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Abstract We present the extension of the Kalmag model, proposed as a candidate for IGRF‑13, to the twentieth 
century. The dataset serving its derivation has been complemented by new measurements coming from satel‑
lites, ground‑based observatories and land, marine and airborne surveys. As its predecessor, this version is derived 
from a combination of a Kalman filter and a smoothing algorithm, providing mean models and associated uncer‑
tainties. These quantities permit a precise estimation of locations where mean solutions can be considered as reli‑
able or not. The temporal resolution of the core field and the secular variation was set to 0.1 year over the 122 
years the model is spanning. Nevertheless, it can be shown through ensembles a posteriori sampled, that this 
resolution can be effectively achieved only by a limited amount of spatial scales and during certain time periods. 
Unsurprisingly, highest accuracy in both space and time of the core field and the secular variation is achieved dur‑
ing the CHAMP and Swarm era. In this version of Kalmag, a particular effort was made for resolving the small‑scale 
lithospheric field. Under specific statistical assumptions, the latter was modeled up to spherical harmonic degree 
and order 1000, and signal from both satellite and survey measurements contributed to its development. External 
and induced fields were jointly estimated with the rest of the model. We show that their large scales could be 
accurately extracted from direct measurements whenever the latter exhibit a sufficiently high temporal cover‑
age. Temporally resolving these fields down to 3 hours during the CHAMP and Swarm missions, gave us access 
to the link between induced and magnetospheric fields. In particular, the period dependence of the driving signal 
on the induced one could be directly observed. The model is available through various physical and statistical 
quantities on a dedicated website at https:// ionoc ovar. agnld. uni‑ potsd am. de/ Kalmag/.
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Introduction
Separating the different contributions to the Earth’s 
magnetic field from direct measurements of it is a dif-
ficult task. The main reason making this problem com-
plex is the wide range of spatial and temporal scales 
overlapping one another. The core field, which is sus-
tained by dynamo action in the Earth’s outer core, is at 
the Earth’s surface the dominant large-scale field, and it 
evolves on timescale ranging from months to millennia. 
On the opposite, the lithospheric field is dominant at 
small scales. Emanating from the remnant magnetiza-
tion of the rocks lying within the crust, it follows the 
motions of the latter and therefore varies very slowly 
with time. External sources, such as the magneto-
spheric fields or the ionospheric field are driven by 
thermospheric winds and solar radiations. Their direct 
link to solar activity make them subject to intense vari-
ations from very short up to decadal timescales. These 
fluctuations induce currents within the electrically 
conducting parts of the crust and the mantle which in 
return generate a secondary magnetic field. Induction 
processes also occurs within the oceans. The circula-
tion or tidal motions of the latter within the ambient 
magnetic field create electrical currents which also pro-
duce a secondary field.

From the seventeenth century to today, geomagnetic 
data have been continuously accumulated. First collected 
during marine and land surveys, measurements of the 
Earth’s magnetic field were quickly complemented by 
instrumentation installed within ground-based obser-
vatories [see Jackson and Finlay (2007)]. The develop-
ment of aviation in the 1950s offered another support to 
measure the field. But the biggest step in geomagnetic 
monitoring certainly comes from the rise of low-orbit-
ing satellite missions. Starting in 1965 with the POGO 
mission, many spacecrafts dedicated to geomagnetic 
field modeling were later launched. These include non-
exhaustively the MagSat, the Oersted and the CHAMP 
spacecrafts and the Swarm constellation.

Technical constraints to build geomagnetic field mod-
els strongly depend on the type of data to be assimilated. 
Satellite missions provide measurements at a high fre-
quency. The algorithms they are feeding therefore need 
to be adapted to treat a large amount of observations. 
Land, marine and airborne surveys operate at the level or 
slightly above the Earth’s surface. As a consequence, the 
contribution of the small-scale lithospheric field to the 
data they produce is important. Accounting for this field 
requires to model it at a very high resolution, a technical 
challenge.

Graphical abstract
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Many models of the geomagnetic field have been pro-
posed over the last decades [see Hulot et al. (2015)], and 
most of them were obtained with a regularized least 
square approach. This is the case for the CHAOS model 
series from Olsen et al. (2006) to Finlay et al. (2020), the 
comprehensive models by Sabaka et al. (2002, 2015, 2018, 
2020), the GRIMM models by Lesur et  al. (2008, 2010, 
2015), the POMME models by Maus et al. (2005, 2010), 
or the gufm1 by Jackson et al. (2000). Least square meth-
ods are very efficient numerically, but the usually consid-
ered reweighed version can only provide unique solution. 
On the opposite, Bayesian inversions are computation-
ally demanding but results are expressed in terms of 
posterior distributions, providing therefore predictions 
of mean solutions together with their associated uncer-
tainties. Bayesian inversion in the context of geomag-
netic field modeling was initiated by Gillet et al. (2013). 
Considering ground-based observatory, survey and sat-
ellite data, they could derive the COV-OBS model span-
ning the 1840− 2010 time window, a period which was 
recently increased to 2020 by Huder et al. (2020). Similar 
efforts have been followed by Holschneider et al. (2016) 
in a study where emphasis was put on better character-
izing the spatial properties of the different magnetic 
sources through correlation kernels. Extending this work 
to the time domain, and sequentializing the problem, 
Baerenzung et al. (2020), Ropp et al. (2020) could derive 
geomagnetic field models from the combination of a 
Kalman filter and a smoothing algorithm. This approach 
conserves all the advantages of the Bayesian method 
proposed by Gillet et al. (2013) and alleviates most of its 
drawbacks. In particular, the dimension of the system, 
the amount of observations to be assimilated, or the non 
linear link between certain magnetic sources, are not 
anymore strong limiting factors.

In this paper, we present the extension of the Kalmag 
model by Baerenzung et al. (2020) to the twentieth cen-
tury. Deriving only from CHAMP and Swarm data, 
Kalmag covered the 2000.5− 2020 time period, and 
was a candidate for the IGRF-13 model [see Alken et al. 
(2021)]. The present version resulted from the assimi-
lation of extra measurements taken by ground-based 
observatories, POGO, MagSat and Oersted satellites and 
during land, airborne and marine (L.A.M.) surveys. To 
assimilate the latter type of data, we introduced a statis-
tical approximation within the Kalman filter algorithm 
enabling us to resolve the lithospheric field up to spheri-
cal harmonics degree and order ℓ = 1000 . Therefore, 
there is no need to subtract the lithospheric contribution 
to L.A.M. survey observations with high-resolution mod-
els such as the WDMAM by Lesur et al. (2016), the EMM 
model by Maus (2010) or the recent model of Thébault 
et al. (2021), to build the model. In addition, a small-scale 

lithospheric field model could be recovered without pre-
processing of the data.

The article is organized as follows. In the first part, the 
dataset used to construct the model and the selection cri-
teria applied are presented. In the second part, the dif-
ferent magnetic sources, their prior characterization and 
dynamical behavior are detailed. At the end of this sec-
tion, the various formulations to assimilate data, update 
the model and sample it are provided. In "Results" sec-
tion, the properties of our model for the core field, the 
secular variation, the lithospheric field and external and 
induced fields are discussed. The article ends with a dis-
cussion and some concluding remarks.

Data
The proposed model was derived from either vector field 
or intensity measurements of the geomagnetic field taken 
from 1900.0 to today by satellites, ground-based obser-
vatories and during land, airborne and marine surveys. 
Satellite observations from five different missions were 
considered. These are, the POGO (1965–1971) (e.g., Cain 
and Sweeney 1973), the MagSat (1979–1980) (e.g., Lan-
gel and Estes 1985a), the Oersted (since 1999) (e.g., Neu-
bert et  al. 2001), the CHAMP (2000-2010) (e.g., Rother 
et  al. 2000), and the SWARM (since 2013) (e.g., Olsen 
et  al. 2013) missions. For ground-based observatories, 
hourly mean vector fields provided by the World data 
center for geomagnetism from 1886 (e.g., Macmillan and 
Olsen 2013) and selected through the procedure which is 
detailed in the following, were used to derive secular vari-
ation data, the latter being used only to constrain the core 
field evolution. These types of observations, feeding also 
other models such as the CHAOS series by Olsen et al. 
(2006), Finlay et al. (2020), the C3FM by Wardinski and 
Holme (2011), Wardinski et  al. (2020) or the COV-OBS 
model by Gillet et al. (2013), Huder et al. (2020) were here 
obtained by first averaging vector field measurements 
over 0.1-year time windows. The resulting mean values 
b̄(t) were then used to derive secular variation data γ (t) 
through the relation γ (t) = b̄(t + 0.5yr)− b̄(t − 0.5yr) . 
The location of each observatory taken into account is 
displayed with black triangles in Fig. 1. For aeromagnetic, 
land and marine survey data, three compilations served 
the model derivation (e.g., Quesnel et al. 2009). The first 
one is provided by British Geological Survey at www. 
wdc. bgs. ac. uk/, the second one by the National Oceanic 
and Atmospheric Administration at maps. ngdc. noaa. 
gov and the third one is made accessible by the U.S. geo-
physical survey at www. mrdata. usgs. gov. The positions of 
L.A.M. data are typically given through the latitude, lon-
gitude and altitude location of the measuring vessel. For 
airborne measurements, whenever altitude was provided 
by radar altimeter it was corrected above land surfaces 

http://www.wdc.bgs.ac.uk/data.html
http://www.wdc.bgs.ac.uk/data.html
https://www.ncei.noaa.gov/maps/geophysics/
https://www.ncei.noaa.gov/maps/geophysics/
https://mrdata.usgs.gov/magnetic/
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with the ETOPO1 global relief model of Amante and 
Eakins (2009).

