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Introduction
In an increasingly globalized world, we face risks of outbreaks of infectious diseases, 
such as AIDS, Ebola, COVID-19, or new strains of influenza. Human behavior is known 
to have major influence on infectious disease dynamics [1]. Examples are how we inter-
act with one another when we are sick, whether we break social ties over the course of 
infections, what we believe to know about health risks, and how we derive actions from 
this information.

Past studies show an increasing interest in this interplay of health behavior and infec-
tious diseases in both sociological and epidemiological scholarship [2–6]. Mao et al. [7], 
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for example, emphasize that neglect of health behavior may create mismatches between 
observed transmissibility of diseases and epidemic sizes of model predictions. Based 
on a 2-layer network (contact, information) they predict lower epidemic sizes when 
more individuals adopt preventive behaviors disseminated through communication 
networks. Further integration of health behavior, the authors argue, is necessary and 
requires an interdisciplinary approach combining social sciences, health psychology and 
epidemiology.

From studies in health psychology we know, for example, that perceived risks of infec-
tions may cause people to avoid social gatherings during times of increased risks of 
infection [8, 9]. Despite the widely recognized importance of incorporating dynamical 
aspects in epidemiological contexts [10, 11], many studies on infectious diseases con-
sider social networks to be static, implying that health behavior does not affect social 
behavior. Static relations, however, do not describe the dynamic nature of our social net-
works [12, 13], while disease dynamics is known to be sensitive to topology changes in 
adaptive networks [14].

Leung et  al. [15] recently addressed the problem of lacking social network dynam-
ics. Using a formal model of disease spread, they showed that social distancing imple-
mented by stochastic rewiring of network ties, rather than dropping edges, and thus 
keeping average degree constant, has an immediate effect on the epidemic size. High 
rewiring rates of susceptible agents when connected to infected peers result in a lower 
epidemic size than in static networks. Moderate rewiring rates, in contrast, result in 
larger epidemic sizes. The authors propose, however, that individual decision-making is 
a non-stochastic, but highly complex health behavioral process waiting to be formally 
integrated into epidemiological social network models. We posit that a more realistic 
description of epidemics is possible by integrating social network dynamics based on 
health behavior into epidemiological models. This paper identifies the necessary theories 
and provides a general model to fill this gap.

Considering health behavior, Funk et al. [16] argue that people need to become aware 
of disease-related information (e.g., personal observations, public information cam-
paigns) to change their behavior. Further, two systematic reviews on airborne diseases 
[17, 18] conclude that subjective risk perception with regard to (i) the perceived prob-
ability of getting infected and (ii) the perceived severity of a disease is the main reason 
for health-related behaviors in the context of infectious diseases. Thus, a person perceiv-
ing risk to be high may prefer to avoid social contacts during a wave of influenza, while 
a person perceiving risk to be low may not alter social behavior at all [see also, 9, 11, 19]. 
The model by Poletti et al. [20] also suggests effects on epidemic impact depending on 
perceived risks and the corresponding behavioral reaction (lowering probability of infec-
tion), even for small reductions in contact numbers. Finally, Bish et al. [17] argue that the 
number and severity of symptoms are significant factors for the duration and degree of 
separation from social contacts.

The elaborations above demonstrate a complex co-evolution of infectious dis-
ease dynamics and social network dynamics mediated by risk perceptions of actors. It 
remains, however, unclear how this co-evolution comes about. We therefore ask: How 
does health behavior shape the co-evolution of epidemics and dynamic social networks? 
Despite the enormous increase in the number of studies of disease spread in social 
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networks since the beginning of the COVID-19 pandemic [e.g., 21–34], we are not aware 
of any study explicitly considering a choice-based model including health behavior and 
interdependent dynamics of social networks and infectious disease spread. Modeling 
such network-related health behavior allows to compare the effects of different control 
measures against epidemic outbreaks, a crucial factor for policy-making [1, 35]. Further-
more, our work adds to the rich literature on co-evolution between social networks and 
different types of behavior [36, 37].

To answer the question, we provide a general model for the co-evolution of dynamic 
social networks and infectious diseases mediated by risk perceptions of actors. The 
model follows an interdisciplinary approach and combines theories of social network 
formation from sociology and economics, infectious diseases from epidemiology, and 
individual health behavior from health psychology. Furthermore, rather than using 
purely stochastic rewiring processes or artificially lowering transmissibility [see 3, 7, 15], 
we address two crucial shortcomings of contemporary models to couple the dynamics of 
social networks and disease behavior based on a more explicit theoretical mechanism: (i) 
the integration of dynamic network structure in consideration of (ii) behavioral changes 
due to infection risks [38].

We first identify the minimal requirements for such a model with solid footing in the 
literature (“Theory” section), including theory from epidemiological scholarship [39] 
and theory on how people form social ties [40–42]. In addition, we use psychological 
theory to describe health behavior and how people translate the exposure to health risks 
into action. We integrate these theories to propose a general model describing the co-
evolutionary processes of dynamic social networks and infectious diseases (“The net-
working during infectious diseases model (NIDM)” section). A specific model case (“A 
specific model case” section) implemented as agent-based simulation (“Simulation” sec-
tion), serves to illustrate how the general model can be tied to specific types of social 
networks (here: 10 to 50 individuals, such as groups of friends, school classes, extended 
family, small companies, or teams within larger companies), and how different social, 
psychological, and disease-related conditions affect the course of epidemics within these 
networks (“Results and discussion” section).1 We conclude with the implications of our 
study and opportunities for further research “Conclusion and implications” section.

Theory
Infectious diseases

Infectious diseases differ in many aspects, such as transmission routes (e.g., airborne, 
sexual contact, animal vectors, food contamination), the symptoms they cause (e.g., 
fever, coughing, fatigue, diarrhea, muscle aches), the body parts they affect (lungs, skin, 
inner organs), virulence, the cause of infection (bacteria, viruses, fungi, parasites), the 
course and duration of the disease, and many more. However, despite the numerous dif-
ferences between specific infectious diseases, there are also commonalities that apply 
to all. The infection rate, or probability of an infection per contact, is central for the 
spread of any infectious disease and thus an important factor whether the invasion of an 

1 Clearly, the NIDM also allows modeling larger networks. That, however, requires a different social network formation 
model than the one used in this paper.
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infection may turn into an epidemic [16]. Furthermore, the stages individuals go through 
during an infection are similar. This progress typically starts with an individual being 
susceptible to a disease. After being infected with a pathogen, the susceptible individ-
ual becomes infectious and possibly symptomatic. Finally, the individual either recovers 
or dies from the infection. Recovered individuals may either be immune or once again 
become susceptible to the disease.

This general course of infectious diseases can be translated into the well-known com-
partmental SIR model [39], which divides a population into three different compart-
ments according to disease states (Susceptible, Infected, and Recovered). Depending 
on transmission and recovery rates, ordinary differential equations allow predicting dif-
ferent properties of infectious disease dynamics, such as the total number of infected, 
peaks and duration of epidemics, and effects of vaccines. Models are designed depend-
ing on, inter alia, which states of the infection are considered or whether recovered indi-
viduals may die, become immune, or become susceptible again.

Despite the undisputed importance of compartmental models in epidemiology, Wang 
et al. [38] describe the lack of theoretical foundation in behavioral responses and social 
mixing as a pitfall. Especially the assumption that individuals have the same probability 
to get in contact with others is delusive, as people get more likely in contact with others 
who are close to them (spatially, emotionally, characteristically) [43]. More recent stud-
ies addressed this issue by dividing populations into spatially distinct groups, so-called 
meta-populations [2, 44], or using network approaches to study the effect of network 
topology, interpersonal relationships, informational exchange, or protective behavior on 
disease spread [7, 10, 14, 15, 45–47]. While static networks provide good approximations 
when networks change at a much slower pace than diseases spread, an increasing num-
ber of studies are concerned with network dynamics and disease dynamics occurring on 
similar timescales [14]. Model studies on adaptive networks allow unique insights on the 
non-trivial feedback loop between infectious disease spread and spontaneous changes 
in human behavior. Game-theoretic approaches study, for example, the conditions that 
make social distancing a beneficial response to infection risks [5, 48]. Studies to model 
temporary interruption of contacts between infected actors [6, 49, 50] show that pausing 
relationships during epidemics increase the epidemic threshold. The underlying network 
structure in these studies, however, remains static. In a study to model epidemic dynam-
ics in adaptive networks, [4] showed that disease spread is inhibited when susceptible 
actors choose to distance themselves from infected others. Furthermore, they showed 
that depending on rewiring rate and initial state of the system, healthy and endemic 
states can coexist.

While all these approaches impressively show that network dynamics may alter the 
course of epidemics, they neglect modeling health behavior explicitly.2 We therefore 
seek to identify the relevant theories to describe how people form their networks and 
how this behavior differs when being at risk of getting infected with a disease.

2 Note that health behavior is not necessarily ignored in models of disease spread. If, for example, estimation of epi-
demic parameters, such as R0 is based on empirical data, behavior is reflected in the data and thus implicitly included.
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Social network formation

Depending on the context, different positions within a network may create structural 
advantages, which in turn create social or economic benefits [51–54]. As a result, indi-
viduals consciously change their networks to their personal advantage [55, 56].

Benefits in our general model are considered personal well-being, a combination of 
social and physical well-being, as suggested by Social Production Function theory [SPF 
theory; 57]. Social well-being can be satisfied through affection or behavioral confirma-
tion by direct personal contacts. This creates an incentive to establish connections to 
other persons. Maintaining ties, however, comes at the cost of time and effort [41]. It is 
therefore not necessarily rational for an actor to just randomly connect to everyone else, 
as some ties might create higher value than others while others have higher costs for 
maintenance.

According to SPF theory, a major factor of physical well-being is the absence of physi-
cal harm. Consequently, the presence of an infectious disease within a social network 
creates a potential harm to each individual and thus creates an incentive not to form 
or even to break existing ties with (infectious) others. As a result, networking behavior 
becomes a trade-off (utility Ui ) of an individual (i) between the social well-being his/her 
contacts create (benefit Bi ), the costs to maintain the ties ( Ci ), and the physical harm the 
connection may cause due to an infectious disease ( Di):

The first two components of the equation describe the net social utility of contacts disre-
garding the potential harm of infections. [41] provides a framework to model this. These 
Strategic Network Formation Models [41, ch. 6] formalize how and why individuals form 
connections based on the costs and benefits of ties. Analyses of the resulting network 
and utility structures enable to explain the psychological and societal constraints under 
which certain network properties come about.

It has to be noted that appropriate models of utility structures depend on the type 
of disease and its mode of transmission (HIV: sexual contacts, measles: classrooms). 
Further, potential costs of infections affect expected utility. Actors, however, may apply 
behavioral changes regardless of the exact shape of the utility function to avoid infec-
tions as we argue below.

Health behavior and risk perceptions

Health behaviors affect many everyday decisions including nutritional issues, per-
sonal and sexual encounters, or substance use [11, 58, 59]. Regarding infectious dis-
eases, Bish et  al. [17] classify health behaviors into three categories: (i) preventive 
behaviors (e.g., hand washing, mask wearing, vaccinations); (ii) avoidant behaviors 
(e.g., work absence during a wave of influenza), and (iii) management of disease 
behaviors (e.g., consulting medical experts). All these behaviors lower or even elimi-
nate the risks of getting infected. Here, we focus on avoidant behaviors, as we expect 
it to have the greatest effect on social network structures. For social networks this 
translates to avoiding potentially infectious social connections. Such social distancing 
can be achieved through either choosing not to form a tie to, or breaking an existing 

(1)Ui = Bi − Ci − Di.
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tie from, an infectious other. Empirical studies support that social distancing suc-
cessfully reduces infection risks through link removal [8], voluntary quarantine [60], 
or avoidance of public places [9]. Ref. [61] show further that social distancing at the 
workplace reduces epidemic size. But how do people choose to avoid others when 
being at risk of infections?

In their systematic review of 30 articles on SARS and avian influenza, [18] describe 
that independent of how different studies conceptualize risk (i.e., subjective expected 
utility vs. psychometric), the main commonality among all studies is that risk per-
ception is the driving factor for health-related decisions. Further, risk perception 
is affected mainly by the perceived susceptibility to and the perceived severity of a 
disease [17, 18]. A systemic review by [62] emphasizes the subjective nature of per-
ceived susceptibility: people typically make inaccurate predictions about health risks 
and thus actual and perceived risks of getting infected may differ greatly. While the 
findings for severity are not as consistent, there is also abundant evidence that the 
perceived severity of a disease (e.g., expected harm for health, expected fatality) has 
a major effect on risk assessment as well [18, 62].

A behavioral model that describes how individuals make health-related decisions 
based on the aforementioned considerations is the ego-centered Health Belief Model 
[in short: HBM; 63]. Similar to the HBM, our model integrates the empirically docu-
mented concepts perceived susceptibility and perceived severity of a disease to cap-
ture health behavior driven by risk perception.

The networking during infectious diseases model (NIDM)
Based on the foregoing theoretical considerations a formal representation of net-
working behavior and infectious diseases needs to satisfy two requirements: first, 
social distancing is the result of a deliberation process that weighs the net benefits 
for keeping a connection to an infectious peer and the harm of a disease that poten-
tially results from the same connection. Second, objective measurements for the 
harm of a disease (susceptibility, severity) need to be modifiable to satisfy the sub-
jective nature of risk perceptions.

The integration of these requirements is expressed by the Networking during Infec-
tious Diseases Model (NIDM). The NIDM assumes an actor (i) to optimize the utility 
function in Eq. 2 (U), an elaborate version of Eq. 1, combining the benefit of social 
connections ( Bi ), the costs to maintain ties ( Ci ), and the potential physical harm of 
infectious contacts ( Di):

Utility depends on the network structure ( G ), the disease state of all actors ( d ), and their 
risk perceptions ( R ). We assume individuals to act boundedly rational using the infor-
mation available through their environment. That is, individuals act strategically in order 
to maximize their myopic personal benefits.

In the following, we present a specific case of the NIDM to illustrate how it can be 
used to study the co-evolution of social networks and infectious diseases for a spe-
cific type of social network.

(2)Ui(G,d,R) = Bi(G,d)− Ci(G,d)− Di(G,d,R).
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A specific model case
In a first step to create a specific model from the NIDM, we define a baseline utility func-
tion for network formation. This utility function describes the social context and thus 
determines the properties of the social network to be studied. We choose the truncated 
version of the Connections Model [CM; 41, 64]. By choosing a well-known model for an 
initial investigation, we hope to facilitate understanding of the results. The CM defines 
utility (U) of an actor (i) as the combination of benefits α of connections at distance 1 
(direct connections), benefits β of of connections at distance 2 (indirect connections), 
and the costs to maintain direct connections c:

where ni is the number of direct and mi is the number of indirect connections. We use 
the truncated version implying that only benefits of connections at distances 1 and 2 
are considered rather than also providing benefits for longer distances. The model rep-
resents that people do not only benefit from direct contacts by receiving help, support, 
information, etc., but that they can also obtain benefits indirectly from others connected 
to direct contacts.

Note that the CM is a model typically describing social contexts of limited group size, 
such as groups of friends, school classes, extended family, small companies, or teams 
within larger companies. Furthermore, while the CM is an ad hoc choice, it contains 
characteristics relevant for infectious diseases. Consider a sick person, who receives care 
by direct friends (doing groceries, taking over chores). In addition, friends of friends may 
be beneficial, for example by enabling the friend to help (taking over his/her chores) or 
in the form of practical matters (borrowing an inhaler, providing information on care).3 
Additionally, the model provides an interesting example for the co-evolution of social 
networks and infectious diseases as networking behavior depends on benefits from 
direct and indirect connections, while diseases are transmitted only between actors in 
direct connection.

We consider connections to be unweighted, undirected, and non-reflexive; presented 
by the adjacency matrix G = gij , with gij ∈ {0, 1} , gii = 0 , and gij = gji = 1 if a tie between 
actors i and j exists. The degree is the number of ties at distance 1 of an actor:

The distance 2 degree is defined by the sum of all indirect connections of an actor ( tij):

(3)Ui(G) = α · ni + β ·mi − c · ni,

(4)ni =
∑

j

gij .

(5)mi =
∑

j

tij , with

3 Note that friendship is merely an illustrative example. The NIDM describes general social network and infectious dis-
ease dynamics that can be tied to any context. That is, connections may form and dissolve over time based on health 
behavior. Thus, if someone gets sick, interactions may discontinue independent of their nature (e.g., going for lunch, 
having a business meeting, having sexual contact), but have the possibility to recover at a later point in time.
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We extend the CM by considering a generic infectious disease and health behavior 
driven by risk perception. The utility in the resulting Connections during Infectious Dis-
eases Model (CIDM) is therefore only affected when a disease is introduced into the net-
work. We define the vector of disease states for all actors:

with di = S if i is susceptible, di = I if i is infected, and di = R if i is recovered.
Consequently, the ties of an actor ( gij ) can be categorized by disease state. For dis-

tance 1, we define:

as the number of actors at distance 1 with disease state X, while for distance 2 that is:

In addition to the network structure ( G ), social benefits ( Bi ) of actor i depend now on 
the disease state of connected peers ( d ) :

where 0 ≤ κ ≤ 1 is a discount factor for the value of infected direct ( niI ) and 0 ≤ � ≤ 1 
is a discount factor for the value of infected indirect connections ( miI ). Thus, Eq. 10 cap-
tures that infected connections may not be able to provide support as usual. A similar 
approach is used for the costs of actor i to maintain social relations:

where µ ≥ 1 is a cost increase for infected direct connections ( niI ). Therefore, Eq.  11 
suggests that maintaining infected connections may result in higher efforts, for example 
due to nursing care.

(Potential) harm of infections for actor i ( Di ) is the product of probability to get 
infected ( pi ) and severity of the infection ( si ). Di depends on network structure ( G ), 
the disease state of all actors ( d ), and risk perceptions ( R):

In order to model the subjective nature of risk perceptions, we distinguish between two 
modifiers:

where rπ modifies the actual probability to get infected (see Eq.  14) and rσ modifies 
actual severity of the infection (see Eq. 16).

(6)tij =

{

1, if (G2)ij > 1 and gij = 0 and i �= j
0, otherwise.

(7)d ∈ {S, I ,R}N ,

(8)niX =
∑

j, dj=X

gij , where X = S, I , or R,

(9)miX =
∑

j, dj=X

tij , where X = S, I , or R.

(10)Bi(G,d) = α · (niS + κ · niI + niR)+ β · (miS + � ·miI +miR),

(11)Ci(G,d) = c · (niS + µ · niI + niR),

(12)Di(G,d,R) = pi(G,d,R) · si(d,R).

(13)R : rπ ∈ R, rσ ∈ R,
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The probability to get infected is divided into three different cases, depending on an 
actor’s own disease state:

In case an actor is in the recovered state ( di = R ) the probability to get infected is 0 
(immune). In case the actor is infected ( di = I ), the infection is present ( pi = 1 ). If an 
actor is susceptible ( di = S ), the probability to get infected depends on two factors. First, 
the actual probability to get infected:

where γ is the objective probability to get infected per single contact. Second, the risk 
perception factor for the probability to get infected ( 0 ≤ rπ ≤ 2 ). The power function 
accounts for the uncertainty of actors with regard to their own susceptibility. Note that 
we use 2− rπ as the exponent so that the interpretation of rπ is such that if rπ increases, 
actors subjectively estimate the risk of infection to be higher. Thus, rπ = 1 implies an 
accurate estimate, while rπ < 1 and rπ > 1 represent an underestimation and an overes-
timation of personal susceptibility, respectively.

Finally, disease severity ( si ) describes how strongly an actor is affected by the symp-
toms of the disease. Perceived severity of the disease is again dependent on an actor’s 
disease state ( d ) and risk perceptions ( R):

An actor in the recovered state ( di = R ) is immune and thus cannot be affected by the 
disease ( si = 0 ). Infected actors ( di = I ) experience the objective severity of the disease 
( si = σ , with σ > 1 ). For susceptible actors ( di = S ), however, the risk perception factor 
( 0 ≤ rσ ≤ 2 ) transforms actual severity into subjectively perceived risks of a disease.

Simulation
In the following, we illustrate the framework for agent-based CIDM simulations. First, 
we describe the simulation procedure. Parameter settings used to study model behavior 
are explained thereafter.

Simulation procedure

A single simulation consists of two stages, each composed of a number of time steps 
(iterations): (i) network initialization (150 time steps) and (ii) epidemic (200 time steps). 
The number of time steps is fixed to standardize subsequent analyses. It is also suffi-
ciently large to always attain pairwise stable networks [64] at the end of both stages, and 
disease-free networks at the end of the epidemic stage. Pairwise stability means that no 
agent either benefits from breaking an existing tie unilaterally and no pair of actors from 
creating a non-existing tie. Pairwise stability is tested at the end of each time step by 

(14)pi(G,d,R) =







πi(G,d)2−rπ , if di = S
1, if di = I
0, if di = R.

(15)πi(G,d) = 1− (1− γ )niI ,

(16)si(d,R) =







σ rσ , if di = S
σ , if di = I
0, if di = R.
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checking for all possible pairs of agents whether adding a non-existing tie or removing 
an existing tie increases utility.

In the first time steps of the epidemic stage a single randomly selected agent is infected 
with a communicable disease. By introducing the disease into a pairwise stable network 
we ensure that changes in network structure are solely based on health behavioral reac-
tions of the agents.

A single time step consists of two distinct, consecutive, and interdependent processes: 
(i) disease dynamics followed by (ii) social network dynamics. Disease dynamics define 
the transmission of infections between agents:

• Repeat until all agents have been processed:

• Randomly select an unprocessed agent i.
• If i is infected, compute whether agent recovers (passed time steps since infection 

≥ τ).
• If i is susceptible, compute whether i gets infected from infected direct connec-

tions (Eq. 15).

Social network dynamics define the formation and termination of ties between agents:

• Repeat until all agents have been processed:

• Randomly select an unprocessed agent i.
• i randomly retrieves a proportion φ of all other agents j in the network  

( φ · (N − 1)).
• Repeat until all retrieved agents have been processed:

• Randomly select (another) retrieved co-agent j.
• If i is connected to j:

• Terminate tie ij, if the utility for i without ij is larger than the current utility with 
ij.

• If i is not connected to j:
• Form tie ij, if utility for both i and j is larger with ij than current utility without 

ij.

Parameter settings

Table 1 shows an overview of admissible and used CIDM parameters. These parameters 
fall into two categories: (i) ego-centered utility parameters and (ii) network parameters. 
We decided on a minimal but expressive selection of parameter variations that allows to 
investigate the effects of each model component on overall behavior. That is, we varied 
only one parameter per term in the utility function (i.e., benefit of indirect ties for social 
benefits, cost increase for infected direct ties for social maintenance costs, disease sever-
ity as property of diseases and risk perception as property of agents for potential harm 
of infections), and selected settings that allow strong variations in dynamics. Further, we 
used a limited number of fixed values rather than randomized values for each simulation 
run. This allows to disentangle model behavior with regard to parameter settings and 
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stochastic processes of the simulations, and to exercise more control over the parameter 
combinations we believe to be of interest.

Utilities

In accordance with the literature on the CM, we consider relatively low net ben-
efits of direct connections and relatively high net benefits of connections at distance 
2 ( α − c < β ). That is because net benefits of direct connections that are higher than 
benefits of connections at distance 2(α − c > β ) inevitably result in fully connected net-
works. To distinguish settings in which indirect ties are valued relatively highly (e.g., 
professional networks providing access to resources), and settings in which indirect ties 
are valued relatively lowly (e.g., friendships likely to result in triadic closure), we com-
pare two parameter settings: β = 2 and β = 8 . To limit the change in benefits to a single 
varied parameter, we neglect changing benefits due to infections ( κ = 1.0 , � = 1.0).

To investigate overall lowered social value of direct relations ( Bi − Ci ), we vary costs 
for infected connections. One setting without increased costs ( µ = 1.0 ) and one with 
increased costs for infected ties ( µ = 1.5 ). This translates to situations in which infected 
individuals typically recover alone while staying independent and situations that require 
support from others, because infected individuals cannot master their everyday life 
alone (e.g., requiring somebody to get groceries). Costs to maintain connections is set 
to a constant value ( c = 9 ) to accomplish two things. First, we do not obtain fully con-
nected networks, because net benefits for direct connections ( 10− 9 = 1 ) are smaller 
than benefits of connections at distance 2 for both settings. Second, net benefits of direct 
and indirect connections combined vary greatly depending on benefit of connections at 
distance 2 ( β).

Table 1 Overview of CIDM parameters

Parameter Admissible Used

I. Utilities

 I.I. Social benefits ( Bi)

  Benefit of direct ties α ∈ R α = 10

  Discount of infected direct ties 0 ≤ κ ≤ 1 κ = 1.0

  Benefit of indirect ties β ∈ R β ∈ {2, 8}

  Discount of infected indirect ties 0 ≤ � ≤ 1 � = 1.0

 I.II. Social maintenance costs ( Ci)

  Costs to maintain direct ties c ∈ R c = 9

  Cost increase for infected direct ties µ ≥ 1 µ ∈ {1.0, 1.5}

 I.III. Potential harm of infections ( Di)

  Disease severity σ > 1 σ ∈ {2, 10, 50}

  Probability of getting infected per contact 0 ≤ γ ≤ 1 γ = 0.1

  Risk perception (disease severity) 0 ≤ rσ ≤ 2 rσ = rπ = r ∈ {0.5, 1.0, 1.5}

  Risk perception (probability of infection) 0 ≤ rπ ≤ 2

  Recovery time τ > 0 τ = 10

II. Network

 Network size N > 1 N ∈ {10, 15, 20, 25, 50}

 Initial network structure ι ∈ {empty, full} ι ∈ {empty, full}

 Proportion of ties to evaluate per time step 0 < φ ≤ 1 φ = 0.4
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Diseases in the current implementation of the CIDM are considered generic. Thus, they 
may range from mild ( σ = 2 ) through moderate ( σ = 10 ) to severe ( σ = 50 ). The prob-
ability to get infected per contact and time step is constant at γ = 0.1 . We assume that 
risk perceptions with regard to disease severity and susceptibility coincide ( rσ = rπ = r ). 
Further, we assume agents of the same population to perceive risks equally. This form of 
homogeneity applies more to social context and equal distribution of information rather 
than individual differences. Consequently, we compare three different types of popula-
tions with regard to risk perception. First, agents perceiving risk to be lower than actual 
risk (low risk; rπ = rσ = r = 0.5 ). Second, agents perceiving risk realistically (realistic risk; 
rπ = rσ = r = 1.0 ). Third, agents perceiving risk to be higher than actual risk (high risk; 
( rπ = rσ = r = 1.5 ). Infected agents in the CIDM require a fixed number of time steps to 
recover ( τ = 10 ). Simulation test runs showed that this combination of settings allows to 
prevent all agents to get infected or to disconnect from infectious others immediately after 
introduction of the disease into the network, and consequently to create strong variations 
of network and disease dynamics.

Network

We simulated populations of 10, 15, 20, 25, and 50 agents. Although larger populations are 
of empirical interest for disease dynamics, the CM typically describes social contexts of lim-
ited group size. Furthermore, pilot simulations have shown that results for larger network 
sizes do not differ qualitatively from networks with 50 agents, due to increasingly large 
degrees of agents in larger networks. Additionally, we differ between two starting condi-
tions with regard to network density: empty ( ι = empty, with gij = 0 for all ij) and fully con-
nected networks ( ι = full, with gij = 1 for all i  = j and gii = 0 ). This ensures that pairwise 
stability emerges from networks with different densities. Finally, we set the number of exist-
ing or potentially new ties an agent may evaluate per time step to 40% of the population 
( φ = 0.4 ). This is done to account for the idea that people do not always have full control 
over their social relations (a train conductor at work, parents picking up their children from 
daycare) and the possibility of disease transmissions from asymptomatic and thus unrecog-
nized infectious persons. Again, this holds true for every agent, thus referring to social con-
text (e.g., work environment) and leveling out individual differences within the population.

We systematically combined all previously defined parameter values, resulting in a total 
of 360 different parameter combinations. Further, we ran 100 simulations for each param-
eter combination, resulting in a total number of 36,000 simulation runs.

Software

The simulation was programmed using the Java 8 programming language and the Graph-
Stream 1.3 library [65] for graph handling. The complete code, including an executable 
program and an easy-to-use graphical user interface, is freely accessible under the GPLv3 
license [66].

Data and analysis
We log detailed network and disease information for each agent and time step of each 
simulation run. To understand how network dynamics shape the course of epidemics, we 
use regression analyses of simulation data [cf., 67, 68] with regard to: (i) the proportion 
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of recovered agents at the end of each simulation (final size of the epidemic, or short: 
final size) and (ii) the number of time steps until all once infected agents have recovered 
(duration of the epidemic or short: duration). To disentangle how much of our results are 
driven by parameter settings and how much is due to stochasticity of the simulation, we 
use two-level random-intercept regressions (level 2: 360 parameter combinations; level 
1: 100 simulation runs). Random elements in the simulation are: (i) agent who is initially 
infected; (ii) order of agents that change their disease states on network connections; 
(iii) which network connections are considered and in which order. Furthermore, we 
create four models, each based on the previous model: (i) Empty, (ii) CIDM effects, (iii) 
Network effects, and (iv) Interaction effects. The Empty model shows how much unex-
plained variance is due to stochasticity between and within the same parameter settings. 
It further allows to compare the reduction of unexplained variance when controlled for 
the varied CIDM model parameters (CIDM effects model). The Network effects model 
further controls for network measures (network density, degree of patient-0), while the 
Interaction effects model adds statistically significant interaction effects of all previously 
described main effects. Data points for regression analyses are single simulation runs.

According to Long [69], logit (and probit) models are most suitable when the depend-
ent variable is a proportion of a binary response. Final size corresponds to this require-
ment as it describes the proportion of agents that have been infected with the disease 
and those that have not. The statistical model estimates how the logit of final size can 
be approximated linearly by a combination of the parameters. Further, we use two-level 
random-intercept linear regression to analyze the model with regard to duration of the 
epidemic.

We consider linear relationships for all varied parameters, because they are either sim-
ulated with only two different values ( β , µ , ι ), or separate model parameters for more 
than two values ( σ , r) and manipulation of parameters ( Nx ) did neither improve model 
fit ( ℓ ) nor substantively reduced unexplained variance ( ρ ). Interactions are constructed 
using grand mean centering, while maximum likelihood is used to estimate parameters. 
To allow easier interpretation of model coefficients, we rescale disease severity ( σ50 ) and 
network size ( N50).

For visual inspection of the progression of epidemics we generate SIR model plots, a 
method commonly used to display the temporal development of compartments during 
epidemics. We plot only time steps relevant for the epidemics. That is, rather than show-
ing all simulated time steps, plots begin 10 time steps prior to the introduction of a dis-
ease (epidemic stage) and display 80 time steps in total. Next to showing the dynamics 
over all simulations, we also report the dynamics for networks in which agents change 
relations as a consequence of the introduction of a disease next to the dynamics for 
simulation runs in which this does not happen. Although we never actively turned off 
the option to change ties, there are quite some parameter constellations in which actors 
do not have a reason to change ties. A comparison between networks with and with-
out tie changes therefore allows a clearer picture of the effects of network dynamics on 
epidemics.

To relate the network and disease dynamics to some overall network characteristics, 
we compute several characteristics of networks at different moments during the simula-
tion. Density is computed as the proportion of all possible connections present in the 
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network [70 p. 101 ff.]. Clustering is calculated as the average proportion of closed triads 
over the number of all possible triads per agent [71]. Finally, closeness is computed by 
reversing the normalized average distance between any two nodes in the network; net-
work size (N) is imputed as distance for pairs of nodes that are not connected through 
any path in the network [72, p. 163]. For analyses we use R version 3.6.0 [73] with addi-
tional packages lme4 [74] for logit regressions, texreg [75] for export of results, and 
ggplot2 [76] for data visualization.

Results and discussion
Model behavior

Figure  1 shows a clear interaction between social network and infectious disease 
dynamics, especially when comparing simulation runs with network changes (row 2) to 
simulation runs without network changes (row 3). Column 1, for example, shows the 
progression of epidemics over time. While in both cases (rows 2 and 3), after the intro-
duction of the disease at time step 10, the proportion of infected agents increases and 
peaks at approximately time step 21 (orange line), the peak for simulation runs with net-
work changes is significantly lower. At the same time, average degree drops from about 6 
to below 5 ties per agent in row 2, while average degree remains stable in row 3. Consid-
ering that networks were pairwise stable before the initial infection, the average number 

Fig. 1 Disease dynamics in networks with and without network changes. Column 1 shows plots for the 
median proportional changes of agents according to disease states (yellow, orange, and blue lines), changes 
in median average network degree (gray lines), and interquartile ranges (shaded areas around median lines) 
over time. Column 2 shows the distribution of final size of epidemics. Column 3 shows the distribution of 
duration of epidemics. Row 1 contains the data of all simulation runs combined. Row 2 shows the data for 
simulation runs with network changes. Row 3 shows the data for simulations without network changes. The 
dashed orange line indicates the median of the respective distributions
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of 3.41 network changes per agent (sum of dissolution and creation of ties) is caused and 
mainly driven by the presence of infectious agents. Additionally, we observe that even 
more network changes were initiated by agents trying to connect to others (on average 
18.00 tie requests per agent). These tie requests, however, were accepted only in 9% of 
the cases. This is a vast difference to the network initialization stage prior to the epidem-
ics, where 40% tie requests were accepted from an average of 7.97 tie requests per agent.4 
Over time, infected agents recover, resulting in decreases in the infected compartment, 
increases in the recovered compartment, and a restoration of degree to the pre-epidemic 
state in row 2.

Furthermore, column 2 of Fig. 1 reveals a bimodal distribution of final size in simula-
tion runs with network changes (row 2). On the left a comparably small peak shows the 
simulation runs with only a single agent infected. On the right a large peak shows the 
simulation runs with all agents infected. It follows, that in most simulations the epidemic 
either died out immediately or spread across the entire network. This bimodal effect is 
the driving force behind the large width of interquartile ranges in row 2, especially for 
the final proportions of susceptible and recovered agents. In simulation runs without 
network changes (row 3), however, we observe virtually no variance in final size, as the 
vast majority has all agents infected at some point.

Considering the average duration of epidemics, we can observe a corresponding 
bimodal effect for simulation runs with network changes (column 3, row 2). The left 
peak shows the recovery time for a single infection. The right peak shows the average 
duration of epidemics for final sizes of close to 100% . Note that the left peak is more 
distinct for duration than final size, because one single infection requires exactly 10 time 
steps for recovery, while final size is a proportion depending on network size.

These data suggest that, on an individual level, agents succeed under certain condi-
tions to avoid potential harm of diseases by distancing themselves from infected con-
tacts during an epidemic. That is, agents cut ties in order to move into low-risk network 
positions, unless social benefits outweigh the potential harm of an infection. On the 
population level, cutting ties ultimately leads to smaller and shorter epidemics. In the 
following, we investigate which CIDM and network parameters drive the variances in 
these two epidemic measures.

CIDM parameters

Tables 2 and 3 show the effects of CIDM parameters on final size and duration of epi-
demics, respectively. The Empty regression model shows that in our following elabo-
rations we will be able to attribute 69% of the overall variance in final size and 31% of 
variance in duration (see intraclass correlation coefficients ρ ) to variation of parameters, 
while the remainders are caused by the stochastic elements of the simulation.

The CIDM effects regression model reveals that higher benefits of indirect connec-
tions ( β ) result in increases of final size and duration of epidemics. That is because 
higher social benefits may outweigh the potential harm of infections, and thus 
agents are more likely to stay connected. This causes more agents to get infected. 

4 For more detailed descriptive statistics, we refer to Table 5 in Appendix.
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Furthermore, the results of our model suggest that higher numbers of infected require 
more time for all agents to recover. Note that the longer duration is not an inevitable 
consequence of larger final sizes, as more intense epidemics may create many simul-
taneously infected agents without significant impact on duration.

Increasingly severe diseases, both objectively ( σ ) and subjectively perceived (r), and 
higher costs for infected direct ties ( µ ) create smaller final sizes and shorter dura-
tion of epidemics. That is because more severe diseases and higher costs for infected 
ties reduce the net benefit of a relationship to such a degree that potential costs of 
infections or existing costs exceed the social gains of the relation to an infected agent. 
Consequently, more agents disconnect from their partner, causing less agents to be 
infected, which in turn requires less time steps for the disease to disappear.

Finally, larger networks result in higher proportions of infected agents and longer 
lasting epidemics. The effect on duration is straightforward, as more consecutively 
infected agents require more time to recover. The effect on final size, however, is not 
intuitively comprehensible on its own. Thus, we consider the interplay with additional 
network properties in the following section.

Table 2 Two-level random-intercept logistic regression of final size of epidemics

Bold coefficients are significant at p < 0.001 , others are not significant ( p > 0.05 ), SEs in parentheses

Empty CIDM
effects

Network
effects

Interaction
effects

Fixed effects (observed effects)

 Intercept 2.27 (0.15) 2.29 (0.08) 2.29 (0.08) 2.59 (0.07)

Main effects

 I. CIDM parameters

  Benefit distance 2 ( β) 0.25 (0.02)  0.25 (0.02) 0.23 (0.02)

  Cost increase for infected ties ( µ) − 4.97 (0.30) − 5.00 (0.30) − 5.30 (0.21)

  Disease severity ( σ50) − 1.87 (0.17) − 1.87 (0.17) − 1.75 (0.11)

  Risk perception (r) − 2.74 (0.18) − 2.75 (0.18) − 3.16 (0.13)

  Network size ( N50)  5.56 (0.29) 4.66 (0.37) 6.23 (0.38)

 II. Network properties (start of epidemics)

  Density ( denstart) − 7.68 (1.00) − 7.33 (0.97)

  Degree of patient-0 ( deg0start) 3.86 (0.32) 6.46 (0.51)

Interaction effects

 Benefit distance 2 ( β ) × cost increase for infected ties 
( µ)

0.52 (0.06)

 Cost increase for infected ties ( µ ) × disease severity 
( σ50)

3.16 (0.44)

 Cost increase for infected ties ( µ ) × risk perception (r) 6.40 (0.49)

 Disease severity ( σ50 ) × risk perception (r) − 2.04 (0.27)

 Risk perception (r) × network density ( denstart) 9.44 (1.49)

 Network size ( N50 ) × degree of patient-0 ( deg0start) 13.80 (2.10)

Random effects (unobserved effects; Intercept)

 s2 7.33 1.44 1.41 0.47

 Log likelihood ( ℓ) − 12,079.15 − 11,814.47 − 11,734.67 − 11,581.32

 Intraclass correlation ( ρ) 0.69 0.31 0.30 0.13

 Observations 36000 36000 36000 36000

 Groups: parameter combinations 360 360 360 360
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Network properties

By adding network density and degree of the first infected agent at the time when the 
disease is introduced into the network, the Network effects regression model reveals 
larger final sizes of epidemics when: (i) network size increases, (ii) the network is less 
dense, or (iii) patient-0 has more ties. The positive effect of higher degrees for patient-0 
can be explained with statistical probabilities. That is, the more connections an infected 
agent has, the more likely the disease is being transmitted to other agents. The other two 
effects require a closer look.

Table 4 shows a negative relationship between network size and density. Hence, larger 
networks have a lower proportion of actual connections compared to potential connec-
tions. Network size, however, has a positive effect on average degree. In other words, 
when networks grow larger the overall number of connections increases while fewer 
potential connections are formed. Applying the previous argument of statistical prob-
abilities in context of average degree, we observe that a larger total number of connec-
tions increases the chance for a disease to spread. Thus, the effect of network size is 

Table 3 Two-level random-intercept linear regression of duration of epidemics

Bold coefficients are significant at p < 0.001 , others are not significant ( p > 0.05 ), SEs in parentheses

Empty CIDM
effects

Network
effects

Interaction
effects

Fixed effects (observed effects)

 Intercept 20.66 (0.20) 20.66 (0.17) 20.66 (0.16) 21.23 (0.19)

Main effects

 I. CIDM parameters

  Benefit distance 2 ( β) 0.36 (0.06) 0.36 (0.05) 0.36 (0.04)

  Cost increase for infected ties ( µ) − 3.40 (0.66) − 3.42 (0.63) − 3.42 (0.44)

  Disease severity ( σ50) − 1.82 (0.39) − 1.81 (0.38) − 1.81 (0.26)

  Risk perception (r) − 2.80 (0.41) − 2.81 (0.39) − 2.81 (0.27)

  Network size ( N50) 2.05 (0.59) − 3.20 (0.70) − 0.11 (1.15)

 II. Network properties (start of epidemics)

  Density ( denstart) − 26.87 (1.96) − 19.93 (3.20)

  Degree of patient-0 ( deg0start) 3.30 (0.62) 3.31 (0.62)

Interaction effects

 Benefit distance 2 ( β ) × cost increase for infected 
ties ( µ)

1.05 (0.15)

 Benefit distance 2 ( β ) × network size ( N50) − 1.06 (0.13)

 Cost increase for infected ties ( µ ) × density 
( denstart)

− 38.17 (5.00)

 Disease severity ( σ50 ) × risk perception (r) − 4.16 (0.64)

 Disease severity ( σ50 ) × network size ( N50) 6.48 (0.93)

 Risk perception (r) × network size ( N50) 8.20 (0.96)

 Network size ( N50 ) × network density ( denstart) 32.97 (9.35)

Random effects (unobserved effects)

 s2 13.66 9.58 8.63 3.96

 Log likelihood ( ℓ) − 113,544.27 − 113,481.97 − 113,388.50 − 113,274.74

 Intraclass correlation ( ρ) 0.31 0.24 0.22 0.11

Observations 36000 36000 36000 36000

Groups: parameter combinations 360 360 360 360
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related to the effect of average degree, which has a decisive impact on the final size of the 
epidemic.5

Figure  2 reveals that epidemics are larger for larger network sizes, despite similar 
behavioral reactions of the agents. Column 1, for example, shows that the reduction of 
average degree during the epidemics is similar for all network sizes (about 1 degree on 
average), while the overall average is at considerably different levels (3.632 for N = 10 , 
9.994 for N = 50 ). As a result, more connections remain in larger networks providing 
more potential transmission routes. Consequently, in large networks agents simply can-
not dissolve enough ties to distance themselves from the disease sufficiently resulting 
in almost all agents getting infected in every simulation run. A comparison of disease 
dynamics between simulation runs with and without network changes during epidem-
ics (Figs. 5 and 6 in Appendix) shows that the differences of final size and duration of 
epidemics between different network sizes is largely driven by agents cutting ties and not 
merely an effect of higher average degrees in larger networks.

