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Abstract 

Conventional methods for bridge inspection are labor intensive and highly subjective. 
This study introduces an optimized approach using real-time learning-based computer 
vision algorithms on edge devices to assist inspectors in localizing and quantifying 
concrete surface defects. To facilitate a better AI-human interaction, localization and 
quantification are separated in this study. Two separate learning-based computer vision 
models are selected for this purpose. The models are chosen from several available 
deep learning models based on their accuracy, inference speed, and memory size. For 
defect localization, Yolov5s shows the most promising results when compared to sev-
eral other Convolutional Neural Network architectures, including EfficientDet-d0. For 
the defect quantification model, 12 different architectures were trained and compared. 
UNet with EfficientNet-b0 backbone was found to be the best performing model in 
terms of inference speed and accuracy. The performance of the selected model is 
tested on multiple edge-computing devices to evaluate its performance in real-time. 
This showed how different model quantization methods are considered for different 
edge computing devices. The proposed approach eliminates the subjectivity of human 
inspection and reduces labor time. It also guarantees human-verified results, generates 
more annotated data for AI training, and eliminates the need for post-processing. In 
summary, this paper introduces a novel and efficient visual inspection methodology 
that uses a learning-based computer vision algorithm optimized for real-time opera-
tion in edge devices (i.e., wearable devices, smartphones etc.).

1  Introduction
The need for timely and accurate inspections of structures is growing as America’s 
infrastructure ages. According to a 2022 study from the American Road Transporta-
tion Builders Association (ARTBA), an analysis of the recently released US Depart-
ment of Transportation 2021 National Bridge Inventory (NBI) database reveals that 
47,052 bridges are classified as structurally deficient and in poor condition (ARTBA, 
2022). Structural Health Monitoring (SHM) is a data-driven method to ensure the 
safety of infrastructure. In SHM at the local level (LSHM), also known as routine 
inspection, inspectors search for defects on the surface of the structure. Conventional 
bridge inspection methods are conducted using basic handheld tools and measur-
ing devices. Oftentimes, structures have locations that are hard to reach, or traffic 
restricts operations. Inspectors are required to physically inspect all surfaces of the 
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structure, locating and measuring the defects is a time-consuming process, especially 
conducted using a visual guide (Washer false, 2019). This oftentimes also requires 
road closures. On the other hand, the inspection reports are sometimes inconsistent 
with each other, and the inconsistency increases with more severe defects (Washer 
false, 2019).

The stated obstacles in visual inspections can be better managed using novel technol-
ogies. With the advances in computer vision and robotic technologies, more effective 
methods are being introduced to accelerate inspection times, increase data accuracy, 
facilitate access to hard-to-reach locations, eliminate the need for road closures, and 
provide impartial results. SHM at the local level can significantly benefit from com-
puter vision algorithms. The non-contact, low-cost, and accurate vision sensors along 
with advancements in computer vision techniques, especially machine-learning based 
algorithms, have made breakthroughs in visual inspection of structures (Dong & Cat-
bas, 2021). The use of robotic instruments and Unmanned Aerial Vehicles (UAVs) have 
also improved efficiency by eliminating human interference and allowing better access 
to hard-to-reach locations (Seo false, 2018). While the use of vision sensors and UAVs 
have significant benefits for visual data collection, analysis and processing of the col-
lected data is usually conducted offsite, either by human inspectors, or computer vision 
algorithms. Post-processing is also a labor-intensive task, which consumes a significant 
amount of time and can be computationally expensive. Moreover, the quality of data may 
easily be impacted by ambient factors, such as vibration in collected footage due to wind 
or dark imagery due to low illumination. Hence, data collection is often repeated, result-
ing in multiple visits to the site, consequently invalidating the efficiency of the method. 
Even with meticulous planning of UAV flight plans, the collected data for local defects 
needs to be verified by the inspector which adds to post-processing labor. Other meth-
ods of data collection, including handheld cameras or vehicles, follow a similar process. 
In all cases, data is saved on a local drive or in a cloud and processed offsite.