Before being assimilated, each data containing vector 
information, such as North, East, Down or declination, 
inclination and intensity, was projected in geographic 
spherical coordinates. The resulting dataset was then sub-
ject to selection. The main purposes of this procedure are 
to avoid the contribution of the dayside ionospheric field 
which is not modeled, to operating during low geomag-
netic activity and, for satellite observations, to be weakly 
perturbed by the substorm auroral electrojet. The latter 
two criteria were fulfilled through a selection based on 
the values of independently derived indices, respectively, 
a given threshold on the Kp geomagnetic index and the 
required positiveness of the z-component of the inter-
planetary magnetic field (IMF). The Kp threshold was 
set to 2− for satellite data and to 4− for all other obser-
vations. To limit the contribution of the dayside iono-
spheric field, only night-time measurements (when the 
sun is below the horizon) were kept at magnetic latitude 
lying between ±60◦ . This constraint was nevertheless 
relaxed for MagSat data for which the satellite followed 
a dawn–dusk orbit and for some land survey data which 
were either not dated precisely enough to determine their 
local solar time, or only used to derive the lithospheric 
field model. Note also that for CHAMP and SWARM 
satellites, it was also required that measurements were 
taken when both the vector field magnetometer and the 
star tracker were functioning in nominal mode.

Finally, each L.A.M. surveys and satellite dataset were 
subsampled. For POGO, MagSat, and Oersted satel-
lites, a rate of 1 datum every 10s (0.1Hz) was chosen. 
For CHAMP satellite, the sampling rate was increased to 
0.2Hz. For SWARM, only satellites Alpha and Bravo are 
considered with a simultaneous sampling rate of 0.1Hz. 
Distance criteria were applied to subsample L.A.M. sur-
veys data. In a first selection, a minimum distance of 5 
km between any data point within 1-h time windows was 
imposed. Every measure lying too close to the previously 
selected ones were removed. The resulting dataset was 
then split in 8 subsets in which the minimum distance 
was set to 40 km. Therefore, at a given epoch within the 
Kalman filter algorithm, data from each of these sub-
sets were sequentially assimilated whenever they were 
available.

In Table  1, the time period, the selection criteria and 
the type and total number of measurements associated 
with each dataset are summarized.

Magnetic sources
Seven sources compose the Kalmag model. These are 
a core field ( bc ), a lithospheric field ( bl ), an induced/
residual ionospheric field ( bii ), a remote ( brm ), a close 
( bm ) and a fluctuating ( bfm ) magnetospheric fields and 
a source associated with field-aligned currents ( bfac ). 
Except for bfac , each of these sources bs is assumed to 
derive from a potential Vs such as bs = −∇Vs . For bfac , 
as in Sabaka et  al. (2004) the currents themselves are 

Fig. 1 Locations (dots) and epoch (color) of each land, airborne and marine survey measurement. Black triangles correspond to every 
ground‑based observatories feeding the model with data
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assumed to derive from a potential Vfac . Waters et  al. 
(2001) has shown that under this assumption the result-
ing magnetic field could be expressed as bs = −r ×∇Vs.

The potentials Vs are then expanded in spherical har-
monics (SH) such as potentials of internal and external 
origin are, respectively, given by:

Where Yℓ,m are Schmidt semi-normalized spherical har-
monics of degree ℓ and order m considered, respectively, 
up to ℓmax and mmax , as is a reference radius, and gs,ℓ,m(t) 
(later referred as gs ) are the spherical harmonics coeffi-
cients expressed at as . Each field is projected in a given 
spherical coordinate system {r, θs,φs} as indicated in 
Table 2. These systems can either be geographic (GEO), 
magnetic (MAG), solar magnetic (SM), or geocentric 
solar magnetospheric (GSM) (see Laundal (2017)).

Depending on the observations which are being 
assimilated, the spatial resolution of the lithospheric 
field is varied. Whereas for CHAMP and Swarm data, 
the latter is expanded up to ℓ = 150 , it is only modeled 
up to ℓ = 100 for other satellite measurements. Since 
L.A.M. survey data are taken close to the Earth’s sur-
face, they contain a strong contribution of the small 
scale lithospheric field. To assimilate such measure-
ments, the lithospheric field is therefore parameter-
ized up to spherical harmonics degree ℓ = 1000 with 
an approximation of the associated covariance matrix 
between 100 < ℓ ≤ 1000 as detailed in the following.

(1)

V I
s (r, θs,φs, t) =as

∑

ℓ≤ℓmax

m=mmax
∑

m=−mmax

(as

r

)l+1
gIs,ℓ,m(t)Yℓ,m(θs,φs) ,

(2)

VE
s (r, θs,φs, t) =as

∑

ℓ≤ℓmax

m=mmax
∑

m=−mmax

(

r

as

)l

gEs,ℓ,m(t)Yℓ,m(θs,φs) ,

Sequential modeling
The Kalmag model is constructed sequentially through 
a Kalman filter approach [see Kalman (1960)]. This 
technique proceeds in two alternating steps, namely a 
forecast and an analysis. In the forecast, the model is 
propagated in space and time until some measure-
ments become available. Then the analysis takes place 
and the model is updated accordingly to them. Because 
this method provides the posterior distribution of the 
model only given the previously assimilated data, it is 
complemented by a smoothing algorithm. Perform-
ing backward in time, this algorithm enables us to cor-
rect the model at any time according to the complete 
dataset.

Table 1 Dataset used to derive the model. Missions (first column) and their time span (second column)

Selection criteria applied the data: night-time (third column), Kp threshold (fourth column) and positiveness of the z-component of the IMF (fifth column). Number of 
vector field components (sixth column) and intensity measurements (seventh column)

Percentage of rejected data through the (eighth column)

Mission Period Selection type # data

Night time Kp IMF Bz > 0 Vector components Intensity

Observatories 1900.0− 2019.5 × Kp < 4o 3× 74, 410

L.A.M. surveys 1900.0− 2009.0 × Kp < 4o 3× 132, 502 2, 106, 816

Pogo 1965.7− 1971.4 × Kp < 2o × 1, 405, 585

MagSat 1979.8− 1980.4 Kp < 2o × 3× 102, 459

Oersted 1999.2− 2000.5 × Kp < 2o × 3× 152, 705

CHAMP 2000.5− 2010.7 × Kp < 2o × 3× 6, 103, 759

Swarm 2013.8− 2022.2 × Kp < 2o × 3× 5, 843, 961

Total 1900− 2022.2 3× 12, 409, 799 3, 512, 401

Table 2 Magnetic sources considered in the model (first 
column) together with the coordinate systems they are 
expressed in (second column)

GEO  geographic, SM  solar magnetic, MAG  magnetic,  GSM  geocentric solar 
magnetospheric

ℓmax and mmax are, respectively, the maximum degree and order of the SH 
expansion
a  POGO, MagSat, Oersted data.    
b  CHAMP, Swarm data.    
c  L.A.M. surveys data

Source Coordinate ℓmax mmax

Core gc GEO 20 ℓmax

Lithospheric gl GEO 100a , 150b , 1000c ℓmax

Remote magnetospheric grm GSM 1 0

Close magnetospheric gm SM 15 1

Fluctuating magnetospheric gfm SM 15 0

Residual ionospheric/ induced gii MAG 50 1

Field‑aligned currents gfac SM 15 1
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Dynamical model
The spatio-temporal evolution of the various sources 
composing the geomagnetic field is of complex nature. 
Involving nonlinear couplings, a large range of spatial and 
temporal scales, some regimes which are not yet numeri-
cally achievable or simply not sufficiently well character-
ized, the dynamics of the Earth’s magnetic field cannot be 
directly simulated. This is why, as initiated by Gillet et al. 
(2013) in the context of geomagnetic modeling, we chose 
simplified stochastic equations, namely auto-regressive 
processes (or ARPs), to predict the evolution of the dif-
ferent fields. Mimicking dispersion and memory effects 
occurring within dynamical systems, such processes are 
computationally cheap to simulate and are formulated 
within a Gaussian framework as required by the Kalman 
filter approach. A priori, each source is characterized by 
its own process which is independent from the others. As 
shown in Appendix A, ARPs in their sequential form, can 
be described by the following general relation:

where zs is a quantity characterizing the sth source to 
be propagated, Fs(�t) is the parameter of the ARP and 
ξi(t,�t) is a temporal Gaussian white noise spatially 
characterized by the distribution N