Furthermore, we observe a negative effect of network size on the duration of 
epidemics when combined with density and degree of patient-0 (Network effects, 
Table 3). That is, epidemics last longer when: (i) network size decreases, (ii) the net-
work is less dense, or (iii) patient-0 has more ties. At first sight, these results may not 
seem plausible. In fact, networks with 10 agents have the lowest average duration of 
epidemics (18.406 time steps, see Table 4), while networks with 25 agents have the 
longest lasting epidemics on average (21.999 time steps). The largest simulated net-
works with 50 agents, however, show a decrease in average duration of epidemics 
(20.971 time steps). This non-linear effect for the duration of epidemics is explained 
by two opposing factors: first, the larger a network gets (assuming constant aver-
age degree) the more time is needed to infect the entire network. Second, the larger 
the network the larger the average degree (see Table 4). As discussed earlier, larger 
average degrees result in higher chances to spread a disease. Consequently, larger 
average degrees increase the likelihood for disease transmissions per time step and 
therefore facilitate faster disease spread than lower average degrees. Networks up to 
25 agents approximate the tipping point of these opposing effects: smaller networks 

Table 4 Mean density, average degree, final size, and duration of epidemics per network size

Network size Density Av. degree Final size Duration

10 0.404 (0.027) 3.632 (0.244) 56.987 (38.023) 18.406 (7.788)

15 0.338 (0.016) 4.736 (0.230) 66.636 (38.890) 20.434 (7.552)

20 0.299 (0.012) 5.688 (0.230) 73.880 (37.272) 21.481 (6.803)

25 0.273 (0.009) 6.545 (0.227) 80.395 (33.792) 21.999 (5.999)

50 0.204 (0.004) 9.994 (0.206) 95.855 (18.140) 20.971 (3.922)

5 Note that the effect of density should be interpreted in relation to the other network characteristics. One must realize 
that within the CM-model, density hardly varies given network size and as a result if we analyze data for one network 
size only and we do not control for the degree of patient-0, there is no effect of density. However, if we control for degree 
of patient-0 for a given network size, the negative effect can be interpreted as a compensation for the overestimation of 
the effect of patient-0 for the whole network. If we analyze data for different network sizes simultaneously, the density 
effect interferes with the effect of network size discussed above.
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are large enough to slow down disease spread stronger than average degree speeds it 
up.

Note that the relation between network size, network density, and average degree 
is an artifact of the CM. Although implications of degree scaling with network size 
become more unrealistic the larger the networks get, it illustrates that dynamics can 
significantly change with network size. Furthermore, it shows the importance of 
choosing appropriate network formation models for specific model cases.

Interaction effects

The Interaction effects regression models help to understand the interdependence 
between disease and network dynamics. They were selected exploratively based on 

Fig. 2 Disease and network dynamics by network size. Column 1 shows plots for the median proportional 
changes of agents according to disease states (yellow, orange, and blue lines), changes in median average 
network degree (gray lines), and interquartile ranges (shaded areas around median lines) over time. Column 
2 shows the distribution of final size of epidemics. Column 3 shows the distribution of duration of epidemics. 
Rows show data split by network size. The dashed orange line indicates the median of the respective 
distributions
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their effect on improvement of model fit ( ℓ ) and explained variance ( ρ ). As these 
effects are not all intuitive, we take a closer look at two representative interactions 
that affect both final size and duration of the epidemics: (i) benefit of connections at 
distance 2 ( β ) × cost increase for infected ties ( µ ), and (ii) disease severity ( σ50 ) × risk 
perception (r).

As discussed before, increased benefits at distance 2 ( β ) show positive effects, 
while cost increases for infected ties ( µ ) show negative effects on final size and dura-
tion of epidemics. This is shown again in Fig. 3. The bottom left plot shows that for 
parameter combinations with standard care costs and high social benefits for con-
nections at distance 2, epidemics are typically large ( Median = 100% ) with long dura-
tion ( Median = 22 time steps). Parameter combinations that differ from the bottom 
left in one parameter only (increased care costs for infected ties, bottom right; low 
social benefit, top left), show similar final sizes and average duration. Parameter com-
binations with both increased care costs for infected ties and low social benefits (top 
right), however, show significantly smaller final sizes ( Median = 40% ) and shorter 
duration of epidemics ( Median = 17 time steps).

The average degrees of the networks (gray lines) show that highly valued connec-
tions at distance 2 (bottom row) create low dissolution of ties independent of whether 
the sickness requires more care for an infected connection. In contrast, lower valued 
connections remain only intact when care for the sick requires no extra costs (top 
left). Consequently, parameter combinations with low social benefits and increased 
costs for infected ties (top right) cause many agents to disconnect and thus success-
fully distance themselves from the disease once it enters the network.

A similar picture is drawn for disease severity ( σ ) and risk perception (r), where both 
parameters show negative main effects on final size and duration of epidemics indi-
vidually. Again, these effects are stronger in combination than individually (Fig.  4). 

Fig. 3 Interaction of costs for infected ties and value of indirect connections. Interaction of increased 
costs for infected ties ( µ , columns) and value of indirect connections ( β , rows) on the median proportional 
changes of agents according to disease states (yellow, orange, and blue lines), changes in median average 
network degree (gray lines), and interquartile ranges (shaded areas around median lines) over time
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Parameter combinations with high-risk populations and varied disease severity (top 
row) show equal average final sizes ( Median = 100% ) and similar duration of epidem-
ics ( Median = [21, 22] time steps). The same applies for mild diseases and various risk 
perceptions (left column; final size: Median = 100% ; duration: Median = [21, 22] time 
steps). Parameter combinations with low-risk populations and highly severe diseases 
(bottom right), however, have the lowest final size ( Median = 30% ) and duration of epi-
demics ( Median = 15 time steps). Again, the decisive factor for these results is average 
network degree: agents disconnect more if they perceive risk to be high and diseases are 
severe (bottom right) compared to parameter combinations with agents perceiving risk 
to be low (top row) or mild diseases (left column) alone.

Both depicted interactions demonstrate another highly important effect: an underly-
ing two-way interaction between the social network and the disease. First, the higher the 
average degree the more serious the epidemic. Second, the more serious the (subjective) 
consequences of a disease (here: increased costs for infected ties or perceived severity) 
the stronger the behavioral reaction and thus the lower the average degree.

Further, Fig. 4 allows looking at the effect of more subtle changes of tie dissolution. 
Consider the effect of average degree on final size of the epidemic in parameter com-
binations with highly severe diseases and differing risk perceptions. First, populations 
with agents perceiving the risks realistically (center right), and second, populations with 
agents perceiving high risks of infections (bottom center). We see that small changes 
of average degree (from Median = 4.53 to Median = 4.13 ) create large differences in 

Fig. 4 Interaction of disease severity and risk perception. Interaction of disease severity ( σ , columns) and 
risk perception (r, rows) on the median proportional changes of agents according to disease states (yellow, 
orange, and blue lines), changes in median average network degree (gray lines), and interquartile ranges 
(shaded areas around median lines) over time
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final size (from Median = 95% to Median = 30% ), peak height (from Median = 55% to 
Median = 25% ), and duration of epidemics (from Median = 31 to Median = 25 ). This 
enables two important insights: first, epidemics are highly sensitive to social distancing 
in dynamic social networks. Second, even small changes on the individual level may have 
major consequences on the large scale.

Conclusion and implications
The role of social networks in the spread of infectious diseases has gained more atten-
tion in recent years. Networks are commonly considered static or network dynamics 
are modeled as random processes devoid of health behavioral foundations [see, 7, 15]. 
We know, however, that people deliberately seek to distance themselves from diseases in 
social networks [3, 8, 61], or are instructed to distance themselves from others at times 
of increased risk of infection [77–79].

To address this, we propose the Networking during Infectious Diseases Model (NIDM), 
a highly adaptable steppingstone model for the co-evolution of social networks and 
infectious diseases. This model combines theories of social network formation from 
sociology, infectious diseases from epidemiology, and individual health behavior from 
social psychology. We argue that networking behavior in the context of infectious dis-
eases is a trade-off between the social well-being a contact creates, the costs required to 
maintain a social tie, and the potential physical harm infectious contacts create. Further-
more, we created a specific model case of the NIDM based on the truncated version of 
the Connections Model [CM; 41, 64], a model typically describing social contexts of lim-
ited group size, including a multi-agent simulation in which agents deliberately distance 
themselves from infectious contacts in social networks whenever the potential harm of 
getting infected through a tie outweighs its social benefit.

Based on our simulations, we gain a number of theoretical insights: we find aver-
age degree as a major determinant for epidemic size and duration of epidemics. That 
is, larger numbers of connections provide more opportunities for disease spread, thus 
causing more agents to get infected and shorter epidemics. Furthermore, we see a highly 
interdependent process between the properties of agents, diseases, networks, and epi-
demics: the higher the (perceived) risks of a disease, the lower the net benefit of a tie, 
the stronger the social distancing, and consequently the lower the epidemic size. While 
these results align with our expectations, we gained more surprising insights thanks to 
our novel network approach. First, networks with benefits for social connections that 
induce many ties per agent, provide large numbers of potential transmission routes, and 
consequently allow the disease to travel faster. Second, higher costs of maintaining ties 
with infected others reduce final size of epidemics only when benefits of indirect ties are 
relatively low. Third, we find that small changes in social behavior have large effects on 
the epidemic, which may be decisive for whether the outbreak of a disease turns into an 
epidemic or not.

