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Abstract 

A rapid source fault estimation and quantitative assessment of the uncertainty of the estimated model can elucidate 
the occurrence mechanism of earthquakes and inform disaster damage mitigation. The Bayesian statistical method 
that addresses the posterior distribution of unknowns using the Markov chain Monte Carlo (MCMC) method is signifi-
cant for uncertainty assessment. The Metropolis–Hastings method, especially the Random walk Metropolis–Hastings 
(RWMH), has many applications, including coseismic fault estimation. However, RWMH exhibits a trade-off between 
the transition distance and the acceptance ratio of parameter transition candidates and requires a long mixing time, 
particularly in solving high-dimensional problems. This necessitates a more efficient Bayesian method. In this study, 
we developed a fault estimation algorithm using the Hamiltonian Monte Carlo (HMC) method, which is considered 
more efficient than the other MCMC method, but its applicability has not been sufficiently validated to estimate 
the coseismic fault for the first time. HMC can conduct sampling more intelligently with the gradient information of 
the posterior distribution. We applied our algorithm to the 2016 Kumamoto earthquake (MJMA 7.3), and its sampling 
converged in 2 × 104 samples, including 1 × 103 burn-in samples. The estimated models satisfactorily accounted 
for the input data; the variance reduction was approximately 88%, and the estimated fault parameters and event 
magnitude were consistent with those reported in previous studies. HMC could acquire similar results using only 2% 
of the RWMH chains. Moreover, the power spectral density (PSD) of each model parameter’s Markov chain showed 
this method exhibited a low correlation with the subsequent sample and a long transition distance between samples. 
These results indicate HMC has advantages in terms of chain length than RWMH, expecting a more efficient estima-
tion for a high-dimensional problem that requires a long mixing time or a problem using nonlinear Green’s function, 
which has a large computational cost.
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Introduction
To minimize earthquake and tsunami damage, the details 
of the coseismic fault must be estimated rapidly. Surface 
displacement data supplied by the global navigation satel-
lite system (GNSS) can provide a stable estimation with-
out underestimating the magnitude, considering that the 
measurement of a seismometer can be saturated when 
a megathrust occurs (Ohta et  al. 2012). GNSS data are 
used in the real-time GEONET analysis system for rapid 
deformation monitoring (REGARD) (Kawamoto et  al. 
2017), which was jointly developed by the Geospatial 
Information Authority of Japan and Tohoku University. 
This system analyzes a GNSS carrier phase in real time to 
detect seismic events and automatically and rapidly esti-
mate the fault model. Fault models were automatically 
estimated, for example, