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Abstract

Background: Medical hemostatic biological materials are necessary for the development of the process of preventing
and stopping damaged intravascular bleeding. In the process, some red blood cells and white blood cells are trapped
in nets. The resulting plug is called a blood clot. This is often a good step in wound healing, but separation of blood
clots from blood vessel walls can cause serious health problems.

Main body: The advance in the development of hemostatic biomaterials is necessary for biomedical application.
Firstly, the historical background of artificial hemostasis has been included and the current research of hemostasis
has been included in more detail. Secondly, the current research of hemostasis has been included on the
oxidized cellulose-based hemostatic biomaterials such as starch based on composite cross-linking hemostatic
networks, hemostatic materials on NHS-esters, hemostatic agent from local materials and biomaterials for
hemostatic management. Thirdly, polysaccharide hemostatic materials, bio-inspired adhesive catechol-conjugated
chitosan, mesoporous silica and bioactive glasses for improved hemostasis, minimally invasive hemostatic
biomaterials and chitosan-base materials for hemostatic application have been included. Fourthly, the biological
properties of natural hemostatic agent by plasma technology and the hemostatic agents based on gelatin-
microbial transglutaminase mixes have been also included.

Conclusion: Current research on hemostasis includes hemostatic biomaterials such as cellulose-based hemostatic
starch based on a complex cross-linked hemostatic network. It also includes polysaccharide hemostatic materials,
biomimetic adhesive catechol-binding chitosan, mesoporous silica or physiologically active glass for hemostatic
improvement, minimally invasive hemostatic chitosan-based materials, and gelatin-microbial transglutaminase-based
hemostatic agents. Future studies should focus on modular combination of hemostatic imitation and reinforcement
mechanisms of different materials and technologies to find the optimal system to promote and strengthen active
platelet or platelet imitation aggregation in bleeding sites. The second optionally increases the production of thrombin
and fiber formation at the site. Third, the formed fibrin biopolymer network has strengthened to reduce thrombosis
and amplify hemostasis.
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Introduction
Hemostasis is a process that prevents and stops bleeding,
and means maintaining blood with damaged blood vessels.
This is the first step in wound healing and the blood clot-
ting process. This includes coagulation, changing blood
from liquid to hydrogel. Complete blood vessels are cen-
tral to controlling blood trends that form blood clots. Un-
damaged blood vessels’ endothelial cells prevent blood
clotting with heparin-like molecules and prevent platelet
aggregation with nitrogen oxide [1, 2] and prostacycline
[3]. When endothelial damage occurs, endothelial cells
stop the secretion of coagulation and cohesion inhibitors
and instead secrete vWF (von Willebrand factor) [4, 5],
which starts maintaining hemostasis after damage. There
are three main steps to hemostasis. i) Vascular contrac-
tion, ii) temporary blocking by platelet stopper, iii) blood
clotting, iv) fibrin clot formation. Hemostasis is main-
tained in the body through the following four
mechanisms.
i) Vascular contraction (vascular cramps): Vascular

contraction is produced in vascular smooth muscle cells
and is the first response of blood vessels to damage.
Smooth muscle cells are controlled by vascular endothe-
lial skin that emits intravascular signals to control
shrinkage characteristics. Damage to blood vessels
causes immediate reflection initiated by local sympa-
thetic nerve pain receptors, promoting vascular contrac-
tion. Damaged blood vessels contract, reducing blood
flow through the area and limiting the amount of blood
loss. Collagen is exposed to the damaged area, and colla-
gen promotes platelets to adhere to the damaged area.
Platelets release cytoplasmic granules containing sero-
tonin, ADP, and thrombocyte A2, all of which increase
the vasoconstriction effect. The more the damage in-
creases, the more effective the convulsions reaction is.
Vascular spasms are much more effective in small blood
vessels [6, 7].
ii) Platelet aggregation: platelet-rich human plasma is a

