addition, the IoT devices, which emerge with the innovation in data transmission 
and cloud-based computation, provide an efficient way to obtain and integrate dif-
ferent types of structural data, which will prompt a cost-minimized and automatic 
SHM.

4.	 Digital twin: In order to make a reliable assessment reflecting the true condition of 
structural elements, an ensemble of multi-scale DL models is needed to interpret 
and integrate the data from both the local level and global level of SHM. Digital twin 
that tries to replicate physical entity in digital world (Lin et al 2021) provides a pow-
erful platform for this mission, in which various damages can be reconstructed and 
evaluated at the same time. Integrating SHM and digital twin may be a promising 
way to realize the smart civil structure, even smart city.

Abbreviations
1D	� One-Dimensional
2D	� Two-Dimensional
AE	� Autoencoder
ANN	� Artificial Neural Network
ASPP	� Atrous Spatial Pyramid Pooling
CNN	� Convolutional Neural Network
CV	� Computer Vision
DAE	� Deep Autoencoder
DBN	� Deep Belief Network
DGCNN	� Dynamic Graph Convolutional Neural Network
DL	� Deep Learning
DNN	� Deep Neural Network
EMA	� Expected Maximum Attention
EMD	� Empirical Mode Decomposition
FCN	� Fully Connected Neural Network
FEM	� Finite Element Model
FFT	� Fast Fourier Transform
GAN	� Generative Adversarial Network
GNN	� Graph Neural Network
GPS	� Global Positioning Systems
GRU​	� Gated Recurrent Unit
HDCB	� Hybrid Dilated Convolutional Block
IoT	� Internet of Things



Page 23 of 27Zhang et al. Advances in Bridge Engineering            (2022) 3:22 	

LSTM	� Long Short-Term Memory Network
MAP	� Maximum A-Posteriori Probabilities
ML	� Machine Learning
MTF	� Markov Transition Field
RNN	� Recurrent Neural Network
SAE	� Stacked Autoencoder
SHM	� Structural Health Monitoring
SHM-GL	� Structural Health Monitoring at Global Level
SHM-LL	� Structural Health Monitoring at  Local Level
UAV	� Unmanned Aerial Vehicle
USV	� Unmanned Surface Vessel
UW	� Uniform Weights
VMD	� Variational Mode Decomposition
YOLO	� You Only Look Once

Acknowledgements
The works described in this paper are financially supported by the Changjiang Scholars Program of the Ministry of 
Education of China (SWJTU-YH1199911012201) to which the authors are most grateful. Any opinions and conclusions 
presented in this paper are entirely those of the authors.

Authors’ contributions
Guoqing Zhang reviewed the correlated literature and drafted the manuscript. Bin Wang and Jun Li proposed the frame 
of the paper and provided worthy advice. You-lin Xu revised the manuscript and advised the summary and prospects. 
The author(s) read and approved the final manuscript.

Funding
The Changjiang Scholars Program of the Ministry of Education of China: SWJTU-YH1199911012201.

Availability of data and materials
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Declarations

Competing interests
You-lin Xu is an honorary adviser and Bin Wang is a manager editor for Advances in Bridge Engineering. They were not 
involved in the editorial review, or the decision to publish this article. All authors declare that there are no competing 
interests.

Received: 3 November 2022   Accepted: 20 November 2022

References
Adeli H, Yeh C (1989) Perceptron learning in engineering design. Comput Aided Civ Inf 4(4):247–256
Ahmed H, La HM, Gucunski N (2020) Review of non-destructive civil infrastructure evaluation for bridges: state-of-the-art 

robotic platforms, sensors and algorithms. Sensor 20(14):3954
Alazzawi O, Wang D (2022) A novel structural damage identification method based on the acceleration responses under 

ambient vibration and an optimized deep residual algorithm. Struct Health Monit 21(6):2587–2617
Ali R, Cha Y (2019) Subsurface damage detection of a steel bridge using deep learning and uncooled micro-bolometer. 