Advances in machine learning based computer vision algorithms and edge-computing 
devices may potentially lead to end-to-end visual inspection practices. Instead of post-
processing collected inspection data, a highly optimized machine learning system can 
detect structural defects in real-time, quantify the defect regions, and analyze them for 
condition assessment with reasonable accuracy.

This paper introduces a novel visual inspection methodology that uses a learning-
based computer vision algorithm optimized for real-time operation in edge devices (i.e., 
wearable devices, smartphones etc.). The explored system aims to assist the inspector 
by accelerating certain routine tasks such as localizing and measuring surface defects 
(i.e., cracks, spalling). In this method, the human inspector can interact with the Arti-
ficial Intelligence (AI) system through the human-machine interface of the edge device. 
The proposed methodology is designed to be deployed in edge computing devices that 
facilitate human-computer interaction such as Augmented Reality (AR) or Mixed Reality 
(MR) platforms. To investigate the system’s effectiveness, a wearable holographic see-
through headset was chosen for a case study.

The interactive nature of this methodology provides results that are verified by pro-
fessional inspectors. With each inspection, the methodology generates more annotated 
human-verified data that can be used for improving the accuracy of the AI system. This 
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study provides a baseline for future semi-automated inspection. Figure 1 demonstrates 
the proposed methodology.

1.1 � Current practice and research

Efforts to use computer vision technology to detect visual defects on the surface of a 
structure have been going on for almost a decade. Early approaches included edge detec-
tion, template matching, and segmentation (Abdel-Qader false, 2003). For detection of 
spalling and cracks, German et al. (2012) used an entropy-based thresholding algorithm 
in conjunction with image processing methods in template matching and morphological 
operations (Abdel-Qader false, 2003). Nguyen et al. (2014) also generated a filter-based 
algorithm for edge detection, to extract crack edges on the surface of concrete (Nguyen 
false, 2014). Recent advances in AI and machine learning-based computer vision algo-
rithms have revolutionized many computer vision tasks including the detection and 
measurement of structural defects.

To process the image data of concrete defects, researchers in the literature imple-
mented the Convolutional Neural Network (CNN) to perform automatic crack detection 
on concrete surfaces. Combined with transfer learning and data augmentation, Yokoy-
ama and Matsumoto (2017) developed a CNN-based crack detector with 2000 training 
images (Yokoyama & Matsumoto, 2017). Similarly, Zhang et  al. (2020) used an UNet-
based algorithm to detect cracks pixel-wise in a more precise manner (Zhang false, 
2020a). Zhang et al. (2020) used a CNN-LSTM model to detect, in real-time, concrete 
bridge deck cracks on a frequency domain (Zhang false, 2020b). The algorithm extracts 
the crack from its background, where conventional edge detection-based approaches 
only segment the crack edges; thus the algorithm offers a more feasible solution for crack 
thickness identification. Deng et al. (2020) uses faster Region-based CNN architecture to 
automatically detect concrete cracks even in the presence of handwriting (Deng false, 
2020). Adhikari et al. (2014) used 3D visualization of crack density by projecting digital 

Fig. 1  Illustration of Advanced bridge inspection using a real-time machine learning-based computer vision 
algorithm on an edge device
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images and neural network models to predict crack depth and the necessary informa-
tion for condition assessment of concrete components (Adhikari false, 2014). A study 
by Ren et al. (2020) introduced a CNN model named CrackSegNet to conduct a dense 
pixel-wise segmentation of cracks in tunnels. The authors used 409 images, collected 
from a single tunnel, as the training dataset (Ren false, 2020). Multiple studies have also 
been conducted on measuring and classifying of pavement cracks. One recent study by 
Eslami and Yun designed an attention-based CNN network which improved the classifi-
cation results of pavement cracks when compared to automated systems (Eslami & Yun, 
2021). While much of the available research focus on detection and measurement of 
cracks on concrete surfaces or pavements, more recent studies also focus on the detec-
tion and quantification of other surface defects. A study by Xu et al., uses Mask R-CNN 
for automatic defect detection in tunnels. The authors endow a path augmentation and 
edge detection branch to the network to improve its accuracy, however, this decreased 
the computational efficiency significantly. The authors focus on detecting leakage and 
spalling as well as other objects in tunnels such as pipes and edges. Another study by 
Zhang et  al. uses simultaneous object detection and segmentation to segment cracks, 
spalling, and exposed rebar on the surface of the concrete. The model consists of two 
separate parts, Yolov3 and Sub Mask architecture, where the bounding box task is con-
ducted separately from the segmentation. The study uses a total of 1440 images for train-
ing and testing. The proposed method shows a relatively good speed; however, it is not 
fast enough for real-time inspection.

