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Introduction
Network science is a field that studies a wide range of properties and phenomena on 
complex networks [1]. Applications are on social networks, biomedical networks, tech-
nical networks and many other fields. Some practical examples of research questions are 
studying more realistic community detection methods, investigating processes on net-
works, and defining different quantitative measures for comparing and ranking network 
structures.
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We present methods for analysing hierarchical and overlapping community structure 
and spreading phenomena on complex networks. Different models can be devel-
oped for describing static connectivity or dynamical processes on a network topol-
ogy. In this study, classical network connectivity and influence spreading models are 
used as examples for network models. Analysis of results is based on a probability 
matrix describing interactions between all pairs of nodes in the network. One popu-
lar research area has been detecting communities and their structure in complex 
networks. The community detection method of this study is based on optimising a 
quality function calculated from the probability matrix. The same method is proposed 
for detecting underlying groups of nodes that are building blocks of different sub-
communities in the network structure. We present different quantitative measures 
for comparing and ranking solutions of the community detection algorithm. These 
measures describe properties of sub-communities: strength of a community, prob-
ability of formation and robustness of composition. The main contribution of this study 
is proposing a common methodology for analysing network structure and dynamics 
on complex networks. We illustrate the community detection methods with two small 
network topologies. In the case of network spreading models, time development of 
spreading in the network can be studied. Two different temporal spreading distribu-
tions demonstrate the methods with three real-world social networks of different sizes. 
The Poisson distribution describes a random response time and the e-mail forwarding 
distribution describes a process of receiving and forwarding messages.
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This study proposes an algorithm for detection of communities and their sub-struc-
tures in networks. The proposed algorithm is based on optimisation of a quality function 
whose input is a matrix that captures the strength of ‘interaction’ between each pair of 
nodes in the network. The nature of the interaction can vary depending on the applica-
tion and the model that is used to describe the network. This study focuses on two such 
models: the influence spreading model and the network connection model. In the case of 
the influence spreading model, the matrix that is used in the quality function is the influ-
ence spreading matrix whose elements capture the influence of nodes on one another 
at an equilibrium state (i.e. at an infinite time horizon). In the case of the network con-
nection model, the network connectivity matrix is used which captures the reliability of 
connection between each pair of nodes in the network. This approach differs from other 
community detection algorithms in the literature that use the adjacency matrix to detect 
communities. The study also numerically implements the proposed algorithm for two 
network structures: the Les Misérables network and Zachary’s karate club. As another 
exercise, in the context of the influence spreading model, we assume that the network is 
not necessarily at an equilibrium state (i.e. time is finite), and show how one can repeat 
the analysis for any finite time. We also provide methods that can help us check robust-
ness and strength of the communities detected by this proposed algorithm.

Properties and characteristics of a network can be analysed with several network met-
rics. An example of an important class of network measures is that of centrality meas-
ures. There are a variety of mathematical measures of centrality that focus on different 
concepts and definitions of what it means to be important or central in the network. The 
generalised centrality measure proposed in this study is a form of node influence metrics 
that rank or quantify the influence of nodes.

Conventional methods of detecting communities are not directly based on a particular 
network measure. Because centrality and community structure are related concepts, a 
reasonable conclusion is that community detection algorithms and definitions of cen-
trality should be based on a common methodology. The same argument can be stated 
for community detection algorithms used in time-dependent models. We propose one 
underlying methodology for studying network characteristics, community structure and 
temporal spreading on complex networks. The methodology of this study uses a prob-
ability matrix or an influence spreading matrix as a common basis for analysing commu-
nity structure and defining network measures.

In section ‘Centrality measures’, we introduce basic properties of conventional cen-
trality measures in order to provide background information for comparison with the 
definitions proposed in section ‘Influence spreading model’. In section ‘Community 
detection methods’, we provide a short introduction to community detection methods 
in the literature, especially those that use the adjacency matrix of a network. The com-
munity detection method proposed in this study analyses the network structure more 
deeply than conventional methods aiming at uncovering the building blocks of poten-
tial communities and sub-communities. We demonstrate the method with a static and a 
dynamic network model in order to compare the community structures of the two mod-
els and also to validate the community detection method itself.

After section ‘Related literature’ the body of the text is divided into four main parts. 
The idea and general methodology of this study are explained in section ‘General 
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methodology’. After that, we present the detailed methods and models in sections ‘Influ-
ence spreading model’, ‘Community detection method in the context of the influence 
spreading model’ and ‘Community detection in the context of the network connection 
model’. Applications with examples of modelling static network structure are present in 
section ‘Application of the community detection model’. Finally, the method of model-
ling spreading on network structure is described and demonstrated with two example 
temporal distributions in section ‘Temporal spreading on networks in the influence 
spreading model’. The contributions and applications are further discussed in section 
‘Conclusions’.

Related literature
Concepts of network science have been presented comprehensively in books written by 
Albet-László Barabási [1] and M.E.J. Newman [2]. Before we continue with related lit-
erature, we refer to some basic concepts. A network can be defined as a graph in which 
nodes and links have attributes. Networks are characterised as complex when nodes are 
connected with non-trivial topological features. In [3] a complex network is defined as a 
network that is substantially distinct from a regular network or uniformly random net-
work. In a regular network, if one knows the degree of one node, all the other degrees 
will also be revealed. Degree is the number of edges that are incident to the node [1]. 
Example network structures used in this study are complex in line with the definition in 
[3]. However, the models in this study can also be applied to simple networks, such as 
lattices or random networks.

Standard centrality and betweenness measures are introduced in the next section 
together with some comments on some less commonly used centrality measures related 
to the definitions of centrality proposed in this study. Brief general introductions to com-
munity detection methods, processes on networks and the standard network connection 
model are provided in sections ‘Community detection methods’, ‘Processes on complex 
networks’ and ‘Network connection model’.

Centrality measures

Nodes in a network can have different roles as central influencers, mediators or periph-
eral nodes. Centrality quantifies how important nodes are in the networked system. 
Degree is the simplest closeness centrality measure. Degree centrality of a node is 
defined as the number of nodes connected to it. It is a local measure and does not take 
into account the node’s position in the network. Closeness centrality of a node measures 
how central or influential the node is with respect to other nodes. Betweenness central-
ity measures the role of a node as a proxy between other nodes and measures the abil-
ity to mediate influence in the network. Closeness and betweenness centrality measures 
have many variants and they depend on the research question of a particular applica-
tion [4]. In-centrality and out-centrality can be defined both for directed and undirected 
networks.

Standard closeness centrality is based on the inverse sum of the shortest distances to 
the other nodes of the network. Standard betweenness centrality of a node is based on 
counting how often it falls on connecting paths between pairs of nodes. Nodes having 
high betweenness centrality values can control the flow of information. In addition to 



Page 4 of 38Kuikka ﻿Comput Soc Netw            (2021) 8:13 

the standard measures, many other definitions have been proposed in the literature [4]. 
Some of them are related to the centrality and betweenness measures proposed in sec-
tion ‘Influence spreading model’ of this study. One of the centrality measures is the Katz 
centrality measure [5]. The Katz centrality measure generalises the degree centrality and 
the closeness centrality by taking into account not only the immediate neighbours or not 
only the shortest paths from a node to other nodes. The Katz centrality for a node i is 
defined as

The power of adjacency matrix A accounts for the number of paths of length k between 
every pair of nodes in a network of N  nodes. A decay parameter α < 1 is introduced to 
weight the contributions of nodes at increasing path lengths.

Eigenvector centrality is a measure that depends recursively on the centralities of 
node’s neighbours. Katz centrality, hubs and authorities centrality and PageRank are 
variants of eigenvector centrality. The basic eigenvector centrality measure is used only 
for undirected networks whereas the three variants are also appropriate for directed net-
works. Hubs and authorities centrality assigns to each node two different measures both 
for sending and receiving influence. For undirected networks this definition coincides 
with the basic eigenvector centrality and the distinction between hubs and authorities 
disappears. [4]

Community detection methods

Community detection is one of the most important applications of modelling complex 
networks. One problem with various approaches is the lack of a commonly accepted def-
inition of a community. On the other hand, one definition for all possible purposes may 
not be possible because of different empirical data available and requirements in appli-
cations. A more realistic approach would be first to categorise and define more general 
concepts of complex networks, such as types of networks, processes, function rules and 
interactions. In many cases, the concept of a community is not defined exactly, instead 
the used method and algorithm define the concept implicitly. Mathematical methods 
and algorithms for detecting communities in complex network topologies have been 
reviewed and presented in [6–9].

Modularity maximisation, classical graph partitioning, spectral graph partitioning and 
several information-theoretic methods are examples in the wide context of community 
detection methods [1, 2]. The classical graph partitioning is the problem of dividing the 
nodes of a network into a given number of non-overlapping groups of given sizes such 
that the number of links between groups is minimised. Modularity measures the robust-
ness of division of a network into modules. One definition of a community is a locally 
dense connected sub-graph in a network [1]. Modularity has been defined as the fraction 
of links falling within the given groups minus the expected fraction if links were dis-
tributed at random. To compute the numerical value of modularity, each link is cut into 
two halves, called stubs. The expected number of links is computed by rewiring stubs 
randomly with any other stub in the network, except itself, but allowing self-loops when 
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a stub is rewired to another stub from the same node. Mathematically, modularity can be 
expressed as

In Eq. (1) v and w are nodes in the network, 2m is the number of stubs in the network, 
kv is the node degree of node v , Avw = 1 means that there is a link between nodes v and 
w , and Avw = 0 means that there is no link between the two nodes. Matrix A is called the 
adjacency matrix. Membership variable sv indicates if node v belongs to a community: 
sv = 1 if node v belongs to community 1, and sv = −1 if node v belongs to community 2. 
[2]

Equation (1) holds for partitioning into two modules but it can be generalised for par-
titioning into a desired number of modules. In matrix terms Eq. (1) is

where Bvw = Avw −
kvkw
2m  is called the modularity matrix. The equation for M is similar 

in form to an expression used in spectral partitioning of graphs for the cut size of a net-
work in terms of the graph Laplacian. This similarity can be used for deriving a spectral 
algorithm for community detection. The eigenvector corresponding to the largest eigen-
value of the modularity matrix assigns nodes to communities according to the signs of 
the vector elements. [2]

The Louvain algorithm [10] and Infomap [11] are two fast algorithms for community 
detection that have been briefly described in [1]. These algorithms have gained popular-
ity because of their suitability for identifying communities in very large networks. Both 
algorithms optimise a quality function. For the Louvain algorithm the quality function 
is modularity and for Infomap it is an entropy-based measure. In the Louvain algorithm 
modularity is optimised by local changes of the modularity measure and communities 
are obtained by aggregating the modules to build larger communities. Infomap com-
presses the information about a random walker exploring the graph. [1]

Stochastic blockmodels have been used as a method for detecting community struc-
ture in networks and also for generating synthetic benchmark networks [12]. Many com-
munity detection methods discover also hierarchical and overlapping sub-communities 
in complex networks [13]. In a recent study [14] an information-theoretic method has 
been presented for discovering groups (building blocks) of network nodes that are usu-
ally found together in the same community.

Processes on complex networks

In a dynamical system, the state of the system changes over time according to some 
given rules [15]. Dynamical processes on complex networks have growing inter-
est because of their wide scope of applications. Epidemic spreading in populations 
[16], influence spreading in social networks [17] and the flow of traffic on roads are 
important practical applications [15]. In some specific applications, it is not clear 
which kind of models best describe the system, or whether both static and dynamic 
behaviour can coexist in the same system [18]. Standard approaches to studying 
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dynamical processes on networks rely on simulations because analytical mathemati-
cal expressions are not available or they are very complicated. However, remarkable 
research has been conducted in percolation theory where analytical solutions exist 
for some network topologies. These methods are not directly applicable for model-
ling the detailed topology of empirical networks. [2]

By definition, processes on networks have a time-dependency. Two examples of 
processes on networks are spreading on network structure and changing network 
topology [19]. Spreading processes start from a node or a set of nodes in the network 
and propagate between nodes via links in the network structure. Also, the network 
topology may change during the spreading process. Changes in network structure 
and changes in link and node attribute values are common in many applications. 
For example, virus spreading in computer networks or in human social networks, 
is slowed down with virus protection software or vaccination programmes in the 
human population.

Spreading processes on networks cover a variety of situations because processes 
can depend on states of other nodes or links in the network. For example, virus 
spreading may not be possible or it is only partial in case nodes are immunised as 
a result of previous contamination [16]. Another example is when information or 
rumours are spread more actively when heard for the first time compared to later 
versions of the same information. In social systems, many overlapping processes are 
simultaneously influencing our beliefs and opinions [20].

Network connection model

The classical network connection model is designed for describing reliability of commu-
nication networks [22]. If the reliability values between all neighbouring pairs of nodes 
in the network are known, reliability values between any pairs of nodes in the network 
can be computed. Here, reliability is identified with the probability of a functioning con-
nection. From the general reliability theory [22] the reliability of a network V  is

where S is a set of links where the network is connected and O is the set of all connected 
states of the network. Links are denoted by e and the probability of a functioning link is 
denoted by pe . If all the probabilities pe are equal,

where Hs is the sum of indicator functions where s is the number of broken links. The 
above equations are polynomials of the order of the number of links NL in the network. 
In this form, the equations describe the reliability of an entire network. In our case, we 
apply the results for pairs of nodes by only taking the relevant terms in the summations 
(see section ‘Community detection in the context of the network connection model’ for 
more details).
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General methodology
Here, we present the general methodology and example network models used in this 
study. We introduce the idea of using different network models for describing the net-
work structure. The problem of detecting communities and sub-communities is solved 
with a community detection algorithm based on searching local maxima of an objec-
tive function (see Eq. (8)). The objective function is calculated from a probability matrix 
or an influence spreading matrix that describe interactions between node pairs in the 
network. Different network models can be used with the community detection method 
proposed in [21].

Different network models and community detection methods

Community detection methods have been developed in order to understand the forma-
tion of groups in social networks or for categorising sub-systems in technological and 
biological networks. We present two examples of network models: a network connec-
tion model [22] and an influence spreading model [21]. In both cases, we use the same 
community detection algorithm. In these two examples, interactions between nodes are 
described as spreading probabilities or probabilities of functioning connections. Tech-
nically, interactions between pairs of nodes in the network are expressed in a N × N

-dimensional probability matrix where N  is the number of nodes in the network. The 
probability matrix contains computed values for all pairs of nodes in the network, not 
just for neighbouring nodes.

Figure 1 illustrates the general idea of the methodology. In the following, we use the 
symbol ′IS′ for influence spreading, ′NC′ for network connectivity and ′CD′ for com-
munity detection. Here, we use the symbol CIS for the probability matrix in the con-
text of influence spreading and PNC for the probability matrix in the context of 
network connectivity. The community detection method (CD) is similar in the con-
text of influence spreading ( IS − CIS − CD ) and in the context of network connectiv-
ity ( NC − PNC − CD ). The matrix CIS or the matrix PNC mediates information to the 
community detection model. In section ‘Community detection method in the context of 
the influence spreading model’ we present the community detection method proposed 
in [21], although variants that use similar input information in the form of a probability 
matrix are also possible. One alternative method has been presented in [27]. The method 
of calculating the values of a network connectivity matrix [22] is presented in section 
‘Community detection in the context of the network connection model’.

Example network models

We use two network models to demonstrate the community detection method: the 
classical network connection model [22] and the influence spreading model proposed 
in [21, 26, 27]. The influence spreading model and the network connection model have 
been designed for different application areas. The primary use of the influence spreading 
model is for behaviour and opinion spreading and the connection model is commonly 
used for modelling communication networks.

The two network models have different application areas, definitions and param-
eterisations. However, for the two example network topologies, the most important 
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communities and their sub-communities are close to each other. More differences 
appear in weaker communities and their sub-structure. The fact that the same com-
munity detection algorithm (see Eq. (8)) provides reasonable results for different net-
work models suggests that the method is generally useful for community detection in 
various applications. On the other hand, detailed features of the community detec-
tion method are important because sub-structures are also discovered. The commu-
nity detection method is not limited to particular network characteristics: directed, 
weighted, time-dependent and layered networks can be analysed.

Temporal spreading is only possible, by definition, in network spreading models. 
This is the reason why we present the method for modelling temporal distributions 
for the influence spreading model and not for the network connection model. More 
detailed descriptions are provided in section ‘Influence spreading model’ and in [21]. 
The network connection model is included in this study mostly for comparison pur-
poses and more details of the model can be found in textbooks or research articles 
[22].

The network connection model describes connectivity between pairs of nodes in the 
network. This is calculated by considering all possible paths between the source node 
and the target node. We use the same parameter value for describing a functioning 
link between all two neighbouring nodes and utilise Eq. (2). Low weighting factors are 
used in social networks for describing probabilities of social influence [27]. Although 

Fig. 1  General procedure for using different network models and community detection models. Information 
from network models are mediated with a probability matrix describing influence or connectivity between all 
node pairs in the network
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we apply the network model designed for physical communication network model-
ling, we use low values for link weights as in the modelling of influence spreading.

Influence spreading model

Influence spreading models are designed for describing complex social interactions in 
social network structure [16, 28]. These interactions propagate via connections, or paths, 
between people. We assume that information content can change and ways of social 
influence are developing during the spreading process. We allow repeated attempts of 
influence from a source node to target nodes via all alternative paths.

Other features of the model are: weighted links and nodes, directed links, and the pos-
sibility of using different forms of temporal survival distributions as a function of the 
number of links between a source node and a target node. All the parameters have real-
world interpretations. Link and node weights are interpreted as spreading probabilities 
of forwarding influence between neighbouring nodes and over a node, respectively. 
Spreading probabilities between all pairs of nodes in a structured network can be calcu-
lated from node and link weighting values and the temporal survival distribution func-
tion. [21]

The influence spreading model used in this study has been presented previously in [21, 
26, 27]. The model has analytical expressions for influence spreading probabilities via 
different paths from a source node to target nodes in the network topology. In this ver-
sion of the model, the rate of spreading is assumed to be independent of the state of 
the network and its elements. To avoid double counting effects, common paths at their 
beginning from one source node to a target node are taken into account by applying 
probability theory. In other respects, different paths are assumed to be independent. As 
a result, in case paths join or cross later, the spreading process is not affected.

An important property of a process is the possibility of loops. If recurrent visits on 
a node are allowed, one node can be visited several times during the process. In this 
study, we assume that loops are allowed, but no self-loops. Social influence and spread-
ing of beliefs can be modelled with these kinds of processes. In the process of spreading 
information and news, loops are less probable. In the algorithm, it is also possible to set 
the maximum number of visits V = 1, . . . , L, where L is of the maximum path length of 
computing. Limiting visits may be computationally costly.

The mathematical model considers all paths between all node pairs of a network. From 
this information, we construct the influence spreading matrix, or the probability matrix, 
that describes influence spreading from source nodes to all other nodes in the network. 
Because of the complex structure of networks, the influence spreading probability from 
node A to node B is not equal to the probability from node B to node A . This means 
that node A can have more influence on node B than node B on node A or vice versa. 
As a consequence, in most real cases, the influence spreading matrix is not symmetric. 
One consequence of this is that peripheral nodes that are locally densely connected can 
have a considerable effect on other parts of the network. Influence spreading accumu-
lates momentum locally at early phases of the process and later starts a more intensive 
spreading. [21]

Here, we give an idea of how the model can be programmed with a computing lan-
guage. A more detailed pseudo-algorithm has been presented in [21]. The algorithm 
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goes through all paths from a source node to a target node. For every path, the probabil-
ity of spreading is computed by multiplying all the link and node weights along the path. 
We denote this factor by WL where L is the path length (number of links along the path). 
The interpretation of the link weight is the probability of spreading influence via the link 
and the interpretation of the node weight is the probability of spreading influence over 
the node. The maximum length of processing paths in computations can be limited by a 
parameter. Good values of the parameter can be estimated by monitoring the accuracy 
of calculations and computing times as a function of L in WL.

In spreading processes, we have to consider also the temporal distribution of spread-
ing as a function of the path length. We denote the probability of temporal spreading 
at least via L links as a function of time T  by SL(T ) . Mathematically, the probability is 
the survival function SL(T ) = 1− FL(T ) , where FL(T ) is the distribution function of the 
temporal spreading probability. However, in this section, we consider only equilibrium 
states for time T  approaching infinity. We describe how the model is applied with finite 
time T < ∞ in section ‘A numerical example of calculating time-dependent values of the 
influence spreading matrix’. The model predicts that in equilibrium states the spreading 
process does not reach all nodes with probability one, if link weights are not all equal 
to one along the paths between all node pairs in the network. Finally, in a network, the 
spreading has reached all nodes with a probability determined by link and node weights 
alone. We have for every L the limiting value of the survival function

We write an iterative formula for calculating spreading probabilities between nodes in 
the network. We consider paths between two nodes in the network: a source node and 
a target node. Paths from source node s to target node t are combined iteratively in the 
descending order of common path lengths at the beginning of their paths:

The path length Li,2 in iteration i is Li,2 = Li,max(Li,1,Li−1,2) and the common path length 
of Li,1 and Li−1,2 is denoted by Li,3 . The number of different paths from the source node to 
the target node is denoted by NL . The iteration starts with two paths with P1,L1,1 = WL1,1 
and P0,L0,2 = WL0,2 having the longest common path length L1,3 . If there are more than 
two paths with the same common path length, these paths can be processed in any order. 
In later steps of the iteration, combined paths are processed in the same way as the origi-
nal paths of the network. A numerical example in [21] illustrates the algorithm in prac-
tice. The probability of influence spreading between the two nodes is the final result of 
the algorithm after all the paths have been processed. Denoting the source node by s and 
the target node by t the spreading probability from node s to node t is given by

In the last step of the iteration, the length of the last combined path is LNL−1,2 . Matrix 
elements Cs,t describe probabilities of influence between each pair of nodes in the net-
work. We coin the name ‘influence spreading matrix’ for matrix C.

lim
T→∞

SL(T ) = 1.

(3)Pi,Li,2 = Pi,Li,1 + Pi−1,Li−1,2 −
Pi,Li,1Pi−1,Li−1,2

WLi,3

, i = 1, . . . ,NL − 1.

(4)Cs,t = Pi,1,Li,2 , i = NL − 1.
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Un-normalised out-centrality and in-centrality measures for nodes s and t can be 
defined as

Normalised versions of these centrality measures can be obtained by dividing the 
expressions by N  or N − 1 depending on whether the diagonal elements of influence 
matrix C are set to one or zero. The corresponding betweenness centrality measure for 
node n can be defined as

where 

and Bn is calculated similarly to C with node n removed from the network

Later in this study Eq. (5) is used as the definition for the node centrality, and Eq. (7) 
is used as the definition for the betweenness centrality. The quality function of Eq. (8) is 
based on both aspects of centrality in Eqs. (5) and (6).

Community detection method in the context of the influence spreading model
In this section, we present the community detection method in the context of the influ-
ence spreading model (ISMCD) [21]. We take an approach, where instead of perform-
ing community detection based on the adjacency matrix of a graph, an influence matrix 
is first constructed that contains information about a social influence process over the 
paths of a graph [21]. An element Cvw of the influence spreading matrix C accounts for 
interactions over all the paths from source node v to target node w . In order to study 
local interactions in the network, a maximum path length can be set in the algorithm. 
In addition, we take into account that interactions in communities can mean different 
things depending on the processes that are supposed to operate on a network. This is 
demonstrated by substituting the social influence matrix with the network connectivity 
matrix known from the classical communication theory [22].

The method is based on searching local maxima of a community influence measure 
computed from the probability matrix elements Cs,t , s, t = 1, . . . ,N  . Our basic model 
has the following form for the community influence measure:

(5)Cs
(out) =

N
∑

t=1

Cs,t ,

(6)Ct
(in) =

N
∑

s=1

Cs,t .

(7)bn =
C − Bn

C
,

C =

N
∑

s,t=1

Cs,t,

Bn =

N
∑

s, t = 1
n /∈ V

Cs,t .
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In Eq.  (8) the first summation is over the pairs of nodes in a subset V  of nodes in 
network G . The second summation is over the pairs of nodes in the remaining parti-
tion of the network denoted by (G − V ) . Cross terms are ignored in this version of the 
model because they describe interactions between the two partitions of the division 
and are not directly involved in the internal cohesion of the partitions (sub-communi-
ties). The method detects many kinds of structures in topological complex networks: 
non-overlapping, overlapping and hierarchical community structure. As a special 
case, communities consisting of two or more distinct sub-communities that have no 
direct contact can be discovered.

The method assumes that the network is divided into two communities. However, 
the model provides many solutions for the local maxima of Eq. (8). Communities with 
high rankings according to the value of P in Eq. (8) are candidates for the split of the 
original community in real-life. Note that this may not be the most probable solution 
to the community formation process. Later, in sections ‘Application to the Zachary’s 
karate club social network’ and ‘Application to the Les Misérables network’ we pre-
sent results for two community measures: the strength P in Eq.  (8) of the split into 
two communities and a statistical measure describing the probability of community 
formation. In addition, a third measure for the robustness of a composition of sub-
communities is proposed.

In the community detection algorithm, a sum of rows and columns of matrix C is 
used as the quality function. Rows and columns are included in the sum that cor-
responds to node pairs in the community, and node pairs not in the community. This 
measure is different from the modularity M of Eq. (1). Typically, a node has a higher 
influence on neighbouring nodes compared to nodes that are far away in the network 
topology. Influence is also increasing with the number of alternative paths between 
nodes. Most community detection methods consider only the local influence amongst 
nodes in network structure. More accurate results can be obtained when longer path 
lengths are included in the model and calculations. In order to balance between the 
increasing number of alternative paths and the distance between a source node and a 
target node, weighting factors are used to describe probabilities of influence via links 
between two neighbouring nodes in the network. In static connection models the 
probability of functioning connection plays the role of interaction. Weighting factors 
for links or nodes, or both, together with the network topology are the main input 
data for network models.

Identifying communities of nodes has proven to be challenging due to issues with 
evaluation and the lack of a reliable gold-standard ground-truth [23]. In [23] a set of 
230 social, collaboration and information networks was studied in which the notion 
of ground-truth communities were defined by nodes explicitly stating their group 
memberships. Empirical data of spontaneous splits of social networks into partitions 
are scarce. Real-world social networks can split into two partitions [24, 25] and later 
more sub-communities may build up. This kind of community formation is a special 
case of the basic model: if the original network is first divided into A and B , and later 

(8)P =
∑

s,t∈V

Cs,t +
∑

s,t∈(G−V )

Cs,t .
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B is divided into B1 and B2 , usually divisions (A ∪ B1) ∪ B2 and (A ∪ B2) ∪ B1 are also 
local maxima of Eq.  (8). To be precise, interactions between nodes in one sub-com-
munity include also interactions mediated via paths through other communities. In 
the model, these paths are included whenever both the source node and the target 
node are inside one community.

Next, we define the robustness measure of communities and sub-communities. Ana-
lysing robustness is a method to find nodes who most easily change sides in a division. 
Robustness for a node belonging to a community is defined as the change of community 
measure of Eq. (8) when the node is moved from its own partition to the second parti-
tion of the division. Because of the change in the sum of Eq. (8) is always non-positive, 
we define the robustness measure as the negative value of change in Eq. (8). Robustness 
Pn of node n is given in Eq. (9) using the same notations as in Eq. (8):

Later in this study, we will compare the numerical values of different community 
measures (see ‘Applications of the community detection model’). Strength in Eq. (8) and 
robustness in Eq. (9) are closely related quantities. However, rankings of the community 
measures can be different due to the complex structure of networks.

Community detection in the context of the network connection model
In this section, we discuss community detection in the context of the network con-
nection model. It is based on the connectivity of node pairs [22] in the network struc-
ture. Equation (2) describes average connectivity in a network with equal probabilities 
of functioning links. In order to construct a matrix similar to the influence spread-
ing matrix 

(

Cs,t

)

, s, t = 1, . . . ,N  of Eq.  (4), we calculate the probability of connectivity 
between all node pairs in the network. Link weights pe are used as input parameters in 
Eqs. (1) and (2). Link weights are interpreted as probabilities of functioning connections 
of directed links between two neighbouring nodes in the network structure.

In the following examples, we assume that links have equal weights and they do 
not depend on the direction. We denote the probability of a functioning link as p . In 
order to demonstrate the connectivity matrix, we extract a sub-structure of 12 nodes 
{1, 2, 3, 4, 8, 9, 14, 20, 31, 32, 33, 34} from the Zachary’s karate club social network in 
Fig. 3. Later in this study, we use the same sub-structure as an example when we dem-
onstrate the time-dependence of the influence spreading model in section ‘A numeri-
cal example of calculating time-dependent values of the influence spreading matrix’. We 
have developed a computer program for computing polynomials from Eq. (2). For exam-
ple, the polynomials describing connectivity between nodes 1 and 33 as a function of p 
is

We give only the five leading terms and three last terms of the polynomial. If we take 
only path lengths Lmax ≤ 2 , the polynomial is p1,33 = 3p2 − 3p4 + p6 . The polynomial 
is calculated by taking the relevant terms in Eq. (2). The explanation for the first term is 

(9)
Pn =

∑

s, t ∈ V
n /∈ V

Cs,t +
∑

s, t ∈ (G − V )

n /∈ V

Cs,t − P.

p1,33 = 3p2 + 12p3 + p4 − 51p5 − 132p6 + · · · − 3709p22 + 846p23 − 80p24.
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that there are three possible paths {1− 3− 33} , {1− 9− 33} and {1− 32− 33} with path 
length L = 2 and no paths with path length L = 1 . The subsequent terms in the formula 
of p1,33 are calculated from the probabilistic formula of Eq. (2). The polynomial for p1,33 
can be expressed as a function f = 1− p as

The corresponding formula for path lengths Lmax ≤ 2 is p1,33 = 8f 3 − 12f 4 + 6f 5 − f 6 . 
Either of the two forms of p1,33 can be used for calculating the probability matrix of the 
network. The first term in the formula for p1,2 shows that there is one link between 
nodes 1 and 2:

In this case, the matrix is symmetric. We can set the diagonal terms ps,s = 1 but the 
numerical value has no effect on the detected community structures although it changes 
the numerical values of Eq.  (8) and Eq.  (9). The community detection method is simi-
lar in the contexts of the influence spreading model and the network connection model. 
The only difference is in using different input information, i.e. the influence spreading 
matrix is replaced by the probability matrix explained in this section. In the following 
section, we present the application of the community detection method in the context 
of the influence spreading model. For comparison, applying the community detection 
method in the context of the network connection model is presented with the Zachary’s 
karate club social network.

Application of the community detection model
We use two small networks to illustrate the application of the network connection model 
and the influence spreading model. We compare the results of the community detection 
method presented in section ‘Community detection method’. Figure 2 shows the general 
arrangement of our investigations. Two network topologies demonstrate the methods: 
the Zachary’s karate club social network [24] and the Les Misérables network [14]. The 

p1,33 = f 5 + 2f 6 + 5f 7 + 20f 8 + 2f 9 − 58f 10 − · · · + 6330f 22 − 1074f 23 + 80f 24.

p1,2 = p+ p2 + 4p3 − 3p4 + · · · − 3596p22 + 77923 − 71p24.

Fig. 2  Two network models and a community detection model based on maximising the value of the 
objective function in Eq. (8) are used to demonstrate the methodology
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Zachary’s karate club social network has been used as an example network in several 
studies in the literature. The Les Misérables network is chosen as an example because 
a research article investigating building blocks of communities and sub-communities 
in the Les Misérables network has been published recently in [14]. The set of building 
blocks discovered in [14] can be compared with the corresponding results of the model 
proposed in this study. Both example networks have a complex structure from where 
a set of sub-communities can be detected thus making it possible to compare different 
models. A third example of an animal social network of 62 bottlenose dolphins [25] has 
been analysed in [27]. Examples of larger networks, where the model of this study have 
been used, are in section ‘Temporal spreading of networks’ and in [21].

The main focus of this study is in the methodology and this is why simple social net-
works, the Zachary’s karate club and the Les Misérables networks are used to demon-
strate the method. In addition, we show detailed results provided by the model in order 
to demonstrate the granularity and different aspects of the model. However, these results 
are not analysed in detail because such low-level empirical information is not available. 
Usually, the model predicts the strongest communities accurately, but weaker structures 
are more sensitive to network models and parameter values.

Applications include discussion about sensitivity to model parameter values, quan-
titative measures for ranking communities according to their strength, probability of 
formation and robustness of composition. A new method is proposed for discovering 
underlying groups of nodes (building blocks) that are usually found together in commu-
nity structures. The main conclusions are presented in the last section.

Application to the Zachary’s karate club social network

W.W. Zachary observed 34 members of a karate club over a period of 2 years [24]. Dur-
ing the study, a disagreement developed between the administrator of the club and the 
club’s instructor. The instructor started a new club, taking 16 members of the original 
club with him. The karate club social network is pictured in Fig. 3 where line 1 indicates 
the two partitions after the split of the club with the exception of node 9 who joined the 
other club. The instructor is node 1 and the administrator is node 34.

Community structure

Zachary’s karate club is a social network where we assume that low link weights describe 
the probability of social influence. In addition, only one community, where all nodes of 
the network are in one community, is detected with high parameter values. This is not an 
interesting case in our study. Connectivity and influence spreading probabilities describe 
different phenomena but they can have some common interpretation in social networks. 
The two models with the link weight value of 0.05 predict similar rankings for the seven 
strongest divisions. The link value of 0.05 describes weak social influence and provides a 
reasonable number of sub-communities. No empirical data or direct observations exist 
for the link weight values. However, the model predictions calculated with the value of 
0.05 [27] for the Zachary’s karate club [24] and bottlenose dolphins’ [25] social networks 
agree well with the observations. In a more comprehensive analysis calculations should 
be performed with a range of parameter values. The compositions of the seven divisions 



Page 16 of 38Kuikka ﻿Comput Soc Netw            (2021) 8:13 

are listed in Table  1. Table  1 gives both partitions of the divisions, but sometimes we 
show only the partition with fewer nodes in order to simplify notations. 

Figure  4 shows the hierarchical structure of the 14 communities in Fig.  3 and in 
Table 1. Note that each split has two partitions. Ten different four-level structures are 
detected in the network under communities id2_29, id3_24 and id5_24. These can be 
verified as, for example, community id1_18: {9− 10, 15− 16, 19, 21, 23− 34} and com-
munity id6_19: {5− 7, 9− 11, 15− 17, 19, 21, 23− 24, 27− 28, 30− 31, 33− 34} are 
sub-communities of community id2_29: {1− 4, 8− 10, 12− 16, 18− 34} . Two more 
levels exist below community id1_18 and community id6_19. Colours in Table 1 and 
in Figs. 3, 4 indicate the two partitions for every seven divisions.

Fig. 3  Zachary’s karate club network with divisions indicating detected communities. Divisions 1–7 
correspond to lines in Tables 1–3. The additional division 9 is detected in a sensitivity test where link weights 
have a small random component (see Fig. 8). Sensitivity measures uncertainty in the output of the model in 
the presence of uncertainty in the link weight values

Table 1  The connectivity and influence spreading models with weights 0.05 predict the same 
rankings for the seven divisions in Fig.  3. Compositions of the split into two partitions and the 
number of nodes in each partition are shown
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Next, we present results of the Zachary’s karate club network from the two network 
models. In Table 2, columns ‘A0.05′ and ‘A0.1′ are from the network connection model 
and the other five columns are from the influence spreading model. Nine different solu-
tions for communities are detected. These are lines 1–9 in Tables 2 and 3 (lines 1–7 cor-
respond to id1–id7 in Table 1 and Figs. 3, 4). 

The numerical values of the community influence measure of Eq. (8) from the two net-
work models for the nine detected divisions are shown in the left part of Table 2. The 
corresponding values of statistical community measures are shown in the middle part of 
the table. The statistical values are probabilities to split into the two communities. These 
results are simulated by starting from random initial configurations. The second divi-
sion in line 2 has the highest community measure of Eq. (8) for ‘A0.05′ for the network 
connection model and four influence spreading model calculations with different model 
parameters.

Table 3 shows the nodes included in the communities. For example, the second line 
indicates that nodes {5, 6, 7, 11 and 17} and {1, 2, 3, 4, 8, 9, 10, 12, ..., 16, 18, . . . , 34} are 
members of the two detected communities. The format of Table 3 is visually useful for 
small networks, but for larger networks the format of Table 1 is more practical. The 
last two columns show that the numbers of nodes in the communities are 29 and 5. 

Fig. 4  Hierarchical structure of karate club sub-communities. Seven divisions id1, . . . , id7 detected by 
the community detection algorithm are indicated by colours (compositions of the 14 communities and 
sub-communities are listed in Table 1)
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Note, that the computer runs ‘A0.1′ and ‘P0.1′ have not found the second community, 
as can be seen also in Table 3 with the second and the fourth zero in ‘1010111’.

Fewer communities are found with higher link weights and it is even possible that 
the strongest community calculated with lower link weights is not found or a new 
combination of nodes emerges. Comparing lines 1 and 9 in Table 3 reveals that the 
only difference is node 3 moving to the larger partition. This configuration is the 
only one detected with the higher weight value of wL = 0.1 in the influence spreading 
model.

Three columns in Table  2 show calculations from the influence spreading model 
with three different parameters: ‘PT0.1′ with the time of spreading T = 0.1 , ‘L0.1′ 
with the limited path length L = 1 (wL = 0.1) , and ‘VL0.05′ with the limited number 
of visits V = 1 (wL = 0.05) on a node during the influence spreading. These results 
agree with the basic calculations of ‘A0.05′ and ‘P0.05′. These results may be different 
in other more complex network topologies or network configurations.

The measure of robustness, as defined in Eq.  (9), provides a method to find nodes 
who most easily change sides of a division. The strength of divisions and probabilities 
of division from a random initial state are presented in Table 2. In the right part of 
Table  2 robustness values have been shown for the seven computer runs and nine 
divisions of the karate club network. In this case, strength in the left part of Table 2 
has the same ranking of divisions 1 – 9 as robustness. As strength and robustness are 
closely related quantities, this kind of results can be expected. However, rankings of 
the three different community measures can be different due to the complex structure 
of networks. Robustness of communities is further discussed in section ‘Robustness 
of community structure’.

Figure 5 shows the closeness centrality values of Eq. (5) from the influence spread-
ing model for the 34 nodes of the karate club network. Bars in the figure are for the 
link weights 0.05 and 0.1. In general, closeness centrality values are higher for higher 

Table 3  Nodes in communities corresponding to lines in Table  2. For example, line 2 means that 
the five nodes (N1 = 5) 5, 6, 7, 11, and 17 are members of the partition indicated with ‘0’s and the 
remaining 29 nodes (N2 = 29) are members of the other partition. In the next column ‘1,010,111’ 
indicates that the division in line 2 is found in computer runs ‘A0.05’, ‘P0.05’, ‘PT0.1’, ‘L0.1’, and ‘VL0.05’. 
The last two columns show the number of nodes in the two partitions of the network. Three sub-
communities (building blocks) are indicated with the orange, purple and blue colours to visualise 
patterns in this tabular presentation. Note that nodes 14 and 20 (in bold) are not members of their 
typical sub-community in line 8 (division 8 found only in the network connection model in run 
‘A0.1′)
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link weights but some nodes gain some relative advantage, for example, nodes 1, 2, 
3, 4, 8, 9, 14, 20, 24 and 28–34. These nodes are in central positions (not peripheral) 
in Fig.  3. Consequently, higher link weight values can strengthen communities in 
central positions of networks. Degree is a measure of interactions between a node’s 
closest neighbours. For example, nodes 9, 14 and 20 have low degrees but relatively 
high closeness centrality values. In the network of Fig. 3, these nodes are in central 
positions. In addition, their betweenness values of Eq.  (7) with link weights 0.1 are 
relatively high. Betweenness curve with link weights 0.05 is not included in the figure 
because it behaves similarly to the degree curve.

Robustness of community structure

Next, we investigate the robustness of communities and sub-communities in the Zach-
ary’s karate club network. Table 4 shows one example where strength and robustness are 
not in the same order for the three divisions found in 100 runs with random uniform 
link weight distribution.

The case of P0.1 from Table  2 has been selected for more detailed analysis because 
only one division is found with the link weight value of 0.1 in the influence spread-
ing model. The only difference between divisions 1 and 9 in Table 2 is node 3 (line 9 of 
Table 3 and line 2 of Table 4). Node 3 in division 1 has moved to the second partition 
when higher link weights are used. In other words, the second partition has more attrac-
tion towards node 3. Sensitivity analysis of 100 computer runs with random uniform link 
weight distribution shows that division 1 with nodes {1− 8, 11− 14, 17− 18, 20, 22} on 
line 1 in Table 1 also appears in 52 runs. Two weaker divisions in Table 4 are found in 28 
and 22 runs.