turbid liquid. Adding adenosine diphosphate (ADP) acti-
vates and begins to agglomerate platelets to form white
flakes. Hemostasis occurs when blood is outside the body
or blood vessels. Stopping bleeding and blood loss is the
body’s natural reaction. During hemostasis, three stages
occur in a fast order. Vascular spasm is the first reaction
in which blood vessels contract to reduce blood loss. In
the second step, platelet stopper formation, platelets ad-
here to each other and form a temporary seal to cover
gaps in the blood vessel wall. The third step is coagulation
or blood coagulation. Coagulation strengthens the platelet
plug with fibroblasts acting as molecular adhesives [8].
Platelets are a big factor in the hemostasis process. They
allow the production of platelet caps that form immedi-
ately after a blood vessel rupture. Within a few seconds of
destruction of the vascular epithelial wall, platelets begin

to adhere to the surface under the endothelial skin. It
takes about 60 s for the first fibrous strand to begin to
scatter between the wounds. After a few minutes, the
platelet stopper was completely formed [9].
iii) Platelet stopper formation; Platelet is attached to

the damaged endothelial skin to form platelet stopper
(primary hemostasis) and then degranulated. This
process was controlled through thrombosis control. Plug
formation is activated by a glycoprotein called the von
Villebrandt factor found in plasma. Platelets play one of
the important roles in the hemostasis process. Platelets
change shape when they meet damaged endothelial cells,
release granules, and ultimately become sticky. Platelets
express certain receptors, some of which have been used
to attach platelets to collagen. When platelets are acti-
vated, glycol protein receptors that interact with other
platelets are expressed to produce aggregation and adhe-
sion. Platelets emit cytoplasmic granules such as adeno-
sine diphosphate (ADP), serotonin, and thromboxylic
acid A2. Adenosine diphosphate attracts more platelets
to the affected area, and thromboxylic acid A2 helps
platelet aggregation, vascular contraction, and degranu-
lation. Only platelets are responsible for preventing
bleeding from invisible wear on our skin, so called pri-
mary hemostasis [10].
iv) Fibrin clot formation: Once the platelet plug having

formed by the platelets, the clotting factors are activated
in a sequence of events known as coagulation cascade,
which leads to the formation of fibrin from inactive fi-
brinogen plasma protein. A fibrin mesh has produced all
around the platelet plug to hold it in place; this step has
called secondary hemostasis. During this process, some
red and white blood cells have trapped in the mesh,
which causes the primary hemostasis plugged to become
harder. The resultant plug has called as thrombus or
clot. The blood clot contains secondary hemostasis plug
with blood cells trapped in it. Though that is often a
good step for wound healing, it has the ability to cause
severe health problems if the thrombus becomes de-
tached from the vessel wall and travels through the cir-
culatory system.
In the present paper, the recent advances in the devel-

opment of hemostatic materials have been reviewed for
biomedical applications. The historical background of arti-
ficial hemostasis has been described, and the current re-
search of hemostasis has been also included in more detail
introducing oxidized cellulose-based hemostatic materials,
starch based composite cross-linking hemostatic net-
works, and the hemostatic materials. The current research
of hemostasis has been also included about the oxidized
cellulose-based hemostatic biomaterials such as starch
based composite cross-linking hemostatic networks,
hemostatic materials based on NHS-esters, hemostatic
agent from local materials and biomaterials for hemostatic
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management. Polysaccharide hemostatic materials, bio-
inspired adhesive catechol-conjugated chitosan, mesopo-
rous silica and bioactive glasses for improved hemostasis,
minimally invasive hemostatic biomaterials and chitosan-
based materials for hemostatic application have been in-
cluded. The biological properties of natural hemostatic
agent by plasma technology and the hemostatic agents
based on gelatin-microbial transglutaminase mixes have
been also reviewed.

Artificial hemostasis and current research of
hemostasis
Artificial hemostasis
The process of preventing blood loss in blood vessels or
organs in the body is called hemostasis. The term comes
from the Greek word hem, which means blood, and sta-
sis, which means suspension. Putting it together means
that blood stops [8]. Excessive bleeding inevitably started
with the perception that it was like death. The Greeks
and Romans used vegetable and mineral hemostatic
agents for major wounds. At that time, Egypt’s mummi-
fication study led to much more progress in the general
medical field, which led to more knowledge of the
hemostasis process. During this period, many veins and
arteries flowing throughout the body were found and the
direction of movement was found. Doctors of this era
realized that blood could not continue to flow out of the
body if it was blocked. Nevertheless, until the invention
of the printing press in the fifteenth century, medical re-
cords and ideas moved westward, enabling ideas and
practices for hemostasis [11].
Local hemostatic devices control bleeding stably and

quickly. Preferred formulations will be easy to store and
manufacture at room temperature. It can be used immedi-
ately in the operating room and in various procedures in
the operating room. In addition, the selected drugs will
demonstrate safety and be inexpensive by minimizing
blood transfusion [12]. In general, local hemostatic devices
are classified into four categories: mechanical hemostatic
devices, active hemostatic devices, fluid hemostatic de-
vices, and fiber sealants, as shown in Table 1 [12, 13].

Mechanical hemostats
Mechanical hemostatic products are gelatin, collagen,
cellulose and polysaccharide derivatives. Local mechan-
ical hemostatic agents are applied as sponges and do not
contain thrombin or other active biological compounds.
They cause swelling and create mechanical barriers to
bleeding. Products can cause abscess formation. Mech-
anical products are widely available in the operating
room and are generally considered primary drugs be-
cause they are the cheapest local hemostatic agents [14].
.Examples of pig gelatin products include Gelfoam (Pfi-
zer) and Surgifoam (Johnson & Johnson, Ethicon).

Gelfoam products were used in all surgical procedures.
Gelfoam Plus requires needles to prepare and contains
pooled human thrombin. Therefore, there is a risk of
spreading the virus. Gelfoam Plus’s trombin concentra-
tion is 125 IU/mL lower than other trombin products,
which are 800 to 1200 IU/mL. Surgifoam has been used
in all surgical procedures, but is not suitable for ophthal-
mic procedures [14]. .Socolagen products include Avi-
tene (Davol) and Ultrafoam (Davol). Trombin does not
need to be used with Ultrafoam sponge. Avitene is
served in flour and sheets. Flour can stick to gloves and
surgical instruments. Surge Cell, Surge Cell fibrillar, and
Surge Cell Nu-Knit (all Johnson & Johnson) are exam-
ples of cellulose oxide products. Because thrombin is
destroyed by the low pH of the product, the hemostatic
effect of surge cells does not improve with the addition
of thrombin. Arista (Medfor) is a plant-derived polysac-
charide starch that acts like a body that dehydrates
blood. These polysaccharide spheres concentrate the
solid ingredients in the blood to help blood coagulation
proteins.

Active hemostats
Trombin is a proteolytic enzyme that converts fiber
sources into fiber. Local thrombin has a direct coagula-
tion effect on exposed blood. Active hemostatic agents
include local (small) thrombin (Thrombin-JMI), local
(human) thrombin (Evithrom), and local (recombin-
ation) thrombin (Recothrom). The drug indicated that it
helps hemostasis whenever blood and minor bleeding
from capillaries and small cleaning veins are accessible.
The first clinical use of topical sotrombin dates back
more than 60 years. FDA approval for Trombin was sur-
prise in the 1970s. The use of topical thrombin has been
included in more than 100 applications, including spine,
nerve, general, orthopedic, heart, chest, blood vessels,
gynecology, and dental procedures [15, 16]. Thrombin-
JMI (King Pharmaceuticals) was approved in 1995 [17].
It is estimated that between 500,000 and 1 million pa-
tients are exposed to sotrombin on an annual basis in
the United States. As a broad indication of its use,
sotrombin has two sizes of vials and can be sprayed or
applied to a sponge. In 1996, a black box warning was
added to all sotrombin formulations. This warning indi-
cates that it is sometimes associated with bovine throm-
bin and coagulation disorders. These coagulation
disorders range from mild laboratory abnormalities (pro-
thrombin time change [PT], partial thromboplastin time
[PTT]) to mild bleeding (nonbleeding or hematoma),
and severe bleeding (continuous and uncontrolled and
life-threatening). This response is associated with anti-
bodies to sotrombin and/or factor V that cross-react
with human coagulation factors [18]. Factor V is an es-
sential secondary factor in converting prothrombin into
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trombin. Factor V inhibitors can cause deactivation or
depletion of factor V. The actual incidence of
sotrombin-related coagulation is unknown for initial ex-
posure or re-exposure. However, re-exposure to sotrom-
bin increases the risk of antibody formation. The clinical
features of immunomodized coagulopathy (IMC) vary
widely. Antigen exposure is not documented in medical
records [19]. The reported clinical manifestation time of
IMC varies widely and can occur within an average of 32
to 10 days after exposure. Bleeding occurred in about
half of these cases. Currently, clinical awareness of IMC
is low [20–22]. .Newly formulated bovine-derived
thrombin-JMI significantly reduced the level of pollut-
ants, but coagulation disorders can still occur [22].
Hemorrhagic IMC is a diagnostic challenge. Clinical fea-
tures can be highly variable and obscured by other con-
ditions, such as anticoagulants or antiplatelet therapy,

vitamin K or liver disease, disseminated intravascular co-
agulation, acid and hypothermia, and blood dilution due
to blood loss [23, 24]. .Hemorrhagic patients may re-
quire red blood cell transfusion, platelet transfusion, and
immunosuppressive therapy (corticosteroid, cyclo-
sporin), chemotherapy (cyclophosphamide, vincristin),
or epsilon aminocapric acid [25–27].
The FDA approved a pooled source of human plasma

thrombin (Evithrom [Johnson & Johnson]) in 2007. The
final product goes through virus inactivation to ensure
the safety of the product. There is no black box warning
in this product, but there is a risk of spreading the virus.
Freeze you need to avoid thawing time before the ad-
ministration and is evithrom Recombinant [ZymoGe-
netics] was approved by the FDA in 2008. This product
is produced using recombinant DNA and has similar ef-
fects to sotrombin, but has no cow or human plasma. It

Table 1 Topical Hemostatsa. (a: References: 12 and 13).
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was produced through the Chinese hamster ovary
(CHO) host cell protein [28]. .Examples of other prod-
ucts produced through recombinant technology include
human insulin, growth hormone, etanusept (enbrel),
bevacizumab (abastin), and rituximab (lituxane) [29–31].

Fluid hemostats
Fluid hemostat is thick but has a fluid consistency and
contains a bovine or porcine gelatin matrix. This is use-
ful when applying to hard-to-reach surfaces or wet fields.
They can be used in all surgeries except ophthalmology.
Surgiflo (Johnson & Johnson) contains porcine gelatin
and is miscible with thrombin [32]. FloSeal (Baxter) con-
tains bovine gelatin matrix and human pool plasma
thrombin [33].

Fibrin sealants
Fibrin sealant contains thrombin and fibrinogen and is
useful when hemostatic agents and sealant are needed.
Tissel (Baxter) contains pooled human thrombin, pooled
human fibrinogen, synthetic aphrotinine, and plasmino-
gen [34]. .Human thrombin is at risk of viral transmis-
sion and the product takes a long time to prepare. Tissel
is the first surgical sealant approved by Evicel (Johnson
& Johnson) in the United States in 1998. It contains hu-
man thrombin, human fibrinogen concentrate, and albu-
min. There is also a risk of spreading the virus. This
product is for freezing and needs to be thawed [35].

Current research on hemostatic biomaterials
Currently, many studies on hemostasis are being con-
ducted. The most recent researches are based on the
genetic factors of hemostasis. It has been changed to re-
duce the cause of genetic disorders that change the nat-
ural process of hemostasis [36]. Phonvillebrandt’s
disease is ultimately associated with platelet caps that
stop bleeding and defects in physical ability to produce
fibroblasts. Recent studies have concluded that von Vil-
lebrandt disease is much more common in adolescence.
This disease negatively interferes with the natural
process of hemostasis, causing patients suffering from
this disease to worry about excessive bleeding. There are
complex treatments performed, including combinations
of therapies, estrogen-progesterone formulations, des-
mopressin, and von Villebrandt factor concentrates.
Currently, research is trying to find a better way to deal
with diseases [36, 37].

Cellulose oxide-based hemostatic materials
The application of hemostatic agents is essential to pre-
vent serious bleeding and death from excessive bleeding
in surgery or emergency situations. Cellulose oxide is an
excellent biodegradable and biocompatible derivative of
cellulose and has become one of the most important

hemostatic agents used in surgical procedures. There is
no comprehensive report on evaluating cellulose-based
hemostatic substances. Preparation of oxidation, the ori-
gin and structure of cellulose, and the biodegradability
and safety of cellulose oxide were reviewed. A compre-
hensive discussion of hemostatic mechanisms, various
forms, variations, and currently commercially available
cellulose products has been included, which highlights
the most important development in recent scientific lit-
erature [37, 38].

Starch based composite cross-linking hemostatic
networks
Porous complex starch (PCS) with starch-based complex
crosslinked hemostatic network chitosan (CS) was cross-
linked by STMP (sodium trietaphosphate) to obtain
hemostatic agents called STMP/PCS/CS (SPC) with ideal
hemostatic effects. The absorption rate (WAR) and
swelling rate (SR) of SPC reach 150.8% (WAR) and
355.0% (SR), respectively. It was observed by scanning
electron microscope (SEM) that a large amount of CS
was combined with PS, indicating that the composite ef-
fect was ideal. The elevated hemostasis effect of SPC was
shown in blood cell evaluation experiments, and platelet
activation triggers a multistage cascade that adsorbs
more blood cells onto the SPC surface to produce
thrombosis. In tail amputation 1 cm, 2 cm, and liver la-
ceration, the average hemostasis time of SPC was re-
duced by 29, 42, and 37%, respectively, compared to the
gap control group, and the hemostasis effect was better
than that of CS and PS. Performance for rat tail cutting
and liver lacerations [38, 39].
Chitosan is a powerful hemostatic agent that induces

blood clotting even with extensive anticoagulant therapy.
Blood coagulation has been suggested to be related to
the possible formation of a polymer electrolyte complex
(PEC) containing a negatively charged acidic group
present on the surface of chitosan amino function and
red blood cells. In contrast, chitin exhibits increased
anticoagulant properties with O-sulfonation because it is
similar to heparin, a naturally occurring glycosaminogly-
can (GAG) used as an anticoagulant in clinical practice.

NHS-Ester-based hemostatic ingredients
Hemostatic agents have been developed to prevent
bleeding during surgery. Hemostatic devices using
physiologically active ingredients to promote coagulation
rely on natural sources that limit reproducibility. Hybrid
devices using chain-terminated reactive poly (ethylene
glycol) (PEG) as an active component may undergo ir-
regular crosslinking and dissolution of polar PEG when
blood flow is significant. Here they describe synthesized,
non-physiologically active hemostatic products by coat-
ing N-hydroxysuccinimide (NHS) ester-functional poly
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(POx) on gelatin patches acting by covalent crosslinking
between polymer and host blood. Protein, gelatin, and
tissue seal wounds and prevent bleeding during surgery.
They studied various process parameters, including poly-
mers, carriers, and coating techniques, in direct
comparison with clinical products (hemopatch and
Tachosil), to gain a deeper understanding of these kinds
of hemostatic products. They successfully demonstrated
the hemostatic efficacy of POx-NHS as a polymer powder
and coated patch in vitro and vivo against Hemopatch and
Tachosil, demonstrating that POx-NHS is an excellent
candidate polymer for hemostatic patches [39, 40].

Hemostatic agent from local ingredients
Hemostatic agents are medical substances used in sur-
gery to stop or control excessive bleeding. This study
aimed to develop hemostatic agents produced from nat-
ural sources. The advantages of using natural materials
are low cost, non-toxic, and reasonable decomposition.
The local materials used in the study are rice starch and
chitosan synthesized from squid pens. Both materials are
biocompatible and are generally used in biomedical ap-
plications. Chitosan with antibacterial properties can be
used as a hemostatic agent to prevent wound infection.
Freeze drying was used to prepare hemostatic agents. An
experimental design was implemented to optimize the
ratio of rice starch to chitosan to produce hemostatic
agents with appropriate blood absorption and expansion
properties. As a result, chitosan and 50:50 hemostatic
agents; rice starch volume ratio showed reasonable prop-
erties for bleeding control due to acceptable physical
properties, fast blood absorption and low hemoglobin
leakage. In addition, the hemostatic agent under devel-
opment has low production costs and little superior
properties compared to commercial products, so it is
likely to be applied to medical applications [40, 41].