A review paper on computer vision-based detection and condition assessment of con-
crete infrastructure defects emphasizes the importance of sufficiently large, publicly 
available, and standardized detests -similar methods of imaging and camera specs- to 
leverage the power of existing supervised machine learning methods for damage detec-
tion methods (Koch false, 2015). There are limited available open-source datasets for 
concrete defects. These includeSDNET2018 (Dorafshan false, 2018) with 58,000 cropped 
images of cracks on concrete surfaces; CODEBRIM with approximately 1700 original 
cropped and uncropped images of surface defects, including cracks, spalling, efflores-
cence and rusting (Mundt & Majumder, 2019); and finally COCO-Bridge which includes 
774 images with 2500 instances of bridge elements (Bianchi false, 2021). While the avail-
able datasets are adequate for classification purposes, the number of open-source origi-
nal images needs improvement for automated defect localization and quantification.

This study proposes a methodology to overcome the challenges in data scarcity by 
using a real-time interactive platform.

2 � Real‑time machine learning system
The machine learning system introduced in this study is composed of a multi-step 
process for localizing and quantifying surface defects. First, the defect localization 
model locates the surface defects in the view of the inspector, creating an attention 
region for the subsequent defect quantification model. After the localized defects 
are verified by the inspector, the defects are quantified and measured for condi-
tion assessment (e.g., maximum crack width or area of spalling). For defect locali-
zation, a deep convolutional neural network (CNN) was trained. CNNs are widely 
used in object detection tasks including autonomous driving to locate road objects 
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(Karaaslan false, 2020), as well as with medical imaging for early detection of abnor-
malities (Mansoor false, 2015). For quantifying surface defects, another type of CNN 
model widely used for semantic segmentation tasks was trained. Similarly, semantic 
segmentation models have shown reliable results in other fields, such as in identify-
ing salient elements in medical scans (LaLonde & Bagci, 2018) or finding lane lines in 
autonomous driving (Karaaslan false, 2020). CNNs have also already shown promis-
ing results in classification and detection of concrete surface defects (Karaaslan false, 
2021a; Karaaslan false, 2022a; Zhang false, 2021).

CNNs work well with two-dimensional data and therefore are a great tool to ana-
lyze images and videos. These models are typically composed of convolution, pooling, 
and activation layers to extract features, reduce dimensions for efficient computation, 
and introduce nonlinearity (Eslami & Yun, 2021). In the convolutional layers, the input 
images are multiplied by small distinct feature matrices called kernels, and their sum-
mations are normalized by matrix size (i.e., kernel size). By convolving images, similar-
ity scores between every region of the image are assigned to generate the image feature 
matrix. After convolution, the negative values of similarity in the image matrix are 
removed in the activation layer. A pooling matrix is used to reduce the size of the result-
ant matrix. For classification, the resultant matrix is then passed through a fully con-
nected layer to obtain class scores. Finally, the image vectors of the trained images are 
compared with the input image, and a correspondence score, the highest score value, 
will indicate the classified label. A typical CNN architecture is shown in Fig. 2.

Training the full network of a CNN model often requires large sets of images 
(> 50,000 images) to obtain the desired accuracy. Due to the difficulty of collecting 
real-world data for concrete surface defects and the data scarcity, transfer learn-
ing is implemented during model training. Transfer learning is a machine learning 
approach where a previously developed model for a different task is reused as a start-
ing point.

Hyper-parameters also play an important role in the learning rate and accuracy of 
the model. There are different methodologies on how to select these parameters. For 
most CNN architectures, the initial learning rate, learning rate decay, batch size, num-
ber of epochs, and momentum are the most common hyper-parameters. More complex 
architectures may have as many as 25 hyper-parameters, making the optimal parameter 
search a more difficult task. Traditional methods of hyper-parameter searches, such as 
grid searches, are computationally expensive due to the high dimension of the search 

Fig. 2  Architectural diagram of a typical convolutional neural network
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and the unknown correlation among dimensions. In this study, the authors initially 
used the pre-determined hyper-parameter values from transfer learning and imple-
mented hyper-parameter evolution which further optimized the hyper-parameters using 
Genetic Algorithm.

When evaluating machine learning models, classifying the predictions as true posi-
tives (TP), false positives (FP), true negatives (TN), and false negatives (FN) is a common 
practice. However, evaluating object detection models will require additional metrics to 
measure the accuracy of the detected bounding box coordinates. Mean Average Preci-
sion (mAP) is a performance indicator that finds the average of maximum precisions at 
different recall values based on a confidence threshold. Average Precision (AP) is calcu-
lated as follows:

To calculate the precision and recall, TP, FP, and FN need to be determined from eval-
uation metrics. One of the common metrics is the Intersection over Union (IoU). IoU is 
also known as the Jaccard Coefficient as it was first introduced by Jaccard (1912). This 
metric is simply the ratio between the intersection and the union of the predicted boxes, 
and the ground truth boxes.

2.1 � Localizing concrete surface defects

A well-performing object detection model typically requires a large dataset with diverse 
background features and as many object instances as possible for optimal performance. 
An unbalanced, uniform dataset would lead to the model overfitting the training data 
and reducing real-world performance for different structure types, materials, or envi-
ronments. In this study, crack and spalling images were gathered from real-world field 
data collected at multiple concrete bridges in Florida and also from datasets published 
by other researchers including CODEBRM and SDNET2018 (Dorafshan false, 2018). 
The image dataset for model training and validation were prepared so that they provided 
enough diversity in the background to represent different environments for the defect 
localization model. Therefore, a significant portion of the existing images were filtered 
out during data preparation as they were cropped, too small, or caused uniformity in 
the dataset. A total of 1600 images, with 1750 instances of crack and 1500 instances of 
spalling, were gathered. The dataset was then divided into two categories of train (80%) 
and validation (20%) sets for training. An additional 180 images were later collected 

(1)Presicion =
TP

TP + FP

(2)Recall =
TP

TP + FN

(3)AP = 2×
presicion× recall

precision+ recall

(4)IoU =
area of overlap

area of union
=

TP

TP + FP + FN
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from real-world bridges for testing purposes. Fig. 3 displays the class distribution of a 
training batch from the dataset.

The data labeling process for defect localization include manually annotating the 
defect images by drawing bounding boxes around the defects and naming the classes. 
These boxes will serve as ground truth during training, and each image annotation con-
sists of the defect type and relative pixel location of the box corners. For data labeling, an 
open-source image annotation tool, LabelMe, was used (Wada, 2016). Figure 4 displays 
an example of the bounding box annotation of training images.

The authors tested and compared multiple publicly available object detection architec-
tures in order to select the best performing CNN algorithm for defect localization tasks. 
In order to facilitate real-time processing of the defects, the selected object detection 
model needed to satisfy two other criteria in addition to high detection accuracy: high 

Fig. 3  A sample Training batch and the class distributions for the defect localization model

Fig. 4  Data annotation for the defect localization model
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inference speed and small memory footprint. Several state-of-the-art CNN architec-
tures, including SSD-MobileNetV3 (Howard false, 2019), SSD-MobileDet (Xiong false, 
2020), EfficientDet-D0 (Tan false, 2019), YoloV4-Tiny (Bochkovskiy false, 2020) and 
YoloV5s (Jocher false, 2021), were tested for mean precision accuracy, inference speed, 
and quantization capability for edge computing devices.