Figure 6 shows the average robustness values for the link weight value of 0.1 (P0.1) and 
the results of the sensitivity analysis of 100 computer runs (P0.1 U(0.1, 0.01) ). Robustness 

Fig. 5  Closeness centrality values of Eq. (5) for the 34 karate club members for the influence spreading 
model with link weights 0.05 and 0.1 are shown with bars. Betweenness centrality values of Eq. (7) for the 
influence spreading model are shown for link weights 0.1. Node degree values divided by 4 are shown for 
comparison

Table 4  Three divisions found in 100 computer runs of P0.1 with random uniform distribution 
U(0.1, 0.01) link weights. The last column shows the number of runs where the divisions are found

Nodes (first partition of the division) Strength Statistics Robustness Count

1–8,11–14,17–18,20,22 28.99 9.00 37.61 52

1–2,4–8,11–14,17–18,20,22 28.81 9.07 37.70 28

9–10,15–16,19,21,23–24,27–28,30–31,33–34 27.27 0.24 31.38 22
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values for nodes are un-weighted average values over all divisions where the node is a 
member. In addition, the results for the network connection model with probability val-
ues 0.1 and the influence spreading model with link weight values 0.05 are shown. Note 
that the results are presented for nodes of the network and not for divisions.

Robustness is primarily a measure for studying a node’s commitment to its com-
munities, but it can be calculated for an individual node as average over all its sub-
communities as in Fig. 6. The results in Fig. 6 can be analysed for every node of the 
network, but some observations can be made easily. Nodes 1, 33 and 34 are the most 
robust nodes and also nodes 2, 4, 24 and 30 are robust members of their communi-
ties. Differences between the network models and parameter values can be analysed 
node by node. For example, nodes 33 and 34 are relatively more robust members of 
their community in the influence spreading model than in the connection model. 
Both network models give similar results for the robustness of node 1. Comparing the 
results of the influence spreading model with link weights 0.05 (P0.05) and 0.1 (P0.1) 
show similar behaviour. However, it is not so clear from the sensitivity analysis of ran-
dom link weights in Fig. 6. This is one indication that the sensitivity analysis is useful 
before detailed conclusions can be made.

Nodes 3, 10 and 20 are examples of loosely bound nodes of their communities thus 
having low robustness values. These nodes appear in several communities and they 
jump more easily from one community to another when changing model parameter 
values or network models. Node 3 is one example of this behaviour as discussed ear-
lier. Nodes with low robustness values have high betweenness values if they are in 
gateway-like positions. This is true for node 3 as can be seen from Fig. 5, but it is not 
true for node 10, for example. Betweenness and robustness are two different concepts 
although they are related and correlated in usual network topologies.

Figure  7 goes even deeper in investigating the robustness of communities and their 
structure. Robustness for selected nodes in the karate club network is shown in Fig. 7 
for the seven divisions of Table 2. We study the same case of P0.05 as before. Interesting 
conclusions can be made about nodes that have high betweenness and low robustness 
values such as nodes 3 and 9. Node 9 is the one who joined the second partition includ-
ing node 1. From Fig. 7 we can see that crossing any borders of divisions 1, 4 and 7 are 
easy for node 9. It would have been even easier for node 3 to change side because cross-
ing the border of division 1 has a low influence on the strength of the division.

Fig. 6  Robustness values of the 34 karate club members for the influence spreading model with link weights 
0.05 (P0.05) and 0.1 (P0.1). Robustness values for the network connection model with probability 0.1 of a 
functioning link (A0.1). For comparison, P0.1 is computed also for uniformly distributed random link weights 
U(0.1, 0.01)
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Results of a sensitivity analysis of 100 computer runs for the influence spreading 
model with uniformly distributed random link weights between 0.04 and 0.06 are shown 
in Fig. 8. Altogether 17 divisions are detected and they are listed in the table. Strength, 
statistics and robustness measures are shown as bars and the number of runs where 
the divisions are found is shown as dots. Statistical and robustness measures are low 
for divisions 6 and 7. The interpretation is that the probability of formation is low and 
also their robustness is weak. These two measures are correlated, but Fig. 8 illustrates 
that some divisions can have a low probability of formation but a high robustness value. 
Division 9 is a good example of a robust division. This composition is uncovered by the 
sensitivity analysis and we have added this division in Fig. 3 with a dotted line. This is the 
same split as division 1 with one exception of node 3. This finding is in good agreement 
with our previous discussion about node 3. Note that division 9 is detected with higher 
link weights 0.1 in Table 2 as the only optimal solution of Eq. (8).

Application to the Les Misérables network

Les Misérables is a French novel by Victor Hugo published in 1862. The social network 
of fictitious characters in the novel has been studied widely in community detection 
literature. Recently, the Les Misérables network has been used to study the consist-
ency of optimal community structure and the idea that sub-communities correspond 

Fig. 7  Robustness values of selected members of the karate club network for P0.05 in Fig. 6. Values are 
shown for the seven strongest divisions

Fig. 8  Results of a sensitivity analysis from 100 computer runs of the karate club network. The influence 
spreading model is used with random uniformly distributed U(0.05, 0.01) link weights. The figure illustrates 
the values of strength, statistical measure, robustness measure and the number of runs where the 17 
divisions in the table are detected
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to arrangements of a set of underlying building blocks [14]. An information-theoretic 
method was used to discover building blocks from the social network of Les Miséra-
bles. Those results can be compared with the findings of this study.

Fig. 9.  11 strong divisions of the Les Misérables network. Borders of the divisions show building blocks of 
community structure

Fig. 10  Building blocks of the Les Misérables network discovered in [14]
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Community structure

The Les Misérables social network consists of 77 nodes illustrated in Figs. 9 and 10. Fig-
ure 9 shows 11 highly ranked divisions from the 201 divisions found in 100 computer 
runs. The influence spreading model was used with uniformly distributed random link 
weights between [0.04, 0.06]. The ranking of the 11 divisions is the same for the strength 
of divisions and for the probability of formation and very close to the ranking of robust-
ness measure. Figure  12 shows the values of the community measures for 50 highly 
ranked divisions where the 11 divisions of Fig. 9 are the first 11 values.

We propose a new method for discovering building blocks from a network by using 
borders between divisions provided by a community detection method. Figure 10 shows 
the corresponding results in [14]. Building blocks discovered in this study are very sim-
ilar. One difference is that the building block of seven nodes {40, 50, 52, . . . , 56} is not 
detected in [14]. In Fig. 9, this group of nodes is separated by several boundaries and 
it can be regarded as a building block. There are other minor differences, for example, 
nodes {29, 34, 46} are not grouped with nodes {11, 14, 15, 16, 33} in our model. Central 
nodes like 12, 28, 49 and 56 are also members of sub-communities in Fig. 9.

Figure 11 illustrates the hierarchical structure of the Les Misérables network. We have 
included only half of the sub-communities detected in the influence spreading model 
with link weights 0.05 . The complete graph of all hierarchical relationships is similar but 
larger. In Table 6 (Appendix), smaller partitions (sub-communities) are shown on the left 
and the graph in Fig. 11 shows partitions having node 1 as a member. Figure 11 can be 
compared with Fig. 4 with the complete hierarchical structure of the karate club network 
of 34 nodes. Only 6 of the 11 most highly ranked divisions 1, 2, 3, 4, 5 and 8 are detected 

Fig. 11  Hierarchical structure of 29 sub-communities of the Les Misérables network (only half of the 
hierarchical structure is shown). Divisions indicated by id-numbers are listed in Table 6 in the Appendix with 
bold ids. Results are for the influence spreading model with link weights 0.05. Sizes of sub-communities are 
also displayed in the graph
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with link weights 0.05. On the other hand, divisions 12–32, 37 and 49 are found. This is 
an indication that more sub-communities can be detected by varying link weights.

Robustness of community structure

Figure  12 illustrates the community measure values of strength of division (Eq.  (8)), 
probability of formation (Statistics), robustness of composition (Eq. (9)) and the number 
of computer runs (Count) where the divisions are detected. Compositions of the most 
highly ranked divisions 1 – 11 are the corresponding lines in Table 6 in the Appendix. 
Also, some divisions 39 – 46 have good community measure values except that they are 
only detected in 65% of runs. These divisions are like division 9 in Fig. 8 of the karate 
club network.

In Fig.  13, the robustness of nodes in the Les Misérables network are presented for 
link weights 0.03 and uniformly distributed random link weights between [0.06, 0.08]. 

Fig. 12  Values of the community measures for the Les Misérables network. Compositions of the divisions are 
listed in Table 6 in the Appendix. Fifty highly ranked divisions of the 201 division detected in 100 computer 
runs with uniformly U(0.05, 0.01) distributed random link weights are shown in the figure

Fig. 13  Robustness values of nodes in the Les Misérables network from the influence spreading model with 
link weights 0.03 and uniformly distributed random link weights between [0.06, 0.08]
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Results are similar except that nodes 17–24 have relatively higher robustness values for 
lower link weights 0.03. Figure 14 compares closeness centrality, betweenness centrality 
and robustness of nodes in the Les Misérables network for link weights 0.01. Nodes 12, 
28, 49 and 56 are examples of nodes with relatively high betweenness compared to cen-
trality. Robustness values of nodes 17–23, 35–39, 58–67 and 77 are relatively high when 
compared with closeness and betweenness centrality values. These nodes are members 
of peripheral sub-communities in Fig. 9. Figure 15 shows a detailed view of the average 
information of robustness in Fig.  14 for seven strong divisions. Figure  7 is the corre-
sponding figure for the karate club network.

Temporal spreading on networks in the influence spreading model
Spreading dynamics and diffusion in complex networks [15] have been studied for exam-
ple in [19, 20, 28, 29]. Next, we discuss how we can use different temporal spreading dis-
tributions in our methodology. Temporal distributions are incorporated in the form of a 
probabilistic survival distribution function. Instead, empirical numerical values can be 
used if the spreading process does not obey a known theoretical probability distribution.