Constr Build Mater 226:376–387
Azimi M, Eslamlou AD, Pekcan G (2020) Data-driven structural health monitoring and damage detection through deep 

learning: state-of-the-art review. Sensors 20(10):2778
Bae H, Jang K, An YK (2021) Deep super resolution crack network (SrcNet) for improving computer vision-based auto‑

mated crack detectability in in situ bridges. Struct Health Monit 20(4):1428–1442
Bao Y, Li H (2021) Machine learning paradigm for structural health monitoring. Struct Health Monit 20(4):1353–1372
Byung K, Branko G, Yousok K, Hyo S (2020) Convolutional neural network–based data recovery method for structural 

health monitoring. Struct Health Monit 19(6):1821–1838
Cha Y, Choi W, Suh G, Mahmoudkhani S, Büyüköztürk O (2018) Autonomous structural visual inspection using region-

based deep learning for detecting multiple damage types. Comput Aided Civ Inf 3(9):731–747
Chen R (2021) Migration learning-based bridge structure damage detection algorithm. Sci Program Neth 2021:1102521
Chen Z, Li H, Bao Y (2019) Analyzing and modeling inter-sensor relationships for strain monitoring data and missing data 

imputation: a copula and functional data-analytic approach. Struct Health Monit 18(4):1168–1188
Chen Z, Wang Y, Wu J, Deng C, Hu K (2021) Sensor data-driven structural damage detection based on deep convolutional 

neural networks and continuous wavelet transform. Appl Intell 51(8):5598–5609
Cui M, Wu G, Chen Z, Dang J, Zhou M, Feng D (2021a) Geometric attention regularization enhancing convolutional neu‑

ral networks for bridge rubber bearing damage assessment. J Perform Constr Facil 35(5):04021061
Cui X, Wang Q, Dai J, Zhang R, Li S (2021b) Intelligent recognition of erosion damage to concrete based on improved 

YOLO-v3. Mater Lett 302:130363
Dang HV, Tran-Ngoc H, Nguyen TV, Bui-Tien T, De Roeck G, Nguyen HX (2021) Data-driven structural health monitoring 

using feature fusion and hybrid deep learning. IEEE T Autom Sci Eng 18(4):2087–2103



Page 24 of 27Zhang et al. Advances in Bridge Engineering            (2022) 3:22 

Deng G, Zhou Z, Chu X, Shao S (2020c) Identification of behavioral features of bridge structure based on static image 
sequences. Adv Civ Eng 2020:2815017

Deng J, Lu Y, Lee VCS (2020a) Concrete crack detection with handwriting script interferences using faster region-based 
convolutional neural network. Comput Aided Civ Inf 35(4):373–388

Deng J, Lu Y, Lee VCS (2021) Imaging-based crack detection on concrete surfaces using you only look once network. 
Struct Health Monit 20(2):484–499

Deng W, Mou Y, Kashiwa T, Escalera S, Nagai K, Nakayama K, Matsuo Y, Prendinger H (2020b) Vision based pixel-level 
bridge structural damage detection using a link ASPP network. Autom Constr 110:102973

Dong C, Catbas FN (2021) A review of computer vision-based structural health monitoring at local and global levels. 
Struct Health Monit 20(2):692–743

Du Y, Li L, Hou R, Wang X, Tian W, Xia Y (2022) Convolutional neural network-based data anomaly detection considering 
class imbalance with limited data. Smart Struct Syst 29(1):63–75

Duan Y, Chen Q, Zhang H, Yun C, Wu S, Zhu Q (2019) CNN-based damage identification method of tied-arch bridge using 
spatial-spectral information. Smart Struct Syst 23(5):507–520

Ebenezer AS, Kanmani SD, Sheela V, Ramalakshmi K, Chandran V, Sumithra MG, Elakkiya B, Murugesan B (2021) Identifica‑
tion of civil infrastructure damage using ensemble transfer learning model. Adv Civ Eng 2021:5589688

Fan G, Li J, Hao H (2019) Lost data recovery for structural health monitoring based on convolutional neural networks. 
Struct Contrl Hlth 26(10):e2433

Farrar CR, Worden K (2012) Structural health monitoring: a machine learning perspective. Wiley, New York
Fu L, Tang Q, Gao P, Xin J, Zhou J (2021) Damage identification of long-span bridges using the hybrid of convolutional 

neural network and long short-term memory network. Algorithms 14(6):180
Guo Q, Feng L, Zhang R, Yin H (2020) Study of damage identification for bridges based on deep belief network. Adv 

Struct Eng 23(8):1562–1572
Han JH, Kim IS, Lee CH, Moon YS (2020) Crack detection method for tunnel lining surfaces using ternary classifier. KSII T 

Internet Inf 14(9):3797–3822
He H, Zheng J, Liao L, Chen Y (2021b) Damage identification based on convolutional neural network and recurrence 

graph for beam bridge. Struct Health Monit 20(4):1392–1408
He Y, Chen H, Liu D, Zhang L (2021a) A framework of structural damage detection for civil structures using fast fourier 

transform and deep convolutional neural networks. Appl Sci Basel 11(19):9345
He Z, Jiang S, Zhang J, Wu G (2022) Automatic damage detection using anchor-free method and unmanned surface 

vessel. Autom Constr 133:104017
Holm E, Transeth AA, Knudsen OO, Stahl A (2020) Classification of corrosion and coating damages on bridge construc‑

tions from images using convolutional neural networks. In: 12th international conference on machine vision 
(ICMV 2019) 11433, p 1143320

Hormozabad SJ, Soto MG (2021) Real-time damage identification of discrete structures via neural networks subjected 
to dynamic loading. In: Conference on Health Monitoring of Structural and Biological Systems XV, 115932, p 
115932O

Housner GW, Bergman LA, Caughey TK, Chassiakos AG, Claus RO (1997) Structural control: past, present, and future. J Eng 
Mech 123(9):897–971

Huynh TC (2021) Vision-based autonomous bolt-looseness detection method for splice connections: design, lab-scale 
evaluation, and field application. Autom Constr 124:103591

Huynh TC, Park JH, Jung HJ, Kim JT (2019) Quasi-autonomous bolt-loosening detection method using vision-based deep 
learning and image processing. Autom Constr 105:102844

Ibrahim A, Eltawil A, Na Y, El-Tawil S (2020) A machine learning approach for structural health monitoring using noisy data 
sets. IEEE T Autom Sci Eng 17(2):900–908

James MWB, Alessandro DS, Xu YL, Helmut W, Emin A (2011) Vibration-based monitoring of civil infrastructure: challenges 
and successes. J Civ Struct Health 1:79–95

Jang K, An YK, Kim B, Cho S (2021) Automated crack evaluation of a high-rise bridge pier using a ring-type climbing 
robot. Comput Aided Civ Inf 36(1):14–29

Jena SP, Parhi DR (2020) Fault detection in cracked structures under moving load through a recurrent-neural-networks-
based approach. Sci Iran 27(4):1886–1896

Jeong E, Seo J, Wacker J (2020) Literature review and technical survey on bridge inspection using unmanned aerial 
vehicles. J Perform Constr Facil 34(6):04020113

Jeong S, Ferguson M, Hou R, Lynch JP, Sohn H, Law KH (2019) Sensor data reconstruction using bidirectional recurrent 
neural network with application to bridge monitoring. Adv Eng Inform 42:100991

Jian X, Xia Y, Lozano-Galant JA, Sun L (2019) Traffic sensing methodology combining influence line theory and computer 
vision techniques for girder bridges. J Sensors 2019:3409525

Jian X, Zhong H, Xia Y, Sun L (2021) Faulty data detection and classification for bridge structural health monitoring via 
statistical and deep-learning approach. Struct Control Health Monit 28(11):e2824

Jiang H, Wan C, Yang K, Ding Y, Xue S (2021a) Continuous missing data imputation with incomplete dataset by genera‑
tive adversarial networks-based unsupervised learning for long-term bridge health monitoring. Struct Health 
Monit 21(3):1093–1109

Jiang W, Liu M, Peng Y, Wu L, Wang Y (2021b) HDCB-net: a neural network with the hybrid dilated convolution for pixel-
level crack detection on concrete bridges. IEEE Ind Inform 17(8):5485–5494

Karim MM, Qin R, Chen G, Yin Z (2021) A semi-supervised self-training method to develop assistive intelligence for seg‑
menting multiclass bridge elements from inspection videos. Struct Health Monit 21(3):835–852

Khodabandehlou H, Pekcan G, Fadali MS (2019) Vibration-based structural condition assessment using convolution 
neural networks. Struct Control Hlth 26(2):e2308

Kim B, Yuvaraj N, Preethaa KRS, Pandian RA (2021) Surface crack detection using deep learning with shallow CNN archi‑
tecture for enhanced computation. Neural Comput & Applic 33(15):9289–9305

Kim H, Kim C (2020) Deep-learning-based classification of point clouds for bridge inspection. Remote Sens 12(22):3757