SSD-MobileNetV3 and SSD-MobileDet have lightweight architecture, suitable for 
edge computation, and therefore were selected for evaluation in this study. However, 
none of the models demonstrates the desired accuracy during tests on real-world images 
collected from a bridge structure. mPA values were also very low and many instances 
of cracks and spalling remained undetected (Table  1). Yolov3 is another strong CNN 
architecture that is also popular in autonomous driving (Fan false, 2020). The model 
has also been used in the localization of defects with good accuracy (Zhang false, 2021). 
However, the model architecture is large and requires more computational power, 
making it unsuitable for real-time performance on targeted edge devices in this study. 
Moreover, the dataset in this study is relatively small for training Yolov3. Yolov4-tiny is 
another version of the Yolo model that is more suitable for smaller datasets, however 
the model requires a larger memory size when compared to other CNN architectures, 
and therefore was not selected for this study. The training results of EfficientNetD0, on 
the other hand, overfitted constantly. This matter was observed by following the training 
graph and evaluating the model on test images. Figure 5 displays the loss values from 
the training and validation sets. The overfitting is observed by comparing the loss func-
tion between the training dataset and the validation dataset. The loss value, which rep-
resents the summation of errors in a model, usually decreases with each epoch. If the 
loss decreases only on the training set but remains the same on the validation set or 
increases, then most likely overfitting has occurred.

Yolov5 is also another powerful object detection model, with high inference speed and 
a small memory footprint. This object detection model also supports different sizes of 
datasets. Yolov5S (small) was trained and evaluated in this study. This algorithm also 
allows for optimization of its hyper-parameters for better accuracy. Initially, using 
transfer learning, pre-determined hyper-parameters from a previously trained model 
on the COCO dataset was used. Using a generic optimization algorithm, the hyper-
parameters were adjusted for the surface defect dataset. For optimizing mAP values, 
a weighted combination of metrics was used: mAP@0.5 contributes 10% of the weight 
and mAP@0.5:0.95 contributes the remaining 90%. After training for 10 epochs, the 
new optimized hyper-parameters were adjusted to train the defect quantification model. 
Unlike EfficientNetD0, the loss values in this model dropped consistently after each 

Table 1  Comparison between object detection models

Meta Architecture mAP (IoU) Speed (ms) Speed (FPS)

SSD MobileDet 0.18 0.053 19

SSD MobileNet V3 0.28 0.050 20

YoloV4-tiny 0.37 0.043 23

EfficientNetD0 – 0.250 25

YoloV5s 0.51 0.143 30

mAP@0.5
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epoch for both the training and validation sets. The final mAP value reached 0.65. After 
approximately 400 epochs, the model stopped learning and reached its highest perfor-
mance. Figure 6 displays the training graphs of Yolov5’s object detection. Figure 7 dis-
plays its performance on some test images.

2.2 � Quantifying concrete surface defects

For concrete defect assessment, it is not enough to detect the damage in a bounding box; 
the area also needs to be segmented from the intact regions in order to perform quanti-
fication, including necessary measurements for understanding the extent of the defects. 
Therefore, another deep learning model is used sequentially with the defect localization 
model YoloV5 to perform segmentation of the defect regions. The segmentation model 
will classify each pixel of the cropped image in the bounding box as “Damage” or “No 
Damage”. Segmentation CNNs in this study consists of an encoder and a decoder sec-
tion. The encoder is a classification network that conducts the classification, and the 
decoder semantically projects the features of each class determined by the encoder on 
the pixel area conducting segmentation. Initially, multiple segmentation models were 
investigated for their accuracy and inference speed. Popular segmentation models such 
as FCN (Shelhamer false, 2016), UNet (Ronneberger false, 2015), SegNet (Badrinaray-
anan false, 2017), and SegCaps (LaLonde & Bagci, 2018) were previously investigated by 
Karaaslan et al. (2021) (Karaaslan false, 2021b). The study showed that model size (i.e., 
memory allocation) is the main challenge in deploying these models in edge comput-
ing devices. Hence, the authors only evaluated segmentation models with lightweight 
classifier backbones. Twelve different CNN architectures with different classification 
backbones were selected for training (4 model architectures with three classifier back-
bone options). UNet, LinkNet, FPN, and PSPNet segmentation architectures with the 
backbones of Efficientnetb0, Densenet121, and Inceptionv3 were trained and tested. Fig-
ure 8 displays the UNet architecture and and example of its output after the semantic 
segmentation.