We assumed in section ‘Influence spreading model’ that social networks are in an 
equilibrium state. In the influence spreading model, this is accomplished by letting time 
T  approach infinity. This was an appropriate assumption for community detection in sit-
uations where social influence has been spreading for a long time in the network. In the 

Fig. 14  Closeness and betweenness centrality measures compared with robustness values of nodes in 
the Les Misérables network. The influence spreading model is used with link weights 0.01. The detailed 
composition of the robustness values is shown in Fig. 15

Fig. 15  Robustness values of nodes for seven strong divisions in the Les Misérables network. The 
corresponding average values of robustness are shown in Fig. 14
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following sections, we demonstrate how time-dependent spreading phenomena can be 
studied with the model. In a finite time horizon spreading has not reached all nodes in 
the network structure with probability one. In that sense, the influence spreading pro-
cess is still going on in the network structure. All centrality and community measures 
of previous sections can be calculated as functions of time. For example, the form of 
Eq. (8) of the spreading probability is valid as such with time-dependent variables. Com-
munity structure is also time-dependent. Table 2 shows that similar results for low time 
values with high link weights (columns ‘PT0.1′) and high time values with low link val-
ues (columns ‘P0.05′) can be expected. However, in complex network topology, there is 
no simple relation between spreading time and link weights. Also, the ranking of sub-
communities can change as a function of time. [21]

In previous sections, the focus has been more structural, whereas in this section we 
study also temporal development. The structural view takes into account the topology 
of the network with link and node weights, and the temporal view studies also time-
dependent development of spreading processes. Both of the views are built on a network 
topology with node and link weights but in the previous sections, we have eliminated 
the time variable by investigating only equilibrium states of networks. In the model, link 
and node weights along a path of length L are multiplied together and denoted by WL , 
and survival functions describing temporal spreading over L links are denoted by SL(T ) . 
Both structural and temporal aspects can be studied by combining these two factors as 
WLSL(T ) . This holds for a single path between two nodes. The main idea of the spread-
ing model is in the technique of combining multiple paths between node pairs in a net-
work. The method is presented in section ‘Influence spreading model’ and in more detail 
in [21].

In what follows, we will first describe the Poisson and e-mail forwarding survival dis-
tribution functions that are used in describing the spreading dynamics and diffusion in 
complex networks [19, 20, 28, 29]. After that, a numerical example of calculating time-
dependent values of the influence spreading matrix.is provided. We will then proceed 
by applying our influence spreading model to three network structures, Zachary karate 
club, Facebook and Enron networks for each of the mentioned survival distribution 
functions.

Poisson and e‑mail forwarding survival distribution functions

In this study, two different temporal spreading distributions demonstrate the model-
ling with three real-world social networks. The Poisson distribution describes random 
response time and the e-mail forwarding distribution describes the process of receiv-
ing and forwarding messages. Spreading processes are modelled on constant topologi-
cal network structure. The examples show that the Poisson temporal distribution is 
more efficient for spreading at low time values for short path lengths and the situation is 
reversed for high time values and longer path lengths.

In this context, temporal probability distributions describe spreading probabilities 
starting from a source node via links to other nodes in the network. Survival distribu-
tion function SL(T ) provides the probability of temporal spreading via L links at time 
T  . Function SL(T ) is expressed in terms of probability distribution function FL(T ) as 
SL(T ) = 1− FL(T ).
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The Poisson distribution is a discrete probability distribution that expresses the prob-
ability of giving a number of events occurring in a fixed interval of time if these events 
occur with a known constant rate and independently of the time since the last event. 
In this context, the Poisson process describes a process where spreading via successive 
links occurs randomly as a function of time. For the Poisson distribution SL(T ) is

Figure 16 shows Poisson distribution survival functions for path lengths L = 1, . . . , 20 
and time values T = 1, . . . , 10.

(10)SL(T ) = 1−

L−1
∑

z=0

e−�T (�T )z

z!
, (S0 = 1).

Fig. 16  Survival distribution functions for the Poisson and e-mail forwarding distribution functions as a 
function of path length for time values T = 1, . . . , 10. The event rate parameter value of � = 2 for the Poisson 
distribution has been used to get comparable results with these path lengths
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The e-mail forwarding distribution describes a typical process of receiving and for-
warding e-mails or messages. In the model, the source node sends one e-mail in a time 
unit and all other nodes in the network check their mailboxes once in a time unit and 
forward the received e-mail if they had received it before the checking time, or the 
e-mail stays in the mailbox waiting for the next time unit. Nodes send messages and 
check their mailboxes independently in uniformly distributed random time points. The 
program code describing the process of receiving an e-mail message once in a time unit 
and forwarding it once in a time unit is shown in the Appendix.

The two survival distribution functions have different characteristics at short path 
lengths and at long path lengths. At time T = 1 the Poisson probability of reaching 
nodes at path lengths 1–6 is high compared to the e-mail forwarding probability. Roles 
are changed with higher path lengths. For example, at time T = 10 the spreading prob-
ability over path length L = 20 for the Poisson distribution is 53% and for e-mail for-
warding it is 94%.

Figure 17 shows differences between Poisson and e-mail forwarding survival distribu-
tion functions. Curves in Fig.  17 show clearly that Poisson processes dominate e-mail 
forwarding processes at low time values and short path lengths of L ≤ 10. Conversely, at 
high time values and longer path lengths of L > 10 e-mail forwarding processes domi-
nate. Note, that the point on the X-axis, where the roles exchange, depends on the value 
of Poisson distribution’s event rate parameter �.

This kind of process characteristics can have intricate impacts on how spreading pro-
cesses perform on complex network topology. At low path lengths, the degree of a source 
node determines how the spreading process starts. The model suggests that Poisson pro-
cesses are efficient for spreading to neighbouring nodes. On the other hand, spreading 
processes to distant nodes at high path lengths can get an advantage from using e-mail 
type of delivery methods.

Fig. 17  Difference between Poisson and e-mail forwarding survival distribution functions as a function of 
path length for time values T = 1, . . . , 10.
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A numerical example of calculating time‑dependent values of the influence spreading 

matrix

In this section, we demonstrate how the values of the influence spreading matrix are calcu-
lated [21]. We calculate the value of C1,33(T ) , which describes the probability of influence 
spreading in time T  from node 1 to node 33 in Fig. 3. In order to limit the number of possi-
ble paths, we consider path lengths L ≤ 3 and self-avoiding paths, meaning a node can only 
appear once in a path. There are eight possible paths which we categorise into four groups. 
The four groups, denoted by I , I , III and IV , have three, two, two and one different paths cor-
respondingly: I : 1− 4 − 3− 33, 1− 8− 3− 33, 1− 20− 34 − 33 , II : {1− 2− 3− 33, , 
 1− 2− 31− 33} {1− 14 − 3− 33, 1− 14 − 34 − 33} , III : {1− 3− 33, , 1− 3− 9− 33} 
 {1− 32− 33, 1− 32− 34 − 33} , IV : {1− 9− 33, 1− 9− 3− 33, 1− 9− 31− 33,

1− 9− 34 − 33}. Curly brackets indicate the paths that we are going to combine by using 
the rules explained in section ‘Influence spreading model’.

In Table 6, the numerical values of survival functions SL(T ) for path lengths L = 1, 2, 3 
are calculated from Eq. (10) for the Poisson distribution. We assume that delays in the influ-
ence spreading process are caused by nodes of the network and the role of links is only to 
pass on information. Different time distributions can be incorporated in the model by using 
a corresponding survival function instead of Eq. (10). For example, the e-mail forwarding 
distribution in section ‘Temporal spreading distributions’ is one alternative for describing 
time delays in the spreading process.

The three paths in group I all have unique beginnings. We assume that the probability of 
spreading via a link is w and the probability of spreading via a node is one. Because there are 
three links, the probability of spreading is w3S3(T ) , where S3(T ) describes the probability 
of transmitting the influence via three links in time T  , for example from node 1 to node 4, 
from node 4 to node 3 and from node 3 to node 33. The probability of spreading via one 
of these paths is denoted by PI (T ) . Formulas for PII (T ) , PIII (T ) and PIV (T ) show explic-
itly how spreading via overlapping paths are calculated as a function of time T  . In all these 
three cases only one link is shared at the beginning of the paths. The fourth case denoted by 
PIV (T ) uses the results of PI (T ) , PIII (T ) combining the four paths in group IV .

The probability of spreading C1,33(T ) is calculated by the standard probabilistic formula 
for mutually non-exclusive events [21]. Note that the degree of node 1 is 16 but only 8 of 
the paths originating from node 1 reach node 33 within path lengths L ≤ 3. Numerical 
values of Pg (T ), g = I , II , III , IV  and C1,33(T ),T = 1, 2,∞ for w = 0.05, 0.25, 0.5, and0.75 
are documented in Table 6. Figure 18 shows the time-dependence between 0 ≤ T ≤ 5 of 
spreading probabilities for link weights w = 0.25, 0.5, and 0.75. Black curves are for the 
Poisson distribution in Eq. (10) with � = 1 and blue curves are for the e-mail forwarding 
distribution calculated from the algorithm that is provided in the Appendix. Formulas 
for the four independent groups of paths and the final result C1,33(T ) in Eq. (11) are the 
following:

PI (T ) = w3S3(T ),

PII (T ) = w3S3(T )+ w3S3(T )−
w3S3(T )w3S3(T )

w1S1(T )
= 2w3S3(T )−

w5S23(T )

S1(T )
,
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The numerical values in Table  5 are for the influence spreading model (see sec-
tion ‘Influence spreading model’) and the Poisson survival distribution in Eq.  (10). 
The corresponding results in Table  5 in the case of the e-mail forwarding distribu-
tion can be calculated by using the values of SL(T ) for the e-mail forwarding distribu-
tion instead of the Poisson distribution. On the other hand, the network connection 
model could be used as the network model to describe a spreading process in which 
an uninterrupted operational connection is needed between source and target nodes. 
In this case, the temporal survival distribution function would be implemented in the 
network connection model (see section ‘Network connection model’). Thus, three 
aspects can be combined in our methodology: network model, temporal spreading 
distribution and community detection algorithm. These modelling decisions depend 
on the process characteristics of the spreading process under investigation [18].

PIII (T ) = w3S3(T )+w2S2(T )−
w3S3(T )w2S2(T )

w1S1(T )
= w3S3(T )+w2S2(T )−

w4S3(T )S2(T )

S1(T )

PIV (T ) = PI (T )+PIII (T )−
PI (T )PIII (T )

w1S1(T )
+PI (T )−

(

PI (T )+ PIII (T )−
PI (T )PIII (T )

w1S1(T )

)

PI (T )

w1S1(T )
,

(11)C1,33(T ) = 1− (1− PI (T ))3(1− PII (T ))2(1− PIII (T ))2(1− PIV (T ))1.

Fig. 18  Influence spreading probabilities C1,33(T ) from node 1 to node 33 as a function of time T  for link 
weight values w = 0.25, 0.5, 0.75. Black curves are for the Poisson distribution and blue curves for the e-mail 
forwarding distribution
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Applications of temporal spreading on three empirical social networks

We demonstrate the model with three empirical social networks: Zachary’s karate 
club [24], a Facebook network [30], and the Enron e-mail network [30]. These net-
works represent small, intermediate and large social networks. The network topology 
of the Zachary’s karate club social network with 34 nodes is pictured in Fig.  3. The 
Facebook network has 4039 nodes and the Enron e-mail network has 36,692 nodes.