Page 25 of 27Zhang et al. Advances in Bridge Engineering            (2022) 3:22 	

Kim H, Yoon J, Sim SH (2020) Automated bridge component recognition from point clouds using deep learning. Struct 
Control Hlth 27(9):e2591

Kruachottikul P, Cooharojananone N, Phanomchoeng G, Chavarnakul T, Kovitanggoon K, Trakulwaranont D (2021) Deep 
learning-based visual defect-inspection system for reinforced concrete bridge substructure: a case of Thailand’s 
department of highways. J Civ Struct Health 11(4):949–965

Lee JS, Hwang SH, Choi IY, Choi Y (2020b) Estimation of crack width based on shape-sensitive kernels and semantic 
segmentation. Struct Control Hlth 27(4):e2504

Lee JS, Kim HM, Kim SI, Lee HM (2021) Evaluation of structural integrity of railway bridge using acceleration data and 
semi-supervised learning approach. Eng Struct 239:112330

Lee K, Byun N, Shin DH (2020a) A damage localization approach for rahmen bridge based on convolutional neural 
network. KSCE J Civ Eng 24(1):1–9

Li D, Ho SC, Song G, Ren L, Li H (2015) A review of damage detection methods for wind turbine blades. Smart Mater 
Struct 24(3):033001

Li D, Liang Z, Ren W, Yang D, Wang S, Xiang S (2021c) Structural damage identification under nonstationary excitations 
through recurrence plot and multi-label convolutional neural network. Measurement 186:110101

Li L, Liu G, Zhang L, Li Q (2021a) FS-LSTM-based sensor fault and structural damage isolation in SHM. IEEE Sensors J 
21(3):3250–3259

Li L, Zhou H, Liu H, Zhang C, Liu J (2021b) A hybrid method coupling empirical mode decomposition and a long 
short-term memory network to predict missing measured signal data of SHM systems. Struct Health Monit 
20(4):1778–1793

Li S, Niu J, Li Z (2021d) Novelty detection of cable-stayed bridges based on cable force correlation exploration using 
spatiotemporal graph convolutional networks. Struct Health Monit 20(4):2216–2228

Li S, Sun L (2020) Detectability of bridge-structural damage based on fiber-optic sensing through deep-convolutional 
neural networks. J Bridg Eng 25(4):04020012

Li S, Zuo X, Li Z, Wang H (2020) Applying deep learning to continuous bridge deflection detected by fiber optic gyro‑
scope for damage detection. Sensors 20(3):911

Lin K, Xu YL, Lu X, Guan Z, Li J (2021) Digital twin-based collapse fragility assessment of a long-span cable-stayed bridge 
under strong earthquakes. Autom Constr 123:103547

Liu G, Niu Y, Zhao W, Duan Y, Shu J (2022) Data anomaly detection for structural health monitoring using a combina‑
tion network of GANomaly and CNN. Smart Struct Syst 29(1):53–62

Liu H, Ding Y, Zhao H, Wang M, Geng F (2020) Deep learning-based recovery method for missing structural tempera‑
ture data using LSTM network. Struct Monit Maint 7(2):109–124

Lu W, Teng J, Li C, Cui Y (2017) Reconstruction to sensor measurements based on a correlation model of monitoring 
data. Appl Sci 7(3):243

Ma X, Lin Y, Nie Z, Ma H (2020) Structural damage identification based on unsupervised feature-extraction via vari‑
ational auto-encoder. Measurement 160:107811

Mangalathu S, Jeon JS (2020) Ground motion-dependent rapid damage assessment of structures based on wavelet 
transform and image analysis techniques. J Struct Eng 146(11):04020230

Mantawy IM, Mantawy MO (2022) Convolutional neural network based structural health monitoring for rocking 
bridge system by encoding time-series into images. Struct Control Hlth 29(3):e2897

Miao X, Wang J, Wang Z, Sui Q, Gao Y, Jiang P (2019) Automatic recognition of highway tunnel defects based on an 
improved u-net model. IEEE Sensors J 19(23):11413–11423

Mirzazade A, Popescu C, Blanksvard T, Taljsten B (2021) Workflow for off-site bridge inspection using automatic dam‑
age detection-case study of the pahtajokk bridge. Remote Sens 13(14):2665

Mondal TG, Jahanshahi MR, Wu RT, Wu Z (2020) Deep learning-based multi-class damage detection for autonomous 
post-disaster reconnaissance. Struct Control Hlth 27(4):e2507

Mosalam K, Muin S, Gao Y (2019) New directions in structural health monitoring. NED Univ J Res 2:77–112
Mousavi M, Gandomi AH (2021a) Prediction error of Johansen cointegration residuals for structural health monitor‑

ing. Mech Syst Singal Pr 160:107847
Mousavi M, Gandomi AH (2021b) Structural health monitoring under environmental and operational variations using 

MCD prediction error. J Sound Vib 512:116370
Nguyen DH, Nguyen QB, Bui-Tien T, De Roeck G, Wahab MA (2020) Damage detection in girder bridges using modal 

curvatures gapped smoothing method and convolutional neural network: application to Bo Nghi bridge. 
Thero Appl Fract Mec 109:102728

Ni F, Zhang J, Chen Z (2019) Zernike-moment measurement of thin-crack width in images enabled by dual-scale 
deep learning. Comput Aided Civ Inf 34(5):367–384

Pal M, Palevicius P, Landauskas M, Orinaite U, Timofejeva I, Ragulskis M (2021) An overview of challenges associated 
with automatic detection of concrete cracks in the presence of shadows. Appl Sci Basel 11(23):11396

Pan H, Azimi M, Gui G, Yan F, Lin Z (2017) Vibration-based support vector machine for structural health monitoring. In: 
International Conference on Experimental Vibration Analysis for Civil Engineering Structures, pp 167–178

Pan H, Azimi M, Yan F, Lin Z (2018) Time-frequency-based data-driven structural diagnosis and damage detection for 
cable-stayed bridges. J Bridg Eng 23(6):04018033

Pathirage CSN, Li J, Li L, Hao H, Liu W, Ni P (2018) Structural damage identification based on autoencoder neural 
networks and deep learning. Eng Struct 172:13–28

Pathirage CSN, Li J, Li L, Hao H, Liu W, Wang R (2019) Development and application of a deep learning–based sparse 
autoencoder framework for structural damage identification. Struct Health Monit 18(1):103–122

Perez H, Tah JHM, Mosavi A (2019) Deep learning for detecting building defects using convolutional neural networks. 
Sensors 19(16):3556

Qiao W, Ma B, Liu Q, Wu X, Li G (2021) Computer vision-based bridge damage detection using deep convolutional 
networks with expectation maximum attention module. Sensors 21(3):824



Page 26 of 27Zhang et al. Advances in Bridge Engineering            (2022) 3:22 

Quqa S, Martakis P, Movsessian A, Pai S, Reuland Y, Chatzi E (2022) Two-step approach for fatigue crack detection in 
steel bridges using convolutional neural networks. J Civ Struct Health 12(1):127–140

Rastin Z, Amiri GG, Darvishan E (2021a) Generative adversarial network for damage identification in civil structures. 
Shock Vib 2021:3987835

Rastin Z, Amiri GG, Darvishan E (2021b) Unsupervised structural damage detection technique based on a deep 
convolutional autoencoder. Shock Vib 2021:6658575

Rubio JJ， Kashiwa T, Laiteerapong T, Deng W, Nagai K, Escalera S, Nakayama K, Matsuo Y, Prendinger H (2019) Multi-
class structural damage segmentation using fully convolutional networks. Comput Ind 112: 103121

Sajedi SO, Liang X (2019) A convolutional cost-sensitive crack localization algorithm for automated and reliable RC 
bridge inspection. In: Risk-based bridge engineering: proceedings of the 10th New York City bridge confer‑
ence 2019, p 229

Sarwar MZ, Cantero D (2021) Deep autoencoder architecture for bridge damage assessment using responses from 
several vehicles. Eng Struct 246:113064

Savino P, Tondolo F (2021) Automated classification of civil structure defects based on convolutional neural network. 
Front Struct Civ Eng 15(2):305–317

Shajihan S, Wang S, Zhai G, Spencer BF (2022) CNN based data anomaly detection using multi-channel imagery for 
structural health monitoring. Smart Struct Syst 29(1):181–193

Shao Y, Li L, Li J, An S, Hao H (2021) Computer vision based target-free 3D vibration displacement measurement of 
structures. Eng Struct 246:113040