(

0,�∞
zs

− Fs�
∞
zs
FT
s

)

 , 
where �∞

zs
 is the stationary state covariance matrix asso-

ciated with zs . Except for the lithospheric field which is 
assumed to be static, and for the core field which evolu-
tion is prescribed by a second-order process, the dynam-
ics of each source is controlled by a first-order ARP. In 
this case, zs(t) simply corresponds to the vector of SH 
coefficients gs(t) associated with the sth field and the 
parameter of the process is given by:

where τs(ℓ) is a parameterized scale-dependent charac-
teristic time which is specified for each source in the fol-
lowing. For the core field, the use of a second-order ARP 
induces a coupling between the field itself ( gc ) and its 
first time derivative ( ∂t gc ). Therefore, zc = (gc, ∂t gc)

T and 
the parameter of the process is given by:

where τc(ℓ) is also chosen to be scale dependent. Con-
trary to first-order ARPs where the stationary state 
covariance matrices are given by �∞

zs
= �∞

gs
 , for the core 

field it reads:

(3)zs(t +�t) = Fs(�t)zs(t)+ ξi(t,�t),

(4)Fs(ℓ,�t) = exp [−|�t|/τs(ℓ)],

(5)

Fc(ℓ,�t) =

(

1+ |�t|/τc(ℓ) �t

−�t/τ 2c (ℓ) 1− |�t|/τc(ℓ)

)

exp [−|�t|/τc(ℓ)] ,

(6)�∞
zc

= �∞
gc ,∂t gc

=

(

�∞
gc

0

0 �∞
gc
/τ 2c (ℓ)

)

,

as shown by Hulot and Le Mouël (1994). With the 
proposed setup, �∞

zs
 and τs(ℓ) completely defines the 

dynamical behavior of the ARPs. The covariance matri-
ces characterizing the stationary state of each source are 
assumed to derive from energy spectra Es(ℓ, as) expressed 
at given radii as such as:

where Nm is the number of modeled spherical harmonics 
coefficients per degree ℓ , and R is given by R(ℓ) = ℓ+ 1 
and R(ℓ) = ℓ for internal and external sources, respec-
tively. The shape of each energy spectrum is imposed. 
It can either be flat, such as Es(ℓ) = A2

s  or identi-
cal to the correlation kernels proposed by Holschnei-
der et  al. (2016) that we refer as of C-based type with 
Es = A2

s (2ℓ+ 1)R(ℓ) , where As is the magnitude of the 
spectrum. For most sources, the dipole part is assumed 
to be independent from the rest of the spectrum such as 
Es(ℓ = 1) = D2

s  . Under these assumptions, the radii as , 
the amplitudes As and the dipole magnitudes Ds form the 
free parameters of the stationary state covariance matri-
ces �∞

zs
 . Characteristic timescales are parameterized by 

power laws such as τs(ℓ) = Msℓ
−αs with given magni-

tudes ( Ms ) and slopes ( αs ) which are for some sources 
allowed to continuously vary from one range of spheri-
cal harmonics to the other. The ARP’s parameters were 
estimated through a machine learning algorithm with 
a subsample of CHAMP and Swarm data as detailed in 
Baerenzung et al. (2020). The same values are used in this 
study. They are reported in Table 3.

Note that here, the energy spectrum of the lithospheric 
field is split into two ranges. In the first one, between 
ℓ = 1 and ℓ = 74 , the spectrum is of the C-based type 
and exhibits a characteristic radius of al = 6287 km and 
a magnitude of Al = 0.16 nT. These are values obtained 
by Baerenzung et  al. (2020). In the second range, 
between ℓ = 75 and ℓ = 1000 , the spectrum is flat with 
al = 6367.9 km and Al = 6.5 nT. In this case, the param-
eters were estimated through a least square fit between 
ℓ = 75 and ℓ = 400 of the energy spectrum associated 
with the WDMAM model of Lesur et al. (2016).

The source associated with field-aligned currents, as 
well as the components at SH degree larger than ℓ = 1 of 
the fluctuating magnetospheric field, exhibit very small 
characteristic timescales of, respectively, τfac(ℓ) = 1 min 
and τfm(ℓ > 1) = 18 min. These timescales being smaller 
than the time step of the Kalman filter algorithm (here 
set to 30 min), the associated fields are assumed to tem-
porally evolve as a white noise but are correlated in space 
and time during the analysis. Setting a priori a zero mean 
for both fields their covariance can be expressed as:

(7)

�∞
gs
(ℓ,m, ℓ′,m′, r = as) =

Es(ℓ, as)

NmR(ℓ)
δ(ℓ− ℓ′)δ(m−m′),
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Filtering, smoothing, sampling
The prior statistical properties as well as the dynamics 
of the different magnetic sources being characterized, 
assimilation can be initiated. As a first step, a vector z 
containing the spherical harmonics coefficients of each 
field is constructed. For the full model, z is composed 
of NM = 1002696 entries. The lithospheric field which 
is expanded up to ℓ = 1000 is filling more than 99.9% of 
the z vector. With such a model dimension, the size of the 
covariance matrix associated with z , namely �z , should 
be of NM × NM ∼ 1012 . Yet computations with such a 
matrix would be numerically impossible. This is why we 
approximate the predicted uncertainties of the small scale 
lithospheric field (for 101 ≤ ℓ ≤ 1000 ) by only keeping its 
variance information (the one associated with each of its 
spherical harmonics coefficients). Under such an assump-
tion the dimension of �z reduces to NM × NM ∼ 108 , a 
computationally conceivable size. This strong approxima-
tion, which induces a complete loss of the predicted spa-
tial correlations of the lithospheric field beyond ℓ = 100 
is evaluated in "Lithospheric field" section.

To forecast z , each parameter matrix Fs of equation 3 
are incorporated in a global matrix F . The same operation 
is performed for the stationary state covariance matrices 
�∞ which are assembled into the covariance matrix �∞ . 
Given F and �∞ , the covariance matrix associated with 
the Gaussian white noise of the full model forecast step 
reads �̃ = �

∞ − F�
∞
F
T . Therefore, the evolution of the 

mean model and its covariance from time step k − 1 to 
step k is then given by:

(8)
E[gs(ℓ, t)gs(ℓ

′, t +�t)] = �∞
s (ℓ) exp [−|�t|/τs(ℓ)]δ(ℓ− ℓ′) .

After the forecast, whenever measurements are available, 
the model is updated accordingly. This operation is per-
formed through a Bayesian inversion which reads:

where Rk is the covariance matrix associated with meas-
urement errors, Kk is the Kalman gain matrix and Hk is 
the operator projecting the model to the observations 
dk at iteration k. Rk is chosen to be diagonal with con-
stant standard deviations of 0.1 nT for intensity data [see 
Quesnel et al. (2009)] and vector field measurements, and 
of 4.85 nT/yr for each component of secular variation 
data as we estimated it with a similar algorithm used to 
calibrate Kalmag (see Baerenzung et al. (2020)). When dk 
corresponds to intensity measurements, the linearization 
approach proposed by Mauerberger et al. (2020); Schan-
ner et  al. (2022) is applied. In their developments, they 
showed that at first order, the predicted intensity Ik could 
be related to the predicted magnetic field Bk through 
the relation Ik ∼ E[Bk ]

T
Bk/Ĩk , where Ĩk is the intensity 

derived from the mean magnetic field E[Bk ] . Note that 
this projection is realized with the mean magnetic field 

(9)E[zk|k−1] =Fk−1E[zk−1]

(10)�zk|k−1
=Fk−1�zk−1

F
T
k−1 + �̃ .