Our theoretical outcomes are in line with empirical observations and other model 
studies, inter alia, from Ahmed et al. [61] and Danon et al. [80]. The former is a review of 
empirical studies that showed reduction in the number of infections and lower epidemic 
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peaks due to workplace social distancing. The latter is an epidemic network model con-
sidering the social structure of populations suggesting that high average degrees result in 
increases of final size of epidemics. Similar to Poletti et al. [20], our results suggest that 
even small reductions in contact numbers can reduce epidemic impact. While in line 
with the results of Leung et al. [15] (strong stochastic rewiring creates small epidemic 
sizes, moderate stochastic rewiring creates large epidemic sizes), our model can provide 
a more explicit theoretical mechanism for their findings. More precisely, our model pro-
vides a tool to improve models of infectious diseases by adding network formation pro-
cesses based on theories from sociology and health psychology, rather than using purely 
stochastic rewiring processes or artificially lowering transmissibility [3, 7, 15]. Addition-
ally, our model has proven to be useful to reveal previously unknown and less intuitive 
mechanisms (e.g., higher costs of maintaining ties with infected others reduce final size 
of epidemics only when benefits of indirect ties are relatively low). Furthermore, we 
contribute to solving the issue that neglect of health behaviors may create mismatches 
between observed transmissibility of diseases and epidemic sizes of model predictions 
[7]. Although some of our theoretical insight could help to understand earlier empirical 
findings, the empirical validity of our new predictions needs tailored empirical testing in 
subsequent studies.

It is most important to stress that our general model, the NIDM is a highly adaptive 
steppingstone to capture the basic characteristics of the co-evolution of dynamic social 
networks and infectious disease dynamics, which allows many opportunities for exten-
sions and specifications in each part of the model. First, social utilities, and thus result-
ing network structures, can be modeled with regard to context (social, disease, cultural). 
HIV, for example, is typically modeled using sexual contact networks (benefits for direct 
contacts only) that allow great control over single contacts (large φ parameter). Further, 
social maintenance costs ( Ci ) can be extended with moral costs for infected individu-
als to infect others. Second, diseases can be defined according to their objective risks 
(lethality, stigma, financial), disease states, and treatments. As there is no cure yet for 
HIV, infected individuals do not recover but remain infected until death. Adoption of 
preventive behaviors (e.g., intake of PrEP) lowers or may even eliminate the probability 
of transmission. Third, subjective perception of health risks ( rπ , rσ ) can differ accord-
ing to the availability of information or risk perceptions, an effect utilized by awareness-
raising campaigns.

It is furthermore important to stress that any specific model case of the NIDM will 
come with limitations depending on the modeling choices made. While our current 
model case, for example, the Connections during Infectious Diseases Model (CIDM), 
provides an interesting interplay of social and infectious disease dynamics, the CM is 
designed and typically used to describe small networks. Our simulations suggest that 
the CM is not feasible for network sizes of 50 and above, as average degree grows with 
network size ultimately causing all agents to get infected. One approach to realize larger 
plausible social networks could be the extension of the CM with an explicit satura-
tion term for the number of social relations. Another approach is to design a different 
baseline utility to describe the utility of social relations for a specific context. Especially 
the choice of social contexts need to be considered carefully. In friendship networks, 
for example, we would expect to observe triadic closure, and thus increasing network 
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density and clustering, when indirect contacts are beneficial. Thus, professional net-
works, as studied by Ahmed et al. [61], seem more plausible as an application for the CM 
as baseline utility, as indirect contacts may provide benefit through access to rare infor-
mation unavailable through direct contacts, without the same likelihood for closing the 
triad. Further, while it seems plausible that agents assess health risk on local informa-
tion, the assumption that agents have complete knowledge about the contacts of poten-
tial new network partners is not quite realistic. Still, we think that in a realistic process 
of network formation, people investigate into relations before establishing certain ties. 
Our assumption can also be interpreted as a simplification of this process, assuming that 
people indeed are able to obtain this information if they want to establish a relation. 
Alternatively, one could investigate alternative assumptions, such as random creation of 
new ties followed by dissolution if the relation is not satisfactory. Furthermore, due to 
low value and variance of network clustering in the CIDM, we cannot make inferences 
on how networks with dynamic clusters affect the course of epidemics. Empirically, we 
know that social networks are typically highly clustered (a property that hardly emerged 
in our networks) while having small average path lengths (small worlds) and that these 
properties can facilitate disease spread [56, 71]. Furthermore, people differ in how they 
perceive risks and translate this into action. It follows, that an outbreak in a cluster of 
individuals perceiving risks to be high may prevent an epidemic, while a few low-risk 
individuals in a high-risk population may accelerate disease spread.

In conclusion, our theoretical insights suggest that modeling health behavior explicitly 
in network models of disease spread can help to gain a broader theoretical foundation 
and deeper insights into the co-evolutionary processes of dynamic social networks and 
infectious diseases. Furthermore, the steppingstone model we propose—the Networking 
during Infectious Diseases Model (NIDM)—has proven to be a valuable tool for such an 
undertaking.

Appendix
Figures 5 and 6 show the results of Fig. 2 divided between simulation runs with network 
changes and without network changes. A comparison of the two figures shows that epi-
demics in networks where ties are being cut (Fig. 5) have a significantly lower final size 
and mostly shorter duration across all network sizes. Furthermore, epidemics without 
network changes show hardly any variance in final size or duration (Fig. 6). Variance in 
epidemic measures is therefore not merely an effect of average degree in different net-
work sizes, but sensitive to network changes of agents trying to distance themselves 
from the disease. An integrated discussion of these results can be found in section Net-
work properties.

Table  5 shows descriptive statistics over the whole data for epidemics, network 
dynamics during and before epidemics, and network measures at the last time step 
before the first infection (pre-epidemic) and the first time step after the last infected 
agent has recovered (post-epidemic). It turns out that in a considerable portion of the 
simulation runs, agents do not see reasons to change their ties given their anticipated 
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benefits and costs of ties even though some of their neighbors are infected by the 
diseases. By comparing these simulations with the ones in which agents do indeed 
change ties to distance themselves from others (see I.II. and I.III. in Table  5), we 
observe that in the runs with network changes attack rate is on average 34.28% lower 
and duration is on average 2.83 time steps shorter. Furthermore, considering that net-
works were pairwise stable before the initial infection, the average number of 3.41 
network changes per agent (sum of dissolution and creation of ties) is caused and 
mainly driven by the presence of infectious agents. Additionally, it is shown that even 
more network changes were initiated by agents trying to connect to others (on aver-
age 18.00 tie requests per agent). These tie requests, however, were accepted only in 

Fig. 5 Disease dynamics by network size in network with network changes. Simulation runs with network 
changes: interplay of network and epidemic dynamics by comparison of median proportions of disease 
states and average degree over time (column 1), distribution of final size of the epidemic (column 2), and 
distribution of duration (column 3), divided by network size. The dashed orange line indicates the median of 
the respective distributions
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9% of the cases. This is a vast difference to the network initialization stage prior to the 
epidemics, where 40% tie requests were accepted from an average of 7.97 tie requests 
per agent. Despite the many changes in network ties, the overall network measures—
with regard to degree at distance 1 and 2, and summary statistics of the density, clus-
tering, and closeness—are the same before and after the epidemics.

Tables 6 and 7 show the Interaction effects models of Tables 2 and 3 divided by net-
work size. The relatively large effect of degree of patient-0 ( deg0start ) in the model for 
networks of size 50 in Table  6 (and the accompanying significance reduction of the 
other parameters) suggests that final size of epidemics in large networks is mostly 

Fig. 6 Disease dynamics by network size in network with network changes. Simulation runs without network 
changes: interplay of network and epidemic dynamics by comparison of median proportions of disease 
states and average degree over time (column 1), distribution of final size of the epidemic (column 2), and 
distribution of duration (column 3), divided by network size. The dashed orange line indicates the median of 
the respective distributions
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driven by average degree. The reversal of many main effects between small and large 
networks for duration (Table 7) shows that in larger and thus denser networks provide 
more potential transmission routes, ultimately allowing the disease to travel faster. 
Furthermore, most interaction effects vanish in the N = 50 model. Thus, network size 
drives the entire epidemic dynamics in large networks, while other parameters only 
have an effect in smaller networks. Regression models of epidemic duration split by 
network size (Table 6) show that many main effects reverse between small and large 
networks. Consider, for example, benefits at distance 2 ( β ). In the models for net-
works with N < 50 the effect is positive, while in models for networks with N = 50 
the effect is negative. That is, in large networks increased benefits create even more 