Annotation for the segmentation models is highly sensitive and time consuming. Each 
pixel on the defect area needs to be annotated separately. Therefore, an open-source 
annotated dataset was initially used for training. Prior to the training, the dataset was 
improved using data augmentation. This method artificially increases the dataset by 

Fig. 5  EfficientNeTd0- Loss values per epoch
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modifying the images, including cropping, rotation, or adding noise or blur. The images 
were also resized based on the requirements for each segmentation model. The method 
improves the accuracy of the model by forming new images for training. Similar to 

Fig. 6  Yolov5 object detection training metrics

Fig. 7  Yolov5 performance on concrete bridge defects
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defect localization training, transfer learning was also used to train the defect quanti-
fication model. In order to improve the training results, a pretrained weight from Ima-
geNet (ImageNet, 2022) was used for the encoder (transfer learning). Initially the model 
was trained only using ImageNet encoder weight and the decoder from scratch, how-
ever, satisfactory results were not obtained in the first run. Therefore, instead of train-
ing the decoder from scratch, its layers were frozen for the first couple of epochs and 
then unfrozen to complete the training. Consequently, the obtained results significantly 
improved. This process is called fine tuning. Fine tuning is useful when the dataset is 
small and is used to adjust the already trained weights for the new dataset. Rather than 
finding the decoder weights from scratch, the pretrained weights are adjusted for the 
new dataset and used to complete the training.

Table 2 displays the comparison between the models. In the evaluation of the defect 
quantification model, another metric, F1, which is the weighted average of the preci-
sion and recall indicating the model’s accuracy, was also used. The model speeds were 
initially tested on Colab Pro GPU. The training results show that UNet with the back-
bone of efficientnetb0 is the most accurate model and PSPNet with the same backbone 
had the highest inference speed. Both criteria are highly important for defect quantifica-
tion. While inference speed depends on model architecture and cannot be improved, the 
model accuracy can be improved by adding more data to the dataset. Publicly available 
annotated image data for segmentation of concrete defects is very limited; therefore a 
semi-supervised approach was followed to generate more annotated data. First, a small 
set of the existing data, which already included segmentation labels, was prepared for 

Fig. 8  UNet Architecture for semantic segmentation

Table 2  Comparison between segmentation models

Backbone Efficientnetb0 Densenet121 Inceptionv3

CNN 
Model

IoU 
score

F1 score Fps 
speed

IoU 
score

F1 score Fps 
speed

IoU 
score

F1 score Fps speed

UNet 0.74 0.84 16.66 0.55 0.66 16.39 0.41 0.51 15.38

LinkNet 0.56 0.68 12.5 0.45 0.58 11.11 0.58 0.7 14

FPN 0.59 0.71 7.69 0.62 0.74 7.14 0.54 0.67 7.43

PSPNET 0.51 0.63 27 0.56 0.68 26 0.5 0.62 27
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the correct format for the selected training procedure. Then, the segmentation architec-
tures selected for testing were trained for 50 epochs until the models could not improve 
their precision. The model with the highest accuracy (UNet) was then run over an unla-
beled dataset to generate more labeled data. The newly labeled dataset was added to the 
initial dataset for another round of training. This process was repeated multiple times to 
obtain accurate annotations. Figure 9 displays the improvement in annotations after 3 
rounds of training.

3 � Model optimization
Edge devices have limited memory and computational power. Although the developed 
AI algorithms in this study are lightweight and have a high inference speed, model opti-
mization is still necessary for real-time performance of the models on edge devices. 
There are three most important properties of the model that need to be reduced for edge 
computation: storage size, memory usage (RAM), and latency. Model quantization is an 
optimization method which reduces the size of the model. It can also be used to reduce 
the amount of time it takes to run an inference through the CNN model (latency). 
There is a small trade-off between memory size and accuracy. Generally, by reducing 
the latency and memory size, a small amount of accuracy is lost. Quantization is usu-
ally conducted post-training. There are different types of post-training quantization: 
post-training dynamic range quantization, post-training full integer quantization, and 
post-training float16 quantization. Some libraries, such as TensorFlow, offer techniques 
that can be applied on trained weights for quantization. Depending on the processor 

Fig. 9  Semi-supervised annotation improvement
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on the edge device, the quantization methodologies change. Dynamic range quantiza-
tion reduces the size of the model to 25% of its original size and improves the model 
speed by 2–3 times the original value. Dynamic range quantization is suitable for edge 
devices that run on CPU. Full integer quantization is another method of CNN quantiza-
tion that decreases the model size by 4 and increases its speed to over 3 times its original 
value. The integer quantization method is suitable for devices using CPU, edge TPU, and 
Microcontrollers. Float 16 quantization is also used for CPU and GPUs.