(11)Kk =�zk|k−1
H

T
k

(

Hk�zk|k−1
H

T
k + Rk

)−1
,

(12)E[zk|dk ] =E[zk|k−1] + Kk

(

dk −HkE[zk|k−1]
)

,

(13)�zk|dk
=(I− KkHk)�zk|k−1

,

Table 3 Magnetic sources parameters as described in "Dynamical model"  section and evaluated by Baerenzung et al. (2020)

The prior spatial covariance matrices are derived from energy spectra expressed at some radii as which are either flat with E∞s (ℓ) = A2s  or of the C-based type [see 
Holschneider et al. (2016)] with the form E∞s (ℓ) = A2s (2ℓ+ 1)R(ℓ) , where R(ℓ) = ℓ+ 1 and R(ℓ) = ℓ for, respectively, internal and external sources

The characteristic timescales are parameterized by τs(ℓ) = Msℓ
−αs

Field Spectrum Radius a (km) A (nT) M α

Core Flat 3456 D: 1.12× 105

9.74× 104
τc(1) : 935 yrs
M(ℓ ≥ 2) = 514 yrs

1.06

Lithospheric 1 ≤ ℓ ≤ 74 C‑based 6287 0.16 ∞ 0

75 ≤ ℓ ≤ 1000 Flat 6367.9 6.5 ∞ 0

Close magnetospheric C‑based 12524 D: 9.16
1.88

τm(1) : 1.54 days
M(ℓ ≥ 2) = 18 min

0

Remote magnetospheric C‑based 235570 7.3 10.31 yrs 0

Fluctuating magnetospheric C‑based 13028 D: 3
4.56

τfm(1) : 0.36 day
τfm(2) : 0.55 days
M(ℓ ≥ 3) = 4 days

1.15

Residual ionospheric/ induced Flat 6324 D: 5.48
4.39

τs(1) : 0.71 day
M(ℓ ≥ 2) = 1.76 day

0.93

Field‑aligned currents C‑based 7917 D: 0
1.22

τfac(1) : 0
M(ℓ ≥ 2) = 1 min

0
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prediction. Therefore, no iteration over the updated solu-
tions is required. When dk correspond to secular varia-
tion data, Hk = 0 for each source except for the core field 
where Hk projects its associated secular variation on the 
data. Once all data have been assimilated, the different 
modeled epochs are corrected through a smoothing algo-
rithm (see Rauch et al. (1965)). Starting at the final step of 
the Kalman filter it performs iteratively backward in time 
through the following relations:

where d corresponds to the full dataset. The smooth-
ing algorithm only provides snapshots of the posterior 
model, therefore the resulting solution does not con-
tain information about temporal correlations. Although 
the posterior covariance between the model at different 
epochs can be analytically derived, obvious storage limi-
tations makes this option numerically inapplicable. This 
is why we introduced a formulation to sample ensembles 
from the posterior model which are correlated both in 
space and time. Starting with an ensemble ze randomly 
drawn from the last state of the Kalman filter solution, 
the algorithm proceeds similarly to the smoothing algo-
rithm, backward in time with:

where ζ e is a random realization from the Gaussian dis-
tribution characterized by a 0 mean and a covariance 
matrix given by:

Note that to correct deviations, due to sampling errors, 
between the ensembles and the true posterior means, the 
ensembles were recentered at each epochs accordingly to 
the mean smoothing solutions. For this study, we used an 
ensemble of 1024 members.

Model construction
To construct the model, the time step of the Kalman 
filter algorithm was set to �t = 30 min. Nevertheless, 
whenever the distance between two analysis windows 
exceeded this value, �t was increased accordingly. With 
a dataset covering the 20th century and the last 22 years, 
the direct approach would have been to start assimilating 

(14)Gk−1 =�zk−1|dk−1
F
T
k �

−1
zk|k−1

,

(15)
E[zk−1|d] =E[zk−1|dk−1

] +Gk−1

(

E[zk|d] − E[zk|k−1]
)

,

(16)
�zk−1|d

=�zk−1|dk−1
+Gk−1

(

�zk|d
−�zk|k−1

)

G
T
k−1 ,

(17)
z
e
k−1|d = E[zk−1|dk−1

] +Gk−1

(

z
e
k|d − E[zk|k−1]

)

+ ζ e,

(18)�
E
zk−1|d

= �zk−1|dk−1
−Gk−1

(

�zk|k−1

)

G
T
k−1 .

measurements in 1900.0 and to progress forward in 
time until today. However, we did not proceed this way. 
Instead, the Kalman filter simulation was initiated in 
2000.5 to first assimilate ground-based observatories, 
CHAMP and then Swarm data until 2022.18, the last 
epoch at which measurements were currently available. 
The smoothing algorithm was then applied to update 
the model within this time window. In a third part, the 
smoothing solution in 2000.5 was used as a restart file to 
assimilate, backward in time, the measurements taken 
prior to this date. Finally, the smoothing algorithm was 
applied from 1900 to today with a slight modification 
beyond 2000.5 which is detailed in Appendix B.

Two reasons motivated this choice of splitting the 
assimilation process. The first one is to possess a well-
resolved large-scale lithospheric field before assimilating 
survey data. This, in order to be able to distinguish the 
gain of assimilating such observations on this part of the 
field. To this end, the lithospheric field was fully mod-
eled up to SH degree ℓ = 150 during the CHAMP and 
Swarm eras. The full solution (mean and covariance) was 
then truncated at ℓ = 100 in 2000.5 to restart the Kalman 
filter between 2000.5 and 1900.0. Beyond ℓ = 100 only 
the mean and variance were kept from the CHAMP and 
Swarm solution. This part was finally extrapolated with a 
zero mean and the prior variance of equation 7 between 
ℓ = 150 and ℓ = 1000 . The second reason for splitting 
the assimilation process was motivated by the fact that 
the older the measurements, the lower their accuracy and 
spatial coverage. Yet, before assimilating any measure-
ment an outlier detection is performed. The latter process 
consists in checking that the measurements do not exces-
sively deviate from their predicted values, in particular 
that each vector field or intensity measure lies within the 
95.6% confidence interval of the model prediction. On 
top of this selection, the misfit of the sequentially assimi-
lated tracks was evaluated. Whenever the misfit value 
exceeded the imposed threshold of 3, the correspond-
ing track was dismissed. The algorithm to detect outliers 
performs better when the model accuracy is high, which 
occurs when the data quality and coverage are good. This 
is why starting with a very well constrained solution in 
2000.5 and assimilating data backward in time enabled us 
to optimize the detection process.

Over the entire time span of the model, each source, 
except the one associated with field-aligned currents, is 
stored every 0.1 year, setting up the temporal resolution 
of the model to this time step. However, to better track 
the evolution of rapidly evolving sources, such as the 
close and fluctuating magnetospheric fields or the resid-
ual ionospheric/induced fields, the latter were stored 
every 3 hours during the CHAMP and Swarm eras and 
every 5 days between 1900 and 2000.5.
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Results
Main field and secular variation
The Kalman filter and smoothing algorithms provide a 
model in terms of mean solution and associated covari-
ance matrix. Combining these two quantities gives a 
precise knowledge of locations where the solution is reli-
able and where it is not. As an illustration for the main 
field, i.e., the sum of the core field and the lithospheric 
expanded up to SH degree ℓ = 20 , Fig. 2 shows at differ-
ent epochs the radial component of the mean field (iso-
contours) and its associated standard deviation (color 
maps). Locations where the maps are red correspond 
to locations where the mean solution is likely to deviate 
strongly from the true field. On the opposite, within blue 
and purple areas the model predicts that the true and the 
mean predicted field are close. These maps are comple-
mented on their bottom right by a global measure of the 
predicted uncertainty. It corresponds to the r.m.s. stand-
ard deviation given in nT and expressed as:

where σ is the standard deviation associated with the 
radial component of the field and � is the Earth’s surface.

Until the 1960s, uncertainty maps exhibited a strong 
dichotomy between the Northern and Southern hemi-
spheres. Whereas in the North, the standard deviation 
associated with the radial component of the field does 
not globally excess 25 nT, it reaches and even exceeds 50 
nT in the South. The difference of predicted uncertain-
ties is particularly important between land and oceanic 
surfaces reflecting the lack of measurements taken over 
the latter, the location where the field is best resolved is 
Europe. This is a benefit of the high density of ground-
based observatories operating at this place and during 
this time period. When looking at the r.m.s. standard 
deviation, the year 1920 slightly stands out with σ̄ = 44 

(19)σ̄ =

√

∫

�

σ 2d�/

∫

�

d� ,

Fig. 2 Standard deviation associated with the radial component at the Earth’s surface of the sum of the core field and the lithospheric field 
expanded up to spherical harmonics degree ℓ = 20 . Each panel corresponds to a different epoch which is displayed on their bottom left. 
Isocontours show the mean Br = 0 solution. White triangles represent the locations of ground‑based observatories available at the presented 
epochs. On the bottom right of each map is indicated the r.m.s standard deviation σ̄ in nT
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nT, whereas this value oscillates around σ̄ ∼ 50 nT in 
1910, 1930 and 1940. This phenomenon can be explained 
by the multiple land and marine surveys occurring at and 
around this epoch and which are offering a large data 
coverage of the globe (see Fig. 1). In 1960, the global res-
olution of the model is improved and the North–South 
dichotomy mostly disappears. Two reasons explain this 
gain of accuracy. The first one is the dense spatial cover-
age of survey data at this epoch (see Fig. 1). The second 
one is the time proximity of the POGO mission which 
started in 1965. One can also observe that observatories 
still play an important role to reduce the posterior vari-
ability as it is the case in and around Europe and Japan. 
In 1970, the jump in accuracy of the model is striking. 
At this period lying within the POGO era, the standard 
deviation associated with the Kalmag solution is strongly 
reduced. However, the model predicts a higher possible 
variability around the magnetic dip equator. This phe-
nomenon is the transcription of the Backus effect, or 
more generally the “perpendicular error” effects within 
the model. Indeed, as first recognized by Backus (1970), 
to be then generalized by Lowes (1975), when construct-
ing a geomagnetic field model with intensity measure-
ments alone, larger errors will contaminate the model 
near the equator. This effect is surely affecting our mean 
solution, but covariance information enables us to quan-
tify it. With MagSat observations, which cover less than a 
year ( 1979− 1980 ), the model precision is equivalent to 
the one obtained with POGO data except around the dip 
equator where vector field measurements eliminate the 
“perpendicular error” effects induced by the assimilation 
of intensity data. The map in 1990 highlights the impor-
tance of low-orbiting satellites to recover the Earth’s mag-
netic field. Lying between MagSat and Oersted missions, 
in the middle of almost 20 years without satellite meas-
urements, the solution obtained at this time is strongly 
degraded. It presents levels of uncertainties equivalent 
to the 1960 ones except in Northern America and Russia 
where the coverage with ground-based observatories has 
since been increased. The situation is ameliorated with 
Oersted measurements and becomes even better with 
CHAMP and Swarm observations. With the high-quality 
instrumentation of CHAMP and Swarm satellites, the 
model is extremely precise and this is almost everywhere 
at the Earth’s surface. It is however worth noting that 
the constellation of Swarm satellites permits to obtain a 
slightly more accurate solution than the unique CHAMP 
spacecraft.