Table 5 Descriptive statistics of network dynamics, epidemics, and network measures

Mean SD Min Max Skew

I. Epidemics

 I.I. All simulation runs (36,000)

  Final size 74.75 36.54 2.00 100.00 −1.00

  Duration 20.66 6.68 10 60 0.30

 I.II. Simulation runs with network changes (23,930)

  Final size 63.26 39.34 2.00 100.00 −0.40

  Duration 19.71 7.34 10 59 0.43

 I.III. Simulation runs without network changes (12,070)

  Final size 97.54 11.57 4.00 100.00 −6.49

  Duration 22.54 4.58 10 60 1.10

II. Network dynamics

 II.I. During epidemic

  Av. no. ties broken/agent 1.80 2.61 0.00 22.86 2.46

  Av. no. ties created/agent 1.81 2.61 0.00 22.80 2.46

  Av. no. tie requests/agent 18.95 25.27 0.00 231.82 2.37

  % tie requests accepted 0.09 0.03 0.01 1.00 6.21

 II.II. Pre-epidemic

  Av. no. tie requests/agent 7.15 6.48 0.00 34.94 1.59

  % tie requests accepted 0.41 0.18 0.07 1.00 0.59

III. Network measures

 III.I. Pre-epidemic

  Degree 6.12 2.18 3.00 10.80 0.77

  Distance 2 degree 16.88 11.78 4.00 39.68 1.08

  Density 0.30 0.07 0.19 0.56 0.17

  Clustering 0.01 0.01 0.00 0.27 4.65

  Closeness 0.96 0.02 0.93 0.98 −0.31

 III.I. Post-epidemic

  Degree 6.09 2.11 3.00 10.92 0.75

  Distance 2 degree 16.91 11.86 4.00 40.12 1.08

  Density 0.30 0.07 0.18 0.56 0.24

  Clustering 0.01 0.01 0.00 0.27 4.62

  Closeness 0.96 0.02 0.93 0.98 −0.31
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Table 6 Comparison of two-level random-intercept logistic regression models for final size of the 
epidemic by network size

*** p < 0.001, **p < 0.01, *p < 0.05, SEs in parentheses

Combined N=10 N=15 N=20 N=25 N=50

Fixed effects (observed effects)

Intercept 2.59*** (0.07) 0.05 (0.04) 1.46*** (0.11) 2.40*** (0.16) 3.17*** (0.19) 4.75*** (0.27)

Main effects

   I. CIDM parameters

  Benefit 
distance 
2 ( β)

0.23*** (0.02) 0.23*** (0.01) 0.25*** (0.03) 0.27*** (0.04) 0.26*** (0.04) 0.20*** (0.04)

  Cost increase 
for 
infected 
ties ( µ)

− 5.30*** 
(0.21)

− 4.89*** 
(0.17)

− 5.85*** 
(0.42)

− 6.71*** 
(0.62)

− 6.53*** 
(0.76)

− 4.44*** (0.94)

  Disease 
severity 
( σ50)

− 1.75*** 
(0.11)

− 1.86*** 
(0.10)

− 1.91*** 
(0.23)

− 2.50*** 
(0.30)

− 2.11*** 
(0.31)

− 1.59*** (0.35)

  Risk percep-
tion (r)

− 3.16*** 
(0.13)

− 2.51*** 
(0.11)

− 3.16*** 
(0.26)

− 3.76*** 
(0.36)

− 4.28*** 
(0.43)

− 3.57*** (0.51)

  Network size 
( N50)

6.22*** (0.40)

 II. Network properties (start of epidemics)

  Density 
( denstart)

− 7.35*** 
(0.98)

− 4.16** 
(1.27)

− 11.91*** 
(2.36)

− 10.00** 
(3.44)

− 13.64** 
(5.24)

− 5.72 (20.02)

  Degree of 
patient-0 
( deg0start)

6.46*** (0.54) 2.73*** (0.45) 5.79*** (0.67) 2.88*** (0.82) 6.40*** (1.07) 17.29*** (3.33)

Interaction effects

 β x µ 0.52*** (0.06) 0.46*** (0.05) 0.48*** (0.13) 0.54*** (0.16) 0.50** (0.16) 0.30 (0.16)

 µ x σ50 3.16*** (0.44) 1.74*** (0.40) 3.80*** (0.92) 4.70*** (1.18) 3.99** (1.21) 2.39* (1.17)

 µ x r 6.41*** (0.49) 4.33*** (0.42) 7.60*** (1.04) 8.34*** (1.44) 9.60*** (1.71) 7.24*** (1.91)

 σ50 x r − 2.04*** 
(0.27)

− 3.14*** 
(0.27)

− 1.93*** 
(0.57)

− 1.65* (0.69) − 1.88** (0.73) − 0.74 (0.71)

 r x denstart 9.39*** (1.52) − 5.29 (3.03) 13.86* (5.38) 21.26* (8.43) 23.66 (13.10) 32.70 (37.99)

 N50 x deg0start 13.79*** 
(2.30)

Random effects (unobserved effects)

 s2 0.47 0.02 0.44 0.57 0.52 0.25

  Log likeli-
hood ( ℓ)

− 11,581.31 − 3092.16 − 2717.52 − 2507.48 − 2277.77 − 926.14

 Intraclass cor-
relation ( ρ)

0.125 0.007 0.118 0.149 0.136 0.072

 Observations 36,000 7200 7200 7200 7200 7200

 Groups: 
parameter 
combina-
tions

360 72 72 72 72 72
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Table 7 Comparison of two-level random-intercept linear regression models for duration of 
epidemics by network size

*** p < 0.001, **p < 0.01, *p < 0.05, SEs in parentheses

Combined N=10 N=15 N=20 N=25 N=50

Fixed effects (observed effects)

 Intercept 21.23*** (0.19) 18.41*** (0.29) 20.43*** (0.23) 21.48*** (0.18) 22.00*** 
(0.16)

20.97*** (0.08)

Main effects

 I. CIDM parameters

  Benefit 
distance 
2 ( β)

0.36*** (0.04) 0.59*** (0.10) 0.71*** (0.08) 0.45*** (0.06) 0.19*** (0.05) − 0.16*** (0.03)

  Cost increase 
for 
infected 
ties ( µ)

− 3.42*** 
(0.44)

− 10.68*** 
(1.15)

− 6.26*** 
(0.94)

− 2.83*** 
(0.73)

0.11 (0.65) 2.58*** (0.31)

  Disease 
severity 
( σ50)

− 1.81*** 
(0.26)

− 3.64*** 
(0.68)

− 3.08*** 
(0.56)

− 2.42*** 
(0.44)

− 1.38*** 
(0.39)

1.50*** (0.19)

  Risk percep-
tion (r)

− 2.81*** 
(0.27)

− 5.06*** 
(0.70)

− 4.35*** 
(0.57)

− 3.62*** 
(0.45)

− 2.46*** 
(0.40)

1.45*** (0.19)

  Network size 
( N50)

− 0.11 (1.15)

 II. Network properties (start of epidemics)

  Density 
( denstart)

− 19.93*** 
(3.20)

− 22.55*** 
(2.81)

− 33.53*** 
(4.87)

− 25.41*** 
(6.60)

− 18.31* 
(8.19)

− 41.03*** 
(11.45)

  Degree of 
patient-0 
( deg0start)

3.31*** (0.62) 2.24* (0.98) 7.35*** (1.38) 1.71 (1.66) 2.57 (1.88) − 1.67 (2.11)

Interaction effects

 β x µ 1.05*** (0.15) 1.71*** (0.38) 2.01*** (0.31) 1.45*** (0.24) 0.56** (0.22) − 0.47*** (0.10)

 β x N − 1.06*** 
(0.13)

 µ x denstart − 38.17*** 
(5.00)

2.64 (10.54) − 1.11 (18.65) 30.21 (25.49) 31.33 (31.70) − 27.52 (45.03)

 σ50 x r − 4.16*** 
(0.64)

− 6.74*** 
(1.67)

− 6.84*** 
(1.37)

− 6.38*** 
(1.07)

− 3.98*** 
(0.95)

3.12*** (0.45)

 σ50 x N 6.48*** (0.93)

 r x N 8.20*** (0.96)

 N50 x denstart 32.97*** (9.35)

Random effects (unobserved effects)

 s2 3.96 5.59 3.57 2.05 1.60 0.30

 Log likeli-
hood ( ℓ)

− 113,274.74 − 23,109.20 − 23,355.84 − 23,203.31 − 22,761.55 − 19,558.51

 Intraclass cor-
relation ( ρ)

0.114 0.138 0.087 0.054 0.048 0.022

 Observations 36,000 7200 7200 7200 7200 7200

 Groups: 
parameter 
combina-
tions

360 72 72 72 72 72
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ties per agent, ultimately providing large numbers of potential transmission routes, 
and thus allowing the disease to travel faster.
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