Biological ingredients for hemostasis management
Bleeding complications caused by trauma, surgery and
congenital, disease-related, or drug-induced blood disor-
ders can cause serious morbidity and mortality in civil-
ians and soldiers. Interruption of hemostasis is clinically
most important in prevention, surgery, and emergency
scenarios. In the case of externally accessible injuries,
various natural and synthetic biomaterials went through
strong research and led to hemostatic technologies in-
cluding adhesives, bandages, tamponades, hemostatic
bands, dressing and coagulation promoting powders. On
the other hand, the treatment of incompressible internal
bleeding still relies heavily on hemostatic components of
blood, such as whole blood transfusions, platelets, fi-
brinogen, and coagulation factors. Platelet transfusions
pose significant problems such as limited availability,
high cost, pollution risk, low portability, performance

variability, and immunological effects, while the use of
fibrinogen or coagulation factors provides only partial
mechanisms for hemostasis. Considering these points,
many interdisciplinary research efforts have been fo-
cused on material and technology development. They
can be conveniently included, sterilized to minimize
contamination, and intravenously administered to imi-
tate, utilize, and amplify physiological hemostasis mech-
anisms. They provide a comprehensive review of various
local, intraperitoneal and intravenous hemostatic tech-
niques in terms of materials, mechanisms and state-of-
the-art technology [41, 42].

Polysaccharide hemostatic agents
Stable thrombus formation or hemostasis is essential to
prevent major bleeding and death from excessive bleeding.
The coagulation process of the body itself cannot be
stopped in a timely manner without the help of
hemostatic agents. To develop new local hemostatic
agents, tissue adhesives, and sealants, it is necessary to
understand the coagulation process and hemostatic mech-
anisms of different materials. Polysaccharides among
hemostatic substances are naturally derived polymers and
have excellent biodegradability and biocompatibility. This
article provides an overview of polysaccharide-based
hemostatic materials and preparations, including advan-
tages and disadvantages of hemostatic applications.
Polysaccharide-based hemostatic substances with antibac-
terial and healing functions were included [42, 43]

Biomimic adhesion catechol binding chitosan
The development of adhesive materials such as cyano-
acrylate derivatives, fibrin adhesives and gelatin-based
adhesives has become a new topic in biomaterials be-
cause these materials are widely used, including wound
healing patches, tissue sealants and hemostatic materials.
Most biological adhesives have poor adhesion to tissues
and related surfaces due to the presence of body fluids.
This study aimed to solve this problem by developing
moisture-resistant adhesives. Mussels exhibit strong
moisture-resistant adhesion despite constant waves on
the beach, and mussels adhesive proteins play an im-
portant role in this adhesion. The adhesive protein lo-
cated at the end consists of about 60% of amino acids
called 3,4-dihydroxy-1-phenylalanine, lysine, and histi-
dine, and has side chains of catechol, primary amine,
and secondary amine, respectively. Inspired by catechol-
amine rich in mussel adhesive proteins, researchers have
developed various types of polymer imitations such as
poly (ethyleneimine)-catechol, chitosan-catechol, and
other related catechol polymers. Chitosan-catechol is a
promising adhesive polymer in the biomedical field.
When catechol is bound to chitosan, the solubility in the
pH 7 aqueous solution increases rapidly from 0 to
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almost 60 mg/mL. Improved solubility maximizes the
ability of catecholamine to behave in similar mussel ad-
hesive proteins. Chitosan-catechol is biocompatible and
exhibits excellent hemostatic ability and tissue adhesion,
and thus will be widely used in various biomedical envi-
ronments for medical applications [43, 44].

Mesoporous silica and physiologically active glass for
improved hemostasis
Well-organized mesoporous silica and physiologically
active glass of minerals have recently shown great poten-
tial to accelerate hemostasis and infection control. Im-
mediate control of uncontrolled bleeding and infection
is essential for saving lives both in combat and civilian.
However, to date, there are no comprehensive reports
evaluating specific mechanisms of action that accelerate
the hemostasis process and exert antibacterial effects.
After providing a brief review of hemostasis processes,
the study presents a critical overview of the recently de-
veloped inorganic mesoporous silica and physiologically
active glass-based materials for hemostasis clinical appli-
cation. Their unique characteristics have been found to
be applicable to hemostasis and infection prevention.
This article also identifies promising new research direc-
tions initiated to identify the effectiveness of these mate-
rials for hemostasis application [44, 45].