When looking at the mean secular variation (SV) and 
its associated standard deviation as displayed at similar 
epochs in Fig. 3, one can observe that the dichotomy in 
accuracy between the North and the South is also pre-
sent for this quantity. The dichotomy persists until the 

year 2000, but with a lower contrast after 1960. Ground-
based observatory data are of particular importance to 
constrain the secular variation, as locations where their 
density is high always coincide with areas of low pos-
terior variability. Globally, uncertainties are decreas-
ing with time except between 1970 and 2000, where the 
r.m.s. standard deviation fluctuates due to the lack of 
persistent low-orbiting satellite missions. In addition, 
the distribution of uncertainties over the different spatial 
scales is not homogeneous. Instead, small scales typically 
exhibit a higher posterior variability relatively to their 
mean signal than large scales. This effect can be observed 
in Fig. 4 where time series between 1900 and 2022 of the 
68.2% confidence interval associated with some selected 
SH coefficients are displayed in red. In this figure, it is 
clearly visible that the larger the degree of the coefficient 
(from left to right and top to bottom), the larger its pos-
terior standard deviation relatively to its mean values. 
The COV-OBS.x2 model of Huder et  al. (2020), exhib-
its a similar behavior as its predicted 68.2% confidence 
intervals (blue areas) show. Although the two models are 
mostly consistent with one another, small differences can 
nevertheless be distinguished, in particular in the pre-
dicted standard deviations. Until ∼ 1920 their level is 
lower for COV-OVS.x2, they become equivalent between 
COV-OVS.x2 and Kalmag until ∼ 1960 to be lower for 
Kalmag afterwards.

To precisely characterize the spatio-temporal resolu-
tion of the secular variation over the model time span, we 
computed the ratio Cġ (ℓ, k) between the Fourier power 
spectra of the mean secular variation and its associated 
standard deviation for 20 years time periods. This quan-
tity, which was proposed by Gillet et  al. (2015), can be 
expressed as:

where ˆ̇gc,ℓ,m(k) is the Fourier transform of the secular 
variation, and σ ˆ̇gc ,ℓ,m

(k) is its associated standard devia-
tion. To estimate the latter quantity, we used an ensemble 
of 1024 Fourier transform of secular variation time series. 
In Fig.  5, Cġ (ℓ, k) is displayed for 6 different time win-
dows. The blue and red areas correspond to spatio-tem-
poral scales which are, respectively, well resolved and not 
resolved. At early times, between 1900 and 1920, only 
some limited amount of temporal scales of the SV up to 
SH degree ℓ = 4 are resolved. The situation slightly 
improves between 1920 and 1960 where some signal up 
to SH ℓ = 6 can be accurately recovered, and this down 
to a few years for the largest spatial scales. The emer-
gence of satellite missions and the increase of 
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ground-based observatory and survey data helps improv-
ing the model resolution between 1960 and 2000. During 
this time interval some spherical harmonics coefficient 
up to degree ℓ = 5 are either partially or fully resolved 
down to time periods lower than a year. Reaching such a 
temporal resolution is impossible with the secular varia-
tion data derived from annual differences of observatory 
measurements. It can therefore only be achieved thanks 
to the high temporal coverage of satellite and survey data. 
In agreement with our previous results and with the 
study of Gillet (2019), the secular variation is best 
resolved during the CHAMP and Swarm eras, where spa-
tial scale up ℓ = 15 can be partially resolved down to 
periods of approximately 5 years, and 2-year fluctuations 
can be very well captured up to ℓ = 10.

Lithospheric field
As previously mentioned, the lithospheric field model 
was built in multiple steps. During the CHAMP and 
Swarm eras, it was fully modeled up to SH degree 
ℓ = 150 . After applying the smoothing algorithm, the 

lithospheric in 2000.5 was divided in three parts. In the 
first one, between ℓ = 1 and ℓ = 100 , the full smoothing 
solution (mean and associated covariance matrix) was 
kept. In the second part, between ℓ = 101 and ℓ = 150 , 
only mean and variance information were considered. 
Finally, between ℓ = 151 and ℓ = 1000 a zero mean and 
the variance derived from equation 7 with parameters of 
Table  3 were a priori imposed. The Kalman filter algo-
rithm was then launched backward in time with this 
prior lithospheric field between 2000.5 and 1900.

Keeping only variance information within the Kalman 
filter algorithm is a strong approximation. Before imple-
menting it, this approximation was tested during the 
CHAMP and Swarm eras. For this evaluation phase, the 
lithospheric field was fully modeled up to ℓ = 30 and 
partially modeled (keeping only variance information) 
between ℓ = 31 and ℓ = 150 . The remaining part of the 
model was simulated normally and the dataset used is the 
one described in "Data" section. The resulting model is 
referred as the PR model. With this setup, comparisons 
with the solution obtained at full resolution (FR model) 

Fig. 3 Same as Fig. 2 for the secular variation. Each quantity is expressed in nT/yr
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can be performed. In a first simulation, it was observed 
that the posterior variance associated with the approxi-
mated solution had a tendency to be underestimated. In 
particular, the transition between the degree variance 
(the sum of the variances at a given degree) at SH degree 
ℓ = 30 and ℓ = 31 exhibited a pronounced discontinu-
ity. To partially correct this effect, variances beyond the 

transition were increased by a multiplication factor. The 
latter was imposed to vary linearly with the degree of the 
SH expansion, and forced a smooth transition as well as a 
level of variance at the last modeled degree correspond-
ing to stationary state variance of equation  7. Because 
of the latter operation, the lithospheric field resolution 
was increased to ℓ = 200 , a degree at which the signal 

Fig. 4 Time series between 1900 and 2022 of selected spherical harmonics coefficients (indicated on the top of each panel) of the secular variation 
at the Earth’s surface. 68.2% confidence interval of the Kalmag solution (red areas) and the COV‑OBS.x2 solution (blue areas) of Huder et al. (2020)

Fig. 5 Ratio between the Fourier power spectra of the mean secular variation and its associated standard deviation for the 20‑year time periods 
displayed on the top right of each panel
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at satellite altitude becomes very low as shown by Olsen 
et al. (2017).

The results of this evaluation phase are displayed in 
Fig.  6. On the left panels, the mean downward compo-
nent of the lithospheric field at the Earth’s surface is 
shown for both the solution obtained at full resolution 
(top) and the one obtained at partial resolution (bottom). 
These two maps look very similar and most features 
which can be recovered by the FR model are present in 
the PR model. This aspect is confirmed by the map which 
exhibits the difference between the two mean solu-
tions (top right). Only at the level of Antarctica, Eastern 
Europe and Western Russia, discrepancies become quite 
intense. These discrepancies coincide with relatively 
large-scale errors (up to ℓ = 70 ) as shown with crosses by 
the energy spectrum at the Earth’s surface of the differ-
ence between the two mean models (bottom right panel). 
Beyond ℓ = 70 , the level of error decreases. The compu-
tation of the degree correlation between the two models, 
as introduced by Langel and Hinze (1998) reads:

also highlights their proximity. The latter reaches a mini-
mum of 0.915 at ℓ = 66 and stabilizes around the mean 
value of 0.979 beyond ℓ = 100 . The energy spectra asso-
ciated with the standard deviations show that the model 
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where only variance information was updated, had a 
tendency to underestimate the level of predicted uncer-
tainties. Although the technique previously mentioned 
to rescale the variance was applied, it did not completely 
resolve this issue. Nevertheless, the fact that the small-
scale lithospheric field was only marginally affected by 
the proposed modeling approximation comforted us to 
implement it for the complete model derivation.