Low parameter values for link weights are used for describing influence spread-
ing [21]. Link weights are assumed to be low for one event of an influence attempt 
because, in a normal social context, the probability of convincing a person to change 
his or her opinion is low. For larger networks, the influence is expected to be even 
lower because of less cohesion with more different social groups.

Figure  19 shows spreading results for the karate club network with two different 
link weights w = 0.05 and w = 0.005 . Results are presented for the e-mail forwarding 
distribution and Poisson distribution with the event rate parameter value of � = 2 . 
For both link weight values, the Poisson spreading process is more effective than the 
e-mail forwarding process for time values T < 1.5 . For time T > 1.5 the situation is 
reversed. For higher link weights (w = 0.05) the spreading process is accelerating for 
later time values, and for lower values (w = 0.005) the process is more linear until the 
usual saturation effects take over.

The expected number of influenced nodes is shown on the Y-axes of the figures. 
This is computed by taking one node, at a time, in the network and assuming that the 
spreading process is initiated with probability 1.0 at time T = 0 from that node. Fig-
ures 19 and 20 show average results over all source nodes in the network. For exam-
ple, the influence of the Poisson process has spread, on average, to 7.2 nodes with the 
link weights of w = 0.05 at time T = 1.

Figure 20 shows the expected number of influenced nodes when spreading is initi-
ated from one of the nodes 1–34 (indicated in the figure) for the Poisson distribution 
w = 0.05 . The results agree with the actual situation in the karate club. The instruc-
tor of the club is node 1 and the administrator is node 34. In the same figure, the 

Table 5  Numerical values of SL , L = 1, 2, 3 and Pi(T ), i = I, II, III, IV  and C1,33(T ), T = 1, 2,∞ 
for w = 0.05, 0.25, 0.5, 0.75. Poisson distribution has been used for describing the time delays of the 
spreading process

T = 1 T = 2 T = ∞

S1(T) 0.63212 0.86467 1.00000

S2(T) 0.26424 0.59399 1.00000

S3(T) 0.08030 0.32332 1.00000

PI(T) 0.00001004 0.00004042 0.00012500

PII(T) 0.00002007 0.00008079 0.00024969

PIII(T) 0.00067043 0.00152401 0.00261875

PIV(T) 0.00069008 0.00160196 0.00285536

C1,33(T),w = 0.75 57.512% 93.298% 99.912%

C1,33(T),w = 0.5 27.188% 60.090% 88.299%

C1,33(T),w = 0.25 6.239% 15.658% 30.465%

C1,33(T),w = 0.05 0.20997% 0.49243% 0.89381%
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numerical values for the Poisson distribution w = 0.005 are shown as circles. The 
expected values of the number of influenced nodes are very low for w = 0.005.

Rankings for w = 0.005 are very close to the corresponding rankings for w = 0.05 , but 
they are not the same. For example, node 27 has a higher ranking for w = 0.05 than for 
w = 0.005. Node 17 has a relatively higher number of influenced nodes for w = 0.005 . 

Fig. 19  Spreading in the Zachary’s karate club network for the e-mail forwarding process and the Poisson 
process. Y-axis on the left shows the expected number (normalised) of influenced nodes for w = 0.5. Y-axis on 
the right shows the corresponding values for w = 0.05.

Fig. 20  Spreading from individual nodes 1–34 to other nodes (including the node itself ) for the equilibrium 
state when time approaches infinity. Expected number (normalised) of influenced nodes for w = 0.05 on the 
left Y-axis and for w = 0.005 on the right. Numerical values for w = 0.05 are shown as bars and for w = 0.005 
as circles
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These are both peripheral nodes, but they have different accessibility to central nodes. 
Node 27 has a link to central node 34, but node 17 has only connections to other periph-
eral nodes. Node 17 has not as much advantage of more active nodes (w = 0.05) than 
node 27. We can see from Fig.  20 that nodes 8, 9, 14, 20 have particularly favourable 
locations in the network. They have short distances to the most central nodes 1, 33 or 34, 
and have gateway roles between other nodes in the network. This is a transient phenom-
enon because, at later time points, influence has propagated more evenly to all nodes in 
the network.

The Facebook [30] and Enron networks [30] are examples of larger empirical net-
works. Figure  21 shows spreading results for these networks with two different link 
weights w = 0.005 and w = 0.0005 . The results are for total sums from all source nodes 
because normalised values would be very small. Normalised values can be calculated by 
dividing the results by the number of nodes in the network. The same phenomenon of 
crossing curves at time T = 1.5 can be seen for both link weights. Again, the Poisson 
distribution with the event rate parameter value of � = 2 is efficient at the beginning 
of the spreading process and vice versa at later time points. At time T = 3 (w = 0.005) 
the e-mail forwarding distribution has reached about 400 nodes more in the Facebook 
network. With lower link weights (w = 0.0005), the difference is less because of weaker 
spreading power.

Conclusions
In this article, we propose a set of methods for modelling community structure and 
temporal spreading on complex networks. Models of this study can be used to study 
community or module structure and temporal spreading in social, biological and 
technological networks. The community detection method is based on separating the 
network model from the community detection model. Different network models can 

Fig. 21  Spreading in the Facebook and Enron networks for the Poisson process and the e-mail forwarding 
process. Y-axis on the left shows the expected number (un-normalised) of influenced nodes for the Facebook 
network. Y-axis on the right shows the corresponding values for the Enron network
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be used to provide input for the community detection algorithm. We demonstrate 
this by the standard network connection model and an influence spreading model. 
Different temporal distributions can be incorporated into the influence spreading 
model or the network connection model by using a desired probabilistic survival dis-
tribution function.

Communities and sub-communities are identified by local maxima of a quality func-
tion that measures the internal strength of two partitions in the network. The quality 
function used in this study is the sum of probability matrix element values describing 
interactions between pairs of nodes in both of the two partitions. Cross terms are not 
included, but the model allows influence via paths that go through the other partition. 
Weak interactions between nodes produce more solutions than strongly connected 
networks. By varying link weights, it is possible to get an understanding of the land-
scape of local maxima and to identify structure in networks. As a new application, we 
propose that the community detection method can be used as a tool for discovering 
underlying groups of nodes that are usually found together in community structures. 
Communities and sub-communities correspond to different combinations of these 
building blocks.

We present different approaches for measuring and ranking communities. This is an 
important topic because the method usually gives several solutions and highly ranked 
solutions are candidates for real-life communities. Three different quality measures 
are presented for the strength of a community, the probability of formation of a com-
munity and the robustness of formation of a community. These measures are corre-
lated, but they represent different views of evaluating communities.

We demonstrate the use of temporal spreading distributions with the Poisson dis-
tribution and an e-mail forwarding distribution. The e-mail forwarding distribution 
is defined with a program code listed in the Appendix. The Poisson distribution is 
more efficient for spreading at low time values with short path lengths and the situa-
tion is reversed for higher time values and longer path lengths. The exact time value 
where the crossing occurs depends on the event rate parameter value of the Poisson 
distribution.

The main contribution of this study is proposing a common methodology for ana-
lysing network structure and dynamics on complex networks. A quality function 
is defined based on elements of the probability matrix or the influence spreading 
matrix. Elements of the matrix describe interactions in the network structure. The 
quality function is used for detecting communities and studying community struc-
tures. Properties and characteristics of a network can be analysed with several net-
work metrics. The generalised centrality measure proposed in this study is a form of 
node influence metrics that rank or quantify the influence of nodes.

Appendix
See Table 6.
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Table 6  Fifty highly ranked divisions out of the 201 detected divisions in 100 computer runs of the 
Les Misérables network in the influence spreading model with uniformly distributed U(0.05, 0.1) 
random link weights

id # Nodes # Nodes

1 7 17–23 70 1–16,24–77

2 15 1–2,5–10,17–23 62 3–4,11–16,24–77

3 8 1–2,5–10 69 3–4,11–77

4 25 1–2,5–10,47–49,58–68,74–75,77 52 3–4,11–46,50–57,69–73,76

5 12 58–68,77 65 1–57,69–76

6 26 17–23,47–49,56–68,74–75,77 51 1–16,24–46,50–55,69–73,76

7 35 1–10,30,35–39,47–49,56–68,74–75,77 42 11–29,31–34,40–46,50–55,69–73,76

8 17 47–49,58–68,74–75,77 60 1–46,50–57,69–73,76

9 32 17–23,40,47–50,52–68,74–75,77 45 1–16,24–39,41–46,51,69–73,76

10 29 13,17–29,31–32,34,41–44,46,51,69–73,76 48 1–12,14–16,30,33,35–40,45,47–50,52–68,74–75,77

11 31 30,35–40,47–50,52–68,74–75,77 46 1–29,31–34,41–46,51,69–73,76

12 27 1–2,5–10,17–23,58–68,77 50 3–4,11–16,24–57,69–76

13 35 11–16,24–39,41–46,51,69–73,76 42 1–10,17–23,40,47–50,52–68,74–75,77

14 19 17–23,58–68,77 58 1–16,24–57,69–76

15 20 1–2,5–10,58–68,77 57 3–4,11–57,69–76

16 37 3–4,11–16,24–39,41–46,51,69–73,76 40 1–2,5–10,17–23,40,47–50,52–68,74–75,77

17 36 3–4,11–12,14–16,29–30,33,35–39,45–49,56–
68,74–75,77

41 1–2,5–10,13,17–28,31–32,34,40–44,50–55,69–
73,76

18 22 35–39,47–49,58–68,74–75,77 55 1–34,40–46,50–57,69–73,76

19 37 1–10,13,17–28,31–32,34,41–44,51,69–73,76 40 11–12,14–16,29–30,33,35–40,45–50,52–68,74–
75,77

20 30 1–2,5–10,35–39,47–49,58–68,74–75,77 47 3–4,11–34,40–46,50–57,69–73,76

21 36 11–29,31–34,41–46,51,69–73,76 41 1–10,30,35–40,47–50,52–68,74–75,77

22 25 17–23,47–49,56,58–68,74–75,77 52 1–16,24–46,50–55,57,69–73,76

23 33 1–2,5–10,17–23,47–49,56,58–68,74–75,77 44 3–4,11–16,24–46,50–55,57,69–73,76

24 35 3–4,11–16,25–29,32–34,40–46,50–55,69–73,76 42 1–2,5–10,17–24,30–31,35–39,47–49,56–68,74–
75,77

25 32 13,17–28,31–32,40–44,50–55,69–73,76 45 1–12,14–16,29–30,33–39,45–49,56–68,74–75,77