Shao Y, Li L, Li J, An S, Hao H (2022) Target-free 3D tiny structural vibration measurement based on deep learning and 
motion magnification. J Sound Vib 538(10):117244

Sharma S, Sen S (2020) One-dimensional convolutional neural network-based damage detection in structural joints. 
J Civ Struct Health 10(5):1057–1072

Shin HK, Ahn YH, Lee SH, Kim HY (2020) Automatic concrete damage recognition using multi-level attention convo‑
lutional neural network. Materials 13(23):5549

Shrestha A, Dang J (2020) Deep learning-based real-time auto classification of smartphone measured bridge vibra‑
tion data. Sensor 20(9):2710

Silva M, Santos A, Santos R, Figueiredo E, Sales C, Costa JC (2019) Deep principal component analysis: an enhanced 
approach for structural damage identification. Struct Health Monit 18(5–6):1444–1463

Silva MF, Santos A, Santos R, Figueiredo E, Costa JCWA (2021) Damage-sensitive feature extraction with stacked 
autoencoders for unsupervised damage detection. Struct Control Hlth 28(5):e2714

Sofi A, Regita JJ, Rane B, Lau HH (2022) Structural health monitoring using wireless smart sensor network-an over‑
view. Mech Syst Signal Pr 163:108113

Son H, Pham VT, Jang Y, Kim SE (2021) Damage localization and severity assessment of a cable-stayed bridge using a 
message passing neural network. Sensors 21(9):3118

Song Q, Chen Y, Oskoui EA, Fang Z, Taylor T (2020) Micro-crack detection method of steel beam surface using stacked 
autoencoders on massive full-scale sensing strains. Struct Health Monit 19(4):1175–1187

Sony S, Gamage S, Sadhu A, Samarabandu J (2022) Vibration-based multiclass damage detection and localization 
using long short-term memory networks. Structures 35:436–451

Sun L, Shang Z, Xia Y, Bhowmick S, Nagarajaiah S (2020) Review of bridge structural health monitoring aided by big 
data and artificial intelligence: from condition assessment to damage detection. J Struct Eng 146(5):04020073

Tang Z, Chen Z, Bao Y, Li H (2019) Convolutional neural network-based data anomaly detection method using multi‑
ple information for structural health monitoring. Struct Control Health Monit 26(1):e2296

Teng S, Chen G, Liu Z, Cheng L, Sun X (2021) Multi-sensor and decision-level fusion-based structural damage detec‑
tion using a one-dimensional convolutional neural network. Sensors 21(12):3950

Teng Z, Teng S, Zhang J, Chen G, Cui F (2020) Structural damage detection based on real-time vibration signal and 
convolutional neural network. Appl Sci 10(14):4720

Wang D, Zhang Y, Pan Y, Peng B, Liu H, Ma R (2020) An automated inspection method for the steel box girder bottom 
of long-span bridges based on deep learning. IEEE Access 8:94010–94023

Wang R, Chencho ASJ, Li J, Hao H, Liu W (2021) Deep residual network framework for structural health monitoring. 
Struct Health Monit 20(4):1443–1461

Wang W, Su C (2022) Automatic classification of reinforced concrete bridge defects using the hybrid network. Arab J 
Sci Eng 47(4):5187–5197

Xiao H, Wang W, Dong L, Ogai H (2021) A novel bridge damage diagnosis algorithm based on deep learning with 
gray relational analysis for intelligent bridge monitoring system. IEEJ T Electr 16(5):743–753

Xiao X, Xu YL, Zhu Q (2015) Multi-scale modelling and model updating of a cable-stayed bridge, part II: model updat‑
ing using modal frequencies and influence lines. J Bridg Eng 20(10):04014113

Xu YL (2018) Making good use of structural health monitoring systems of long-span cable-supported bridges. J Civ 
Struct Health 8(3):477–497

Xu YL, Xia Y (2012) Structural health monitoring of long-span suspension bridges. Spon Press (Taylor& Francis), UK
Xu Y, Zhang J, Brownjohn J (2021) An accurate and distraction-free vision-based structural displacement measure‑

ment method integrating Siamese network-based tracker and correlation-based template matching. Measure‑
ment 179:109506

Yang J, Zhang L, Chen C, Li Y, Li R, Wang G, Jiang S, Zeng Z (2020) A hierarchical deep convolutional neural network 
and gated recurrent unit framework for structural damage detection. Inf Sci 540:117–130