The lithospheric field resulting from the assimilation of 
the entire dataset is first analyzed through energy spectra 
at the Earth’s surface. In the left part of Fig. 7, the spec-
tra of the mean, the standard deviation and the prior 
standard deviation of the lithospheric field are displayed 
with black lines. In this solution, energy populates the 
entire range of modeled scales. However, the mean field 
is predicted to be globally reliable only up to SH degree 
ℓ ∼ 450 , where the spectrum of the mean and the spec-
trum of the standard deviation cross one another. In 
addition, the discontinuity in the spectrum of the mean 
at SH degree ℓ = 150 indicates that even up to ℓ ∼ 450 
a non-negligible portion of the crustal signal remains 
unmodeled. Nevertheless, comparisons with the FR 
model previously discussed (blue lines and dots) demon-
strate that the assimilation of survey data helps to better 
constrain the large-scale lithospheric field. Indeed, the 
mean signal of the final solution has gained in intensity, 
and its standard deviation has decreased. In the same 
figure, the spectra of the difference with two other lith-
ospheric models, the WDMAM model by Lesur et  al. 

Fig. 6 Lithospheric field at the Earth’s surface expanded up to spherical harmonics degree ℓ = 150 . Left: mean downward component solution 
for the FR model estimated with full covariance information (top) and for the PR model estimated with variance only information from ℓ = 30 
(bottom). Top right: difference between FR and PR models mean downward components. Bottom right: energy spectra of the means (solid lines), 
the standard deviations (dashed lines) and the difference (crosses) between the FR model (black lines) and PR model (blue lines)
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(2016) (red dots), and the LCS-1 model by Olsen et  al. 
(2017) (green dots), are also shown.

Although our solution is apparently closer at any 
degree to the LCS-1 model than to the WDMAM model, 
the examination of the degree correlation (right panel of 
Fig. 7) indicates that this aspect is only true up ℓ = 150 . 
Beyond this value, even if ρℓ is relatively low, the correla-
tion between Kalmag and WDMAM (red line) is higher. 
Contrary to the degree correlation between LCS-1 and 
Kalmag which decays smoothly, the one associated with 
Kalmag and WDMAM presents two transitions. One of 
them is at SH degree ℓ = 100 , the spatial scale delimit-
ing the satellite data solution ( ℓ ≤ 100 ) from the survey 
data solution ( ℓ > 100 ) of the WDMAM model. The 
other transition occurs at ℓ = 150 , the degree beyond 
which our model is only constrained by survey data. This 
second drop in ρℓ may be explained by the lower spatial 
resolution that our solution exhibits in certain areas. This 
phenomenon can be observed in Fig. 8 where the down-
ward components of WDMAM (top left) and Kalmag 
(bottom left) expanded up to ℓ = 450 (the resolution up 
to which we predict a globally well-resolved solution) are 
displayed.

The intense signals predicted by WDMAM in the 
Southern parts of the Pacific, the Atlantic and the Indian 
oceans, or on large portions of continental areas are 
mostly absent in our solution. It is however worth noting 
that WDMAM does not only derive from direct measure-
ments of the geomagnetic field, but also from the com-
bination of ocean floor age map, relative plate motions 
and geomagnetic polarity time scale (see Dyment et  al. 
(2015)). Logically, the difference between the downward 

component of both models (top right of Fig. 8) is larger 
at these oceanic and land locations than anywhere else. 
On the opposite, discrepancies are reduced in most areas 
where the standard deviation associated with the large 
scale part of the field (up to ℓ = 100 ) is low (map on the 
bottom right). These uncertainty predictions which are 
tied to data coverage (see Fig. 1) therefore provide a good 
approximation of locations where the Kalmag model is 
likely to be well resolved.

The model being expressed in terms of posterior 
distributions, it can be used as a prior information to 
assimilate new data when some of them become avail-
able, and therefore be updated accordingly. To illustrate 
this aspect, airborne intensity measurements taken 
above Afghanistan in 2006 and 2008 were put aside 
from the dataset serving the model derivation. They 
are now used to update the lithospheric field following 
the method detailed in Appendix  C. The locations at 
which each measure was taken during these surveys are 
shown with colored dots (blue for 2006 red for 2008) in 
the bottom left panel of Fig. 9. The downward compo-
nent of the mean prior lithospheric field, which comes 
from the smoothing solution taken up to ℓ = 1000 in 
2006.0, is shown on the top left panel. Its resolution 
was increased to ℓ = 2000 before the Kalman filter 
simulation was launched. The result of the assimilation 
process is shown through the downward component of 
the mean posterior field in 2009.0 in the second panel 
of the top row of Fig.  9. On this map, it can be seen 
that structures which were completely invisible in the 
prior model appear in the posterior one. In particular, 
high-intensity anomalies could be detected along the 

Fig. 7 Left: energy spectra at the Earth’s surface of the mean (continuous lines), the standard deviations (dashed lines), and the prior 
standard deviation (dash dotted line) for the Kalmag lithospheric model (black lines) and the FR model (blue lines). Dots represent the spectra 
of the difference between the Kalmag model and the WDMAM model by Lesur et al. (2016) (red), the LCS‑1 model by Olsen et al. (2017) 
(green), and the FR model (blue). Right: degree correlation ρℓ between the Kalmag lithospheric field model and the WDMAM model (red lines), 
and the LCS‑1 model (green lines)
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Fig. 8 Downward component of the lithospheric field at the Earth’s surface expanded up to spherical harmonics degree ℓ = 450 for the WDMAM 
model by Lesur et al. (2016) (top left), the Kalmag model (bottom left), and the difference between the WDMAM and the Kalmag model (top right). 
The color scale for these three maps is displayed below the mean Kalmag solution. Bottom right: standard deviation associated with the Kalmag 
mean downward component expanded up to ℓ = 100

Fig. 9 Lithospheric field update at the level of Afghanistan. Top left: prior mean downward component in 2006.0 expanded up to ℓ = 1000 . 
Bottom left: locations of airborne intensity measurements taken in 2006 (blue dots) and 2008 (red dots). The second to the fourth map on the top 
show different models of the downward component of the lithospheric field. These are, respectively, from from left to right, the posterior mean 
expanded up to ℓ = 2000 , the EMM model by Maus (2010) taken up to ℓ = 790 and posterior mean truncated at ℓ = 790 . Under each solution, 
the absolute value of the difference between measured intensities and predicted ones is shown. For predictions, the Kalmag mean core field 
was included. The values given on the bottom left of these maps correspond to the r.m.s. values of the differences between the model and the data
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Southern and Western border of Afghanistan. The field 
in the central part of the land is globally weaker. Such 
patterns are also predicted by the EMM 2017 model 
of Maus (2010) as shown on the third panel of the top 
row. They are nevertheless of lower magnitude, and less 
detailed due to the resolution of the model which is 
limited to ℓ = 790 . To make the comparison with the 
EMM solution possible, the posterior mean was trun-
cated at SH degree ℓ = 790 . The resulting downward 
component is shown in the top right of the figure. Now 
the two models are looking more alike. Nevertheless, 
discrepancies in predicted intensity still remain. In 
order to assess the degree of compatibility of the dif-
ferent models with the observations, the absolute value 
of the difference between a subset of the measurements 
and the intensities predicted by the sum of the core and 
the different lithospheric field solutions was computed. 
The results are shown on the bottom panel below each 
corresponding downward components. The model 
exhibiting the higher degree of freedom, displayed 
on the second column, is without surprise the model 
which can better explain the data. As shown on the bot-
tom of the map, the r.m.s. difference between the model 
and the measurements is of 18nT. Globally the predic-
tions of the truncated model (right column) are closer 
to the data than the EMM predictions (third column). 
Of course Afghanistan is a particular location and no 
claim is made here that the Kalmag model would be 
globally more accurate than the EMM model since this 
is certainly not the case. However, this example shows 
that the method proposed in this study is well suited 
to construct regional high-resolution models of the 

lithospheric field and this even when data coverage is 
not optimal.