26 25 17–26,30–31,35–39,41–43,69–72,76 52 1–16,27–29,32–34,40,44–68,73–75,77

27 33 25–26,28,40–43,47–49,51,53,56–72,74–77 44 1–24,27,29–39,44–46,50,52,54–55,73

28 33 1–10,35–39,47–49,56,58–68,74–75,77 44 11–34,40–46,50–55,57,69–73,76

29 37 1–16,25–29,32–34,41–46,51,69–73,76 40 17–24,30–31,35–40,47–50,52–68,74–75,77

30 30 35–40,47–50,52–68,74–75,77 47 1–34,41–46,51,69–73,76

31 33 11–16,25–29,32–34,40–46,50–55,69–73,76 44 1–10,17–24,30–31,35–39,47–49,56–68,74–75,77

32 33 17–24,30,35–39,47–49,56–68,74–75,77 44 1–16,25–29,31–34,40–46,50–55,69–73,76

33 38 11–12,14–16,30,33,35–40,45,47–50,52–68,74–
75,77

39 1–10,13,17–29,31–32,34,41–44,46,51,69–73,76

34 35 1–10,42,47–49,56–72,74–77 42 11–41,43–46,50–55,73

35 37 3–4,11–12,14–16,29–30,33–39,45–49,56–68,74–
75,77

40 1–2,5–10,13,17–28,31–32,40–44,50–55,69–73,76

36 33 1–2,5–10,42,47–49,56–72,74–77 44 3–4,11–41,43–46,50–55,73

37 27 13,17–26,30–32,35–39,41–43,69–72,76 50 1–12,14–16,27–29,33–34,40,44–68,73–75,77

38 33 1–2,5–10,17–26,30–31,35–39,41–43,69–72,76 44 3–4,11–16,27–29,32–34,40,44–68,73–75,77

39 36 1–10,17–23,47–49,56–68,74–75,77 41 11–16,24–46,50–55,69–73,76

40 14 1–2,5–10,18–23 63 3–4,11–17,24–77

41 6 18–23 71 1–17,24–77

42 25 42,47–49,56–72,74–77 52 1–41,43–46,50–55,73

43 37 11–34,41–46,51,69–73,76 40 1–10,35–40,47–50,52–68,74–75,77
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The following program code describes a process of receiving an e-mail message once 
in a time unit and forwarding it once in a time unit. In the program code, S is the sur-
vival distribution function used to demonstrate the e-mail forwarding model in section 
‘Temporal spreading on networks’.

Acknowledgements
Not applicable.

Authors’ contributions
The author read and approved the final manuscript.

Funding
No funding.

Availability of data and materials
Not applicable.

Declarations

Competing interests
The author declare that he has no competing interests.

Received: 2 March 2020   Accepted: 3 March 2021

Table 6  (continued)

id # Nodes # Nodes

44 36 3–4,11–24,27,29–39,44–46,50,52,54–55,73 41 1–2,5–10,25–26,28,40–43,47–49,51,53,56–72,74–
77

45 38 17–23,30,35–40,47–50,52–68,74–75,77 39 1–16,24–29,31–34,41–46,51,69–73,76

46 36 11–16,24–29,31–34,40–46,50–55,57,69–73,76 41 1–10,17–23,30,35–39,47–49,56,58–68,74–75,77

47 28 13,17–26,28,30–32,35–39,41–43,69–72,76 49 1–12,14–16,27,29,33–34,40,44–68,73–75,77

48 28 11–16,25–29,31–34,41–46,51,69–73,76 49 1–10,17–24,30,35–40,47–50,52–68,74–75,77

49 28 3–4,11–12,14–16,25–29,32–34,41–46,51,69–
73,76

49 1–2,5–10,13,17–24,30–31,35–40,47–50,52–68,74–
75,77

50 30 25–26,40–43,47–49,56–72,74–77 47 1–24,27–39,44–46,50–55,73



Page 38 of 38Kuikka ﻿Comput Soc Netw            (2021) 8:13 

References
	1.	 Barabási A-L: Network Science. Cambridge University Press (2016).
	2.	 Newman MEJ. Networks. Oxford: An Introduction. Oxford University Press; 2010.
	3.	 Luciano da Fontoura Costa, What is a complex network? (CDT-2), (2020). doi: https​://doi.org/10.13140​/RG.2.2.10450​

.04804​/1.
	4.	 Gómez S: Centrality in networks: finding the most important nodes. In: Moscato, P, de Vries, NJ (eds.) Business and 

Consumer Analytics: New ideas. Part III, Chapter 8, pp. 401–434 (2019).
	5.	 Katz L. A new status index derived from sociometric analysis. Psychometrika. 1953;18(2):39–43.
	6.	 Coscia M, Giannotti F, Pedreschi D. A classification for community discovery methods in complex networks. Stat 

Anal Data Min. 2011;4(4):512–46.
	7.	 Fortunato S, Hric D. Community detection in networks: a user guide. Phys Rep. 2016;659(11):1–44.
	8.	 Lancichinetti A, Fortunato S. Community detection algorithms: a comparative analysis. Phys Rev E. 2009;80:056117.
	9.	 Yang Z, Algesheimer R, Tessone CJ. A comparative analysis of community detection algorithms on artificial net-

works. Sci Rep. 2016;6:30750. https​://doi.org/10.1038/srep3​0750.
	10.	 Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E: Fast unfolding of communities in large networks. Journal of 

Statistical Mechanics. P10008 (2008)
	11.	 Rosvall J, Bergstrom CT: Maps of random walks on complex networks reveal community structure. PNAS105: 1118 

(2008).
	12.	 Karrer B, Newman MEJ. Stochastic blockmodels and community structure in networks. Phys Rev E. 

2011;83(2):016107.
	13.	 Lancichinetti, A, Fortunato, S, Kertész, J: Detecting the overlapping and hierarchical community structure in com-

plex networks. New Journal of Physics. 11 (2009).
	14.	 Riolo MA, Newman MEJ: Consistency of community structure in complex networks. Phys. Rev. E 101, 052306 (2020), 

https​://arxiv​.org/abs/1908.09867​.
	15.	 Barrat A, Barthélemy M, Vespignani A: Dynamical Processes on Complex Networks. Cambridge University Press 

(2008).
	16.	 Smilkov D, Kocarev L. Influence of the network topology on epidemic spreading. Phys Rev E. 2012;85:016114.
	17.	 Centola D: How behavior spreads, the science of complex contagions. Princeton University Press (2018).
	18.	 Kuikka V: Subsystem Cooperation in complex networks – case brain network. In: Barbosa H., Gomez-Gardenes J., 

Gonçalves B., Mangioni G., Menezes R., Oliveira M. (eds) Complex Networks XI. Springer Proceedings in Complexity. 
Springer, Cham (2020).

	19.	 Holme P, Saramäki J. Temporal networks. Phys Rep. 2012;519:97–125.
	20.	 Wang W, Liu Q-H, Liang J, Hu Y, Zhou T. Coevolution spreading in complex networks. Phys Rep. 2019;820:1–51.
	21.	 Kuikka V. Influence spreading model used to analyse social networks and detect sub-communities. Computational 

Social Networks. 2018;5:12. https​://doi.org/10.1186/s4064​9-018-0060-z.
	22.	 Ball MO, Colbourn CJ, Provan JS: Network reliability. In: Handbooks in Operations Research and Management Sci-

ence. Chapter 11. vol 7, pp. 673–762 (1995).
	23.	 Yang, J, Leskovec, J: Defining and evaluating network communities based on ground-truth, MDS ’12: Proceed-

ings of the ACM SIGKDD Workshop on Mining Data Semantics, Article No. 3 (2012), https://doi.org/https​://doi.
org/10.1145/23501​90.23501​93.

	24.	 Zachary WW. An information flow model for conflict and fission in small groups. J Anthropol Res. 1977;33:452–73.
	25.	 Lusseau D, Schneider K, Boisseau OJ, Haase P, Slooten E, Dawson SM. The bottlenose dolphin community of doubt-

ful sound features a large proportion of long-lasting associations: Can geographic isolation explain this unique trait? 
Behav Ecol Sociobiol. 2003;54:396–405.

	26.	 Kuikka V: Influence spreading model used to community detection in social networks. In: Cherifi C, Cherifi H, Karsai 
M, Musolesi M (eds.) Complex Networks & their applications VI. COMPLEX NETWORKS 2017. Studies in computa-
tional intelligence, vol. 689. Cham: Springer, pp. 202–215 (2018).

	27.	 Kuikka V: A General method for detecting community structures in complex networks. In: Cherifi H. et. al. (eds.) 
Complex Networks & Their Applications VIII. COMPLEX NETWORKS 2019. Studies in Computational Intelligence, vol. 
881. Springer (2019). https://doi.org/https​://doi.org/10.1007/978-3-030-36687​-2_19.

	28.	 Zhang Z-K, Liu C, Zhan X-X, Lu X, Zhang C-X. Dynamics of information diffusion and its applications on complex 
networks. Phys Rep. 2017;651:1–34.

	29.	 Horváth DX, Kertész J. Spreading dynamics on networks: the role of burstiness, topology and non-stationarity. New J 
Phys. 2014;16:073037.

	30.	 Leskovec J, Krevl A: SNAP Datasets, Stanford Large Network Dataset Collection (2014)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.13140/RG.2.2.10450.04804/1
https://doi.org/10.13140/RG.2.2.10450.04804/1
https://doi.org/10.1038/srep30750
https://arxiv.org/abs/1908.09867
https://doi.org/10.1186/s40649-018-0060-z
https://doi.org/10.1145/2350190.2350193
https://doi.org/10.1145/2350190.2350193
https://doi.org/10.1007/978-3-030-36687-2_19

	Modelling community structure and temporal spreading on complex networks
	Abstract 
	Introduction
	Related literature
	Centrality measures
	Community detection methods
	Processes on complex networks
	Network connection model

	General methodology
	Different network models and community detection methods
	Example network models
	Influence spreading model

	Community detection method in the context of the influence spreading model
	Community detection in the context of the network connection model
	Application of the community detection model
	Application to the Zachary’s karate club social network
	Community structure
	Robustness of community structure
	Application to the Les Misérables network
	Community structure
	Robustness of community structure

	Temporal spreading on networks in the influence spreading model
	Poisson and e-mail forwarding survival distribution functions
	A numerical example of calculating time-dependent values of the influence spreading matrix
	Applications of temporal spreading on three empirical social networks

	Conclusions
	Acknowledgements
	References