Another important factor in determining the quantization method is the computa-
tional power and the required model speed. By using float 16 quantization, the size of 
floating points is halved; therefore reducing the size of the model by up to half, while 
causing minimal loss in accuracy. However, it does not reduce the latency of the model 
as much as quantization to fixed point math. With full integer quantization, more 
improvement in latency is acquired by quantizing the whole model to integers. As a 
result, more accuracy is lost. This method needs to convert all variables to integer vari-
ables, and therefore, the conversion requires a representative dataset for calibration.

In this study, given the designed ML models, different quantization methods were 
evaluated for three different edge devices: Raspberry PI with edge-tpu processor, Jet-
son Nano with NVIDIA Maxwell GPU, and Microsoft HoloLens using Qualcomm 
Snapdragon 850 CPU. For deployment of the models on Jetson nano with NVIDEA, 
TensorRT float 16 quantization was used to reduce inference. Float 16 quantization is 
supported by both Jetson and HoloLens 2. Jetson nano, however, has a more power-
ful processor, and can handle multiple models performing in real-time with Float 16. 
Float 16 quantization is not supported by the Raspberry PI with edge-tpu. Instead tflite-
edgetpu integer 8 provides satisfactory real-time performance. Some platforms, such as 
the MR platform in this study, runs in unity and Barracuda and therefore requires an 
ONNX model. ONNX (Open Neural Network Exchange Format) is a format which can 
be used for CNN models. The format allows conversions from different libraries includ-
ing Pytorch and Keras which were used in this study. Float 16 quantization on Holo-
Lens 2 provides a good inference speed, however, by adding more models to the device, 
more computational power is needed, therefore full integer quantization may be more 
appropriate.

The final decision on the quantization model depends on the criteria mentioned above 
and the performance necessary for the task. Each of the mentioned devices as well as 
many other edge devices, such as tablets and cellphones, can be used for visual inspec-
tion. Among these models, MR/AR platforms offer a better human-AI interaction and 
therefore is recommended. These technologies shape a new environment where physical 
and virtual objects are integrated at different levels. Due to the development of mobile 
and embedded devices, together with interactive physical-virtual connections, the cus-
tomer experience landscape is evolving into new types of hybrid experiences (Karaaslan 
false, 2022a). In such environments, the physical and digital objects co-exist and interact 
in real time making it an ideal platform for the inspector to interact with the AI. Using 
these technologies that are integrated with the proposed method, an inspector can con-
tinuously communicate with the AI system. The human-computer interaction in MR 
will entail practical human-AI collaboration to create a collective intelligence.
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4 � Defect condition assessment and human‑AI interaction
The introduced AI-assisted approach for locating and measuring the surface defects of 
concrete bridges differs from the available practice in the sense that it provides inter-
action between the human inspector and the AI (Karaaslan false, 2022b). Instead of a 
fully automated robotic system that analyzes concrete defects, this study proposes a 
collaborative method using an AR user interface in which the AI system continuously 
interacts with the inspector. This interaction eliminates the need for post-processing, 
reduces labor, and guarantees human-verified results.In order to increase the inspector’s 
involvement in analysis of the defects, two separate AI models are used and optimized 
to conduct the defect localization and defect quantification in real-time. Defect localiza-
tion continuously runs on the edge device while the inspector is conducting the routine 
inspection. Every defect in view is detected and marked using bounding boxes with their 
class name (crack or spalling). The inspector can communicate with the AI by changing 
the confidence threshold to ensure the correct detection of all defects. If a bounding box 
is incorrect or a defect is not detected by the defect localization model, the inspector can 
modify the AI results, and correct the bounding boxes or draw a new one. The model’s 
threshold, which is the highest probability of detection among the defects and back-
ground, is an important factor in the accuracy of prediction and needs to be adjusted 
based on the environment. For example, an automated system with a threshold of 0.6 
would have missed the crack in the scene in Fig. 10, but adjusting the threshold to 0.55 
results in accurate detection of all the defects. Upon the approval of the inspector, the AI 
will run the defect quantification model, which then further analyzes the defect for its 
size along with determining the defect condition. If the bounding box is not satisfactory, 
the inspector can adjust the bounding box manually to obtain better results.