Magnetospheric and induced fields
With the proposed approach, magnetospheric and 
induced fields are jointly estimated with the rest of the 
model. A priori, the field generated by the currents 
flowing in the outer magnetosphere ( grm ) is predicted 
to evolve slowly with time ( τgrm = 10.3 years) in com-
parison to other external sources. A posteriori, such a 
behavior is confirmed as illustrated by the evolution of 
the annual mean dipole component of E[grm] projected 
in magnetic coordinates and shown in the left panel of 
Fig. 10 with circles. Note that prior to 1953, our model 
cannot correctly extract this field and the latter oscil-
lates around 0 with a large posterior variance. How-
ever, grm alone cannot explain decadal variations of 
external sources as they can be detected at the Earth’s 
surface or at the altitude of low-orbiting satellites. The 
rapidly evolving magnetospheric components also 
exhibit long-term trends whenever the latter can be 
captured. This effect can be observed when comparing 
the annual mean dipole component of E[grm] to the one 
of E[grm + gm + gfm] shown with a continuous line in 
Fig. 10. During satellite eras, the latter is always found 
to be more intense than the former, meaning that the 
ring current can generate some persistent annual signal 
as already documented by Lühr and Maus (2010). With 
our current method, this signal can only be recovered 
when temporal data coverage is high enough due to 
the fact that E[gm] and E[gfm] exhibit very low memory 
timescales. A possible way to improve the AR processes 

Fig. 10 Left: annual average of the mean dipole component in magnetic coordinates associated with the remote magnetospheric field grm (line 
with circles), the sum of the remote grm , close gm , and fluctuating gfm magnetospheric fields (black line), and the COV‑OBS.x2 model by Huder 
et al. (2020) (dashed line). The gray area represents the confidence interval predicted by E[grm + gm + gfm] ± σ . Right: azimuthal component 
of the geomagnetic field taken during night‑time and averaged over 10 days time periods at the level of four ground observatories, Niemegk (top 
left), Kakioka (top right), Hermanus (bottom left), and Canberra (bottom right). Red lines correspond to observatory data, black lines to the full 
Kalmag model predictions and blue lines to the Kalmag core field predictions
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characterizing these sources would be to consider 
some extra timescales accounting for the slow vary-
ing part of the field generated by the ring current. The 
cycle of approximately 10.5 years highlighted by Huder 
et al. (2020) with the COV-OBS.x2 model (shown with 
dashed lines in Fig. 10) is also present in our solution. 
Although the mean solutions of both models slightly 
differ from one another, the COV-OBS.x2 dipole always 
lies within the 68.7 confidence interval predicted by our 
model (gray areas in Fig. 10).

To evaluate the model over short periods of time and 
when all sources are predicted to be well separated, we 
now compare predictions of the azimuthal component of 
the model with ground based observatory measurements 
taken at four different locations, Hermanus, Niemegk, 
Canberra and Kakioka. Observatory data being only 
assimilated to constrain the core field secular variation, 
they can be considered as independent measurements for 
external and induced fields. In order to make visual com-
parisons possible and to remain within the conditions the 
model was built in, only hourly night-time measurements 
and predictions were kept to be then averaged over 10 
days time periods. The results are reported in the right 
panel of Fig. 10 with red lines for observatory data, black 
lines for the full model predictions and blue lines for the 
predictions of the core field alone. Globally, monthly and 
annual variations of Bθ are well captured by the model. 
Only during the time gap between the CHAMP and 
Swarm missions, when external sources are not updated 
anymore, predictions and observations differ strongly. 
One can also notice that the core field does not seem to 
be contaminated by external or induced fields, as its evo-
lution does not reproduce the rapid variations observed 
in the data. The largest discrepancies between predic-
tions and observations are in the magnitude of the sig-
nals. Intense excursions are not predicted by the model. 
The reason for this is that the model was trained on a 
dataset selected for very quiet magnetic conditions [see 
Baerenzung et  al. (2020)]. Therefore, the selection algo-
rithm of the Kalman filter prevents the assimilation of 
data containing a too strong signal from external sources. 
A recalibration of the model for more general conditions 
would certainly solve this issue.

Finally, our model contains a source for induced/resid-
ual ionospheric fields. The latter is a priori uncorrelated 
from magnetospheric fields. Yet rapid variations of exter-
nal fields generate currents within the Earth’s interior, 
which in return induce a secondary magnetic field (e.g., 
Schmucker 1985; Langel and Estes 1985b; Olsen et  al. 
2005; Finlay et al. 2020). The intensity and temporal evo-
lution of the induced field depends on the conductivity of 
the crust, the mantle and the core. Under the assumption 
that conductivity only depends on depth, each spherical 

harmonics coefficient of the induced field will be linked 
the same coefficient of the external field through the 
relation:

where ι is the induced field, ǫ the external fields, and Q 
is referred as the Q-response. In our model, ι = gii and 
ǫ = grm + gm + gfm , where grm is projected in magnetic 
coordinates.

In the particular case discussed by Olsen et  al. 
(2005), where the mantle is assumed to be insulat-
ing until a given depth d followed by a supercon-
ductor, Qm

l (t − t ′) = Q̃m
l δ(t − t ′) and therefore 

ιl,m(t) = Q̃l,mǫl,m(t) . Focusing on the dipole compo-
nent of induced and external fields, and assuming a 
depth of d = 1200 km, leads to ι1,0(t) = Q̃1,0ǫ1,0(t) with 
Q̃1,0 = 0.27 as estimated by Langel and Estes (1985b) 
with POGO data. In the left panel of Fig. 11, the evolu-
tion of, respectively, ǫ1,0 and ι1,0(t)/Q̃1,0 is displayed 
between 2019.45 and 2019.65 with, respectively, red 
and black lines. In order to concentrate on rapid varia-
tions only (we recall that external and induced field were 
stored every 3 hours during the CHAMP and Swarm 
eras), temporal scales larger than 15 days have been fil-
tered out from both time series. Furthermore, we chose 
the [2019.45, 2019.65] time period because temporal cov-
erage of Swarm data is optimal during this interval. The 
two time series in Fig. 11 follow one another quite closely 
and Q̃−1

1,0 seems appropriate to rescale the induced field. 
Over the current Swarm time span, induced and external 
fields exhibit a Pearson correlation ρ = Cov(ǫ, ι)/(σǫσι) , 
calculated here with the mean Kalmag solutions, of 
ρ = 0.79 . It is of ρ = 0.84 over the time interval of Fig. 11 
and of ρ = 0.73 over the CHAMP era. This lower correla-
tion value is probably caused by the uncertainty level of 
external and induced fields which are higher during the 
CHAMP mission than during the Swarm one. However, 
the particular 1-D conductivity model leading to Q̃1,0 is 
known to be imperfect. More complex conductivity pro-
files are required to better model induction processes 
within the Earth’s interior.

We now investigate the Q-response predicted by our 
model when keeping the assumption that the conductiv-
ity within the Earth is only depth-dependent, but relaxing 
the constraint about its profile. For this evaluation, we 
operate in spectral space. Considering only dipole com-
ponents of ι and ǫ and applying a Fourier transform to 
equation 22 the latter becomes:

(22)ιl,m(t) =

∫ ∞

-∞

Ql,m(t − t ′)ǫl,m(t
′)dt ′ ,

(23)ι̂1,0(k) = Q̂1,0(k)ǫ̂1,0(k) .
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From this equation, the real and imaginary parts of Q̂(k) 
are, respectively, given by:

To evaluate these two quantities we considered induced 
and external fields during the [2015.0, 2021.0] time inter-
val when the model reaches its peak accuracy. In the right 
panel of Fig.  11, Re{Q̂(2π/k)} and Im{Q̂(2π/k)} aver-
aged at period Ti = 2π/ki over [Ti, 2Ti] are, respectively, 
displayed with red and black continuous lines. For com-
parisons, the real and imaginary parts of ˆ̃Q1,0 as well as 
the Q-response (referred as QO ) estimated by Olsen et al. 
(2005) with a realistic conductivity model are, respec-
tively, shown with dashed and dotted lines. The general 
behavior of the Q-response we recover is coherent with 
our prior knowledge about it. Indeed, for short periods 
of time the real part of Q̂ is much more intense than its 
imaginary part and its decay pattern is close to the one 
predicted by Olsen et al. (2005). However, in comparison 
to Re{Q̂O} , Re{Q̂} is globally underestimated. This effect 
might be due to the fact that induced fields vary rap-
idly with time, and when no data is feeding the model, 
its mean value tends quickly toward 0 contrary to the 
remote and close magnetospheric fields which evolves 
slower. The behavior of the imaginary part of Q̂ , which 
reflects the temporal lag of the induced field response, is 

(24)

Re{Q̂(k)} =
Re{ǫ̂(k)}Re{ι̂(k)} + Im{ǫ̂(k)}Im{ι̂(k)}

Re{ǫ̂(k)}2 + Im{ǫ̂(k)}2
,

(25)

Im{Q̂(k)} =
Re{ǫ̂(k)}Im{ι̂(k)} − Im{ǫ̂(k)}Re{ι̂(k)}

Re{ǫ̂(k)}2 + Im{ǫ̂(k)}2
.

on the contrary very similar to the one predicted by the 
direct model of Olsen et al. (2005).

Conclusion
In this study, we proposed a method to assimilate dif-
ferent types of geomagnetic data in order to construct a 
high spatio-temporal model of the Earth’s magnetic field. 
The model being expressed in terms of posterior distri-
bution, it reflects the quality and spatial coverage of the 
measurements it is derived from. At the beginning of the 
twentieth century, the main field and the secular varia-
tion are quite uncertain in the Southern hemisphere and 
more particularly in oceanic areas and in Antarctica. 
With the first data collected by low-orbiting satellites, 
these two fields gain in precision and become very reli-
able during the CHAMP and Swarm eras. We demon-
strated that the rapid dynamics of the core field could be 
captured by the model. However, the spatial resolution at 
which short timescale fluctuations are recovered is not 
constant over time and strongly depends on the spatial 
scale considered. Typically, rapid variations can only be 
accurately modeled at large spatial scale. On the opposite, 
fluctuations of the secular variation at high spherical har-
monics degree can only be resolved for long periods of 
time. The model reaches its peak accuracy both spatially 
and temporally during the CHAMP and Swarm eras. It is 
therefore mandatory that such satellite missions are per-
petrated in the future to better understand the nonlinear 
and wave dynamics occurring within the Earth’s outer 
core (see Aubert and Gillet (2021), Gillet et al. (2021)).