Chitosan-based materials for hemostatic application
Effective and rapid hemostasis is critical to surgery and
emergency trauma, especially trauma occurring in battle-
fields and other complex situations [45, 46]. Hemostasis
is an important step in emergency medical care. Effective
hemostasis is essential to reducing patient pain and mor-
tality, and research and development of hemostatic ma-
terials is a prerequisite for effective hemostasis.
Chitosan, which is highly biocompatible and non-toxic,
is widely applied to biopharmaceuticals, chemical indus-
try, food industry, cosmetics, etc. [47]. The chitosan
complex hemostatic material is currently emerging as a
hemostatic material. After briefly introducing the
hemostatic mechanism of chitosan, progress of research
on chitosan-based composite hemostatic materials hav-
ing various forms such as films, sponges, hydrogels, par-
ticles, and fibers was introduced. Chitosan-based
complex hemostatic materials are perspectives on effect-
ive hemostatic materials in future studies. Chitosan
nanoparticles have become famous for their biodegrad-
ability, easy availability, cancer imaging, and low cytotox-
icity [48].

Minimal invasive hemostatic biomaterials
Surgeons often experience internal bleeding in minimally
invasive surgery (MIS). MIS is a surgical treatment
method that minimizes trauma using laparoscopy, nasal

endoscopy, and other medical equipment [49, 50].
Hemostasis in vivo is the key to success in minimally in-
vasive surgery. Solid hemostatic materials cannot pass
through the synth tube of the MIS device, so the tissue
peels off. To address the adhesive dilemma, formulations
containing multifunctional sucrose allyl ether (SAE)
monomers and hydroxy-ketone photo-initiators have
been adopted as lead hemostatic materials for MIS.
Here, in vivo hemostasis experiments were performed by
comparing the formulation with chitosan [51].

Biological properties of natural hemostatic agent by
plasma technology
Excessive bleeding is an important problem in surgery.
It is a concern about bleeding during clinical procedures.
Bleeding control and rapid blood coagulation are the
main management tasks of surgery [51]. The purpose of
the study was to evaluate the effectiveness of non-
plasma treatment on the biological properties of natural
hemostatic agents. Studies have shown that plasma
treatment can increase the decomposition rate of sam-
ples by up to 94.26% within 7 days, improving the bio-
degradability of hemostatic agents. In addition, the
plasma-treated sample showed excellent biocompatibility
in the cell survival rate test of fibroblasts. Cell growth
and cell proliferation in this sample were found to be
helpful in the wound healing process. Modified drugs
can help better control bleeding during surgery to de-
velop new hemostatic products that meet the require-
ments, including biomedical applications with proper
biocompatibility and biodegradability [52].

Gelatin-microbial transglutaminase mixture-based
hemostatic agents
Effective and rapid hemostasis is important to increase
post-traumatic survival. Ideal hemostatic agents should
have performance characteristics such as rapid
hemostatic effect and simple preparation for various
types of bleeding and be non-immune [53–55]. Existing
hemostasis methods have limitations in efficacy and can
cause additional tissue damage. This study designed a
new hemostatic agent based on the formation of in situ
gels in gelatin, in which amino acid sequences are cross-
linked by new microbial transglutaminases different
from commercial mTGases. The new hemostatic agent
exhibits the same biochemical crosslinking effect as the
final stage of the blood coagulation cascade while using
gelatin as a structural protein (instead of fibrin) and
calcium-dependent mTGase as a crosslinking catalyst
(instead of factor XIIIa). Biomimetic gelatin-mTGase
mixed hemostatic agents are effective surgical sealers
[56]. In the liver hemostasis model of mice, hemostatic
agents showed similar hemostatic effects to SURGIFLO®,
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as well as stronger adhesion and elasticity than
SURGIFLO®.