Defects in every scene are localized by the defect localization model. Upon the inspec-
tor’s approval, the detected defect is cropped and used as an input for the defect quanti-
fication model. The defect quantification model then provides the size of the defect with 
respect to its pixel coordinates. Accurate retrieval of real-world dimensional properties 
from the AR projection is necessary to estimate the condition of the concrete surface 
defects. Depending on the edge computing device, camera, and the platform that is used 
(MR, AR), the transformation methods may vary. Mixed reality headsets have dimension 

Fig. 10  Human-AI interaction using the MR platform and threshold and bounding box adjustments
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packages and sensors which can conduct the transformation between the pixel coor-
dinates to real-dimensional coordinates. However, the core transformation principle 
on every edge device is the same. Homography matrixes are one of the most common 
methodologies to convert dimensions from pixel values to real world values. To assess 
the severity of a defect during an inspection, the inspector has access to the design 
details of the bridge, therefore, the inspector can input defect location manually after 
each analysis of a defect. In general, crack severity is either measured based on its width 
or its density (Washer false, 2019). Crack width in this study is measured using a defect 
quantification model and a conversion algorithm obtained to transform the dimensions 
from pixel coordinates to global coordinates. The area of the spall is the second vari-
able that is being calculated using the defect quantification model and transformation 
algorithm. However, the area of the spalling is not the only factor in assessing the condi-
tion of the defect. Spalling depth and the amount of exposed rebar are also important in 
assessment of spalling. To tackle this issue, the Human-AI interface allows the inspector 
to input the other important factors for condition assessment. Figure 11 demonstrates 
the algorithm for defect assessment.

5 � Conclusions
Various studies in the past couple of years have employed learning-based methods for 
the detection of concrete defects while replacing human involvement. The main pur-
pose of this study, however, is to combine engineering expertise with the efficiency of 
real-time machine learning using edge computation. The sequential approach of defect 
localization and defect quantification allows the inspector to verify the results at each 
step. In addition to that, the segmentation model only runs on the defected area which 
improves its accuracy and results in better calculation of the defect area. An AR/MR 
environment is the ideal environment for the collaboration between humans and AI. 
It enables the human-centered AI to interact with the inspector instead of completely 
replacing human involvement during inspections. The designed models were tested in 
different available edge computing devices for performance assessment. It was seen that 

Fig. 11  Defect condition assessment in the proposed methodology with human-AI collaboration
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with the right quantization method, the algorithm is capable of conducting real-time 
analysis. Depending on the device and the camera that is being used, camera calibration 
may be necessary to obtain the physical dimensions of the defects.

Another advantage of this methodology when compared to the current practice is that 
it generates ready to use annotated data after each inspection. The inspection results can 
be saved on local hard drives or a cloud, and the data can be eventually used for finetun-
ing the model. This process improves AI performance significantly after each inspection 
and eventually lead to a reliable model for automated inspection.

One limitation in this study is that the segmentation results are only projected onto 
planar surfaces since the created image targets are two-dimensional. Therefore, volu-
metric calculations from curved surfaces (e.g., circular columns) have intrinsically large 
error. Some of the shortcomings were tackled by using human involvement. Depending 
on the edge device that is being used, the inspector can either get an approximation of 
the depth using the AR/MR platform, or by simply using his or her judgment.

Advanced bridge inspection methodology using real-time machine learning can be 
expanded in many ways in future works on this study. This current work aimed for a 
generic approach for infrastructure inspections, but the target defect types were only 
spalls and cracks. In future works, other defect types will be investigated including 
exposed rebar, efflorescence, and sub-concrete defect (via multi-channel input with 
infrared data). Moreover, a prototype is being developed using a MR platform for real-
time bridge inspection on the edge device.
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