To be able to consider land, airborne and marine survey 
observations, which contain an intense contribution of the 

Fig. 11 Left: mean dipole component in magnetic coordinates and evaluated at a radius r = 6371.2 km of the sum of all magnetospheric sources 
(red line) and of the induced field rescaled by the inverse Q‑response Q̃−1

1,0 discussed in the manuscript (black line). Components associated 
with time periods larger than 15 days have been filtered out. Right: real (red) and imaginary (black) parts of the Q‑response. Full lines: Kalmag 
solution estimated during the [2015, 2021] time interval and averaged over [Ti , 2Ti] period intervals. Lines with circles: Q‑response estimated 
by Olsen et al. (2005) with a 1‑D model of the conductivity within the Earth’s interior. Dashes: Q‑response associated with a simplified 1‑D 
conductivity model of the Earth’s interior (see text)
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small-scale lithospheric field, the latter was modeled up to 
spherical harmonic degree ℓ = 1000 . However, this opera-
tion could not be performed directly, since the dimension 
of the associated covariance matrix would have forbidden 
any numerical computation. We therefore introduced, and 
conclusively evaluated, a statistical approximation where 
only mean and variance information were updated beyond 
ℓ = 100 . The resulting mean solution exhibits highly 
detailed structures on every areas where data coverage 
was dense enough. Furthermore, the part of the covari-
ance which is still fully modeled (up to ℓ = 100 ) provides 
a rough estimation of locations where the mean is likely to 
be well resolved.

An important aspect of the proposed approach is 
that whenever new observations become available, the 
model can be updated accordingly without restarting 
the entire assimilation process. The example presented 
with the dataset taken above Afghanistan demon-
strates the flexibility of the method.

As for the core field, the accuracy of external and 
induced fields is not constant over the model time 
span. While signal of the remote magnetospheric 
field could be extracted from 1953 on, rapidly evolv-
ing sources such as the close and fluctuating mag-
netospheric fields or the induced field, could only 
be separated from the data when the latter exhibit a 
high temporal coverage. In general, optimal solution 
for such field was obtained during satellite eras and 
in particular during the CHAMP and Swarm ones. 
The global behavior of external fields is in agree-
ment with previous studies of it (see Lühr and Maus 
(2010); Huder et  al. (2020)). However, the training of 
the model under very quiet magnetic conditions for-
bids the reproduction of most intense external field 
variations. A recalibration of the model under more 
general conditions appears therefore as necessary. 
Although magnetospheric and induced fields were a 
priori assumed to be independent, their connection 
revealed itself a posteriori. Through the proposed 
approach we showed that external and induced fields 
could be jointly estimated from direct measurements 
of the geomagnetic field although the process char-
acterizing their evolution remain quite simplistic. A 
refined parametrization of their dynamical behavior 
would certainly enhance the ability of the algorithm to 
extract such sources from the data.

The model will be frequently updated (at least once 
every 2 months), in particular with Swarm and obser-
vatory data. Furthermore, it can be accessed through 
different physical and statistical properties on a dedi-
cated website at: https:// ionoc ovar. agnld. uni- potsd am. 
de/ Kalmag/.

Appendix A: Sequentialization
Describing the evolution of a given g quantity by continu-
ous first and second-order auto-regressive processes can 
be preformed through the following relations:

where ω̇ is a Gaussian white noise scaled by the factor σ . 
Introducing z = g for first-order ARP and z =

(

g , ∂tg
)T 

for second-order ARP, equations (A.1) and (A.2) can be 
written as:

with A = 1/τ and ζ = σ ω̇ for first-order ARP and:

for second-order ARP.
The homogeneous solution of equation A.3 is given by:

where F = exp(−A�t) is the parameter of the ARP as 
expressed in equations  4 and  5. The general solution of 
equation A.3 is simply z(t +�t) = Fz(t)+ ξ , where the 
white noise ξ characterized by the distribution N (0, �̃) is 
chosen here to force the process to remain stationary. 
Under such a constraint, one can write that 
�(t) = E

[

(z(t)− E[z(t)])(z(t)− E[z(t)])T
]

= �(t = ∞) = �∞  . 
Therefore, calculating the spatial covariance of both sides 
of the solution z(t +�t) = Fz(t)+ ξ and rearranging the 
result gives �̃ = �∞ − F�∞FT.

Appendix B: Smoothing and merging
The model being constructed in multiple steps, the 
smoothing algorithm had to be adapted. In particular, 
information gained with the assimilation of data prior to 
2000.5 had to be propagated to the model constructed 
after this date with CHAMP, Swarm and ground-based 
observatory data. To do so, the solution in 2000.4 of the 
smoothing algorithm running between 1900 and 2000.4 
was taken as a reference model. Its is referred as zr , with 
mean E[zr] and covariance �zr . Information accumu-
lated within this snapshot is then transferred to the first 
smoothing solution (the one running from 2022.2 to 

(A.1)∂t g +
1

τ
g = σ ω̇,

(A.2)∂2t g +
2

τ
∂t g +

1

τ 2
g =σ ω̇,

(A.3)∂t z = −Az + ζ ,

(A.4)A =

(

0 1

1/τ 2 2/τ

)

, ζ =

(

0
σ ω̇

)

(A.5)z(t +�t) = z(t) exp(−A�t) = Fz(t),

https://ionocovar.agnld.uni-potsdam.de/Kalmag/
https://ionocovar.agnld.uni-potsdam.de/Kalmag/
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2000.5). The algorithm to perform this task proceeds iter-
atively in time through the relations:

where zk is a snapshot taken at iteration k of the 
2000.5− 2022.2 smoothing model, Fk is the parameter of 
the ARP enabling to forecast zr to the k iteration, and �̃zr 
is the covariance of the ARP white noise derived from Fk.

Appendix C: Lithospheric field update
Whenever new survey data become available, one may 
wish to assimilate them to improve the lithospheric field 
model. A possibility would be to merge this new dataset 
with the global one and to relaunch the entire Kalman fil-
ter/smoothing algorithm. Yet this operation is extremely 
time consuming. A better option would be to use the pos-
terior model resulting from the smoothing algorithm as a 
prior information to assimilate the new dataset and then 
to propagate the information gained on the lithospheric 
field to the entire model. To perform this task lets assume 
that new data become available within the time interval 
[k − 1, k + 1] , where k corresponds to a stored snapshot 
of the smoothing solution. Assimilating data between 
k − 1 and k is straightforward. One can simply simulate 
the Kalman filter algorithm with the smoothing solution 
zk−1 taken as a restart file. Arriving at k, if the new data-
set offers only a limited coverage of the Earth’s surface, 
the accuracy the core field and other sources exhibit will 
likely be lower than the accuracy of the smoothing solu-
tion at this epoch. It would therefore be beneficial to use 
this solution zk as a prior model. At the same time nev-
ertheless, information gained on the lithospheric field 
between k − 1 and k needs to be transferred to it. To per-
form this operation we proceeded as following:

(B.1)Gk =�zk
F
T
k �

−1
zr

,

(B.2)E[zk |zr] =E[zk ] +Gk(E[zk ] − FkE[zr]),

(B.3)
�zk |zr =�zk

+Gk

(

�zk
− Fk�zrF

T
k − �̃zr

)

G
T
k ,

(C.1)Gk =�zk ,g
s
k
�−1

guk
,

(C.2)E[zk |g
u
k ] =E[zk ] +Gk

(

E[guk ] − E[gsk ]
)

,

(C.3)�zk |g
u
k
=�zk

+Gk

(

�guk
−�gsk

)

G
T
k ,

where guk  and gsk are the vectors of SH harmonics com-
ponents associated with the lithospheric field for, respec-
tively, the Kalman filter and the smoothing solution and 
�zk ,g

s
k
 is the smoothing cross-covariance matrix between 

zk and gsk . These updated smoothing solutions at epoch k 
are then used as a prior information for the Kalman fil-
ter running between k and k + 1 . Such operation is then 
repeated every 0.1 year, as constrained by the chosen 
temporal resolution of the model.

Once the entire new dataset has been assimilated, the 
Kalman filter solution in 1900 is updated with the new 
lithospheric field through equations  C.1 to  C.3 and the 
smoothing algorithm between 1900 and 2022 is simu-
lated again.

Abbreviations
SH  Spherical harmonics
SV  Secular variation
SD  Standard deviation
ARP  Auto‑regressive process
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