Blood interactions with micro- and nano-fibers
Fine and nanofiber materials seek a wide range of applica-
tions, such as vascular grafts, tissue engineering scaffolds,
and medical drug delivery systems. These applications are
due to surface functionalization methods, as well as almost
any biomaterial deformation opportunities generated by
multiple polymers used to form micro or nanofibers.
Among these applications, hemostatic activity of mi-
cro and nanofiber materials is receiving more and
more attention in biomedical applications. It is im-
portant to find both biomaterials and micro and
nanofiber structural properties that affect organic re-
actions. Studies have also been conducted on major
animal models used to assess the safety and effective-
ness of hemostatic agents [57]. There are several ways
to form nanofibers, such as electrospinning [58, 59],
solution hollow spinning [59, 60], mechanical drawing
[60, 61], centrifugal radiation [61, 62], and fiber self-
assembly [62, 63]. Despite various formation methods
and advantages [63, 64] electrospinning is the most
widely used technology for forming laboratory and
industrial-scale nanofibers. Electrospinning nano and
microfibers are attractive in a variety of applications as they
provide many opportunities for material development.

Biomaterials for hemostatic bleeding
Interruption of bleeding hemostasis is clinically most im-
portant in prevention, surgery, and emergency scenarios.
Hemorrhagic complications caused by surgery, as well as
congenital, disease-related or drug-induced blood dis-
order, can cause serious morbidity and mortality in civil-
ians and soldiers. In the case of externally accessible
injuries, various natural and synthetic biomaterials went
through strong research and led to hemostatic technolo-
gies including adhesives, bandages, tamponades,
hemostatic bands, dressing and coagulation promoting
powders. On the other hand, the treatment of incom-
pressible internal bleeding still relies heavily on whole
blood or hemostatic components of blood. Platelet
transfusions pose significant issues of limited avail-
ability, contamination risk, low portability, perform-
ance variability, and immunological adverse events,
while the use of fibrinogen or coagulation factors pro-
vides only partial mechanisms for hemostasis [64, 65].

Thrombin coating cross-linked chitosan film
In the research, the authors intend to develop a new
cross-linked chitosan film with hemostatic ability to
apply sheets to patch-type hemostatic agents, and de-
velop a new concept complex hemostatic pad that com-
bines it with a powerful hydrocolloid pad and an

adhesive [65, 66]. First, EDC/genipin (GP)/glutaldehyde
(GTA) was considered as the crosslinking agent. GTA
was excluded because toxicity above the standard was
detected in the toxicity test. Second, an EDC/NHS-based
crosslinked chitosan film was prepared [66–68, 67, 68,
69]. Crosslinking agents used in the preparation of poly-
mer and crosslinked chitosan films were prepared using
GP as crosslinking agents for the base of thrombin coating
films [69, 70]. Composite hemostatic pads were evaluated
through hemostatic time performance evaluation through
animals, and crosslinked chitosan complex hemostatic
pads were later tested with mass-produced checkpoints.
Among the current hemostatic agents, adhesives or gauze/
pads have always been required to use adhesive tapes, and
conventional adhesive tapes have side effects after
hemostasis and thus solvent-type tapes (acrylic or hot
melt) are used. This can minimize patient discomfort and
side effects while maintaining hemostatic performance.

Summary and conclusion
The recent development of hemostatic biomaterials has
been included in biomedical application. First, the his-
torical background of artificial hemostasis is included.
Second, it is included in more detail, focusing on the
current hemostasis research. Current research on
hemostasis also included oxidized cellulose-based
hemostatic biomaterials such as starch based on a com-
plex crosslinked hemostatic network, hemostatic mate-
rials in NHS-ester, hemostatic agents in local materials,
and biomaterials for hemostatic management. Polysac-
charide hemostatic materials, bio-inspired adhesive
catechol-binding chitosan, mesoporous silica and bio-
active glass for hemostatic improvement, minimally in-
vasive hemostatic biological materials, and chitosan-
based materials for hemostatic application were in-
cluded. Biological properties of synthetic hemostatic
agents based on natural hemostatic agents and gelatin-
microbial transglutaminase mixtures were also included.
Future studies should modularize hemostatic imitation
and enhancement mechanisms of various materials and
technologies to find the optimal system to first promote
and strengthen active platelet or platelet imitation aggre-
gation in bleeding sites. The second optionally increases
the production of thrombin and fiber formation at the
site. Third, the formed fibrin biopolymer network is
strengthened to reduce thrombosis and amplify
hemostasis. Individual components of these systems are
currently under preclinical study, but these systems and
potential integrated systems should study biological dis-
tribution, systemic safety, and site selective hemostasis
in several well-characterized bleeding models in vivo.
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