Yang K, Ding Y, Sun P, Jiang H, Wang Z (2021) Computer vision-based crack width identification using F-CNN model 
and pixel nonlinear calibration. Struct Infrastruct E 2021:1994617

Yang S, Huang Y (2021) Damage identification method of prestressed concrete beam bridge based on convolutional 
neural network. Neural Comput & Applic 33(2):535–545

Yao Y, Tung STE, Glisic B (2014) Crack detection and characterization techniques-An overview. Struct Control Hlth 
21(12):1387–1413



Page 27 of 27Zhang et al. Advances in Bridge Engineering            (2022) 3:22 	

Ye X, Jin T, Chen PY (2019) Structural crack detection using deep learning-based fully convolutional networks. Adv 
Struct Eng 22(16):3412–3419

Ye X, Li Z, Jin T (2022) Smartphone-based structural crack detection using pruned fully convolutional networks and 
edge computing. Smart Struct Syst 29(1):141–151

Yin H, Gai K (2015) An empirical study on preprocessing high-dimensional class-imbalanced data for classification. In: 
2015 IEEE 17th international conference on high performance computing and communications, 2015 IEEE 7th 
international symposium on cyberspace safety and security, and 2015 IEEE 12th international conference on 
embedded software and systems, pp 1314–1319

Zhang B, Zhou L, Zhang J (2019b) A methodology for obtaining spatiotemporal information of the vehicles on 
bridges based on computer vision. Comput Aided Civ Inf 34(6):471–487

Zhang C, Chang C, Jamshidi M (2020) Concrete bridge surface damage detection using a single-stage detector. 
Comput Aided Civ Inf 35(4):389–409

Zhang C, Tian Y, Zhang J (2021) Complex image background segmentation for cable force estimation of urban 
bridges with drone-captured video and deep learning. Struct Contrl Hlth 29(4):e2910

Zhang L, Shen J, Zhu B (2022a) A review of the research and application of deep learning-based computer vision in 
structural damage detection. Earthq Eng Vib 21(1):1–21

Zhang Y, Lei Y (2021) Data anomaly detection of bridge structures using convolutional neural network based on 
structural vibration signals. Symmetry-Basel 13(7):1186

Zhang Y, Miyamori Y, Mikami S, Saito T (2019a) Vibration-based structural state identification by a 1-dimensional 
convolutional neural network. Comput Aided Civ Inf 34(9):822–839

Zhang Z, Yan J, Li L, Pan H, Dong C (2022b) Condition assessment of stay cables through enhanced time series clas‑
sification using a deep learning approach. Smart Struct Syst 29(1):105–116

Zhao R, Yan R, Chen Z, Mao K, Wang P, Gao R (2019) Deep learning and its applications to machine health monitoring. 
Mech Syst Signal Pr 115:213–237

Zhu J, Li X, Zhang C, Shi T (2021) An accurate approach for obtaining spatiotemporal information of vehicle loads on 
bridges based on 3D bounding box reconstruction with computer vision. Measurement 181:109657

Zhu J, Zhang C, Qi H, Lu Z (2020) Vision-based defects detection for bridges using transfer learning and convolu‑
tional neural networks. Struct Infrastruct E 16(7):1037–1049

Zhu Q, Xu YL, Xiao X (2015) Multi-scale modelling and model updating of a cable-stayed bridge, part I: modelling and 
influence line analysis. J Bridg Eng 20(10):04014112

Zhu Z, German S, Brilakis I (2010) Detection of large-scale concrete columns for automated bridge inspection. Autom 
Constr 19(8):1047–1055

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	The application of deep learning in bridge health monitoring: a literature review
	Abstract 
	1 Introduction
	2 Vibration-based structural health monitoring
	2.1 Data preprocessing
	2.1.1 Anomaly identification
	2.1.2 Missing data recovery

	2.2 Damage scenario classification
	2.3 Novelty detection and quantification
	2.4 The function of spatial information

	3 Vision-based structural health monitoring
	3.1 SHM-LL
	3.1.1 Image classification
	3.1.2 Object detection
	3.1.3 Semantic segmentation
	3.1.4 Damage quantification

	3.2 SHM-GL
	3.2.1 Vibration monitoring
	3.2.2 Component identification
	3.2.3 External load


	4 Application of DL in real bridges
	5 Conclusions
	Acknowledgements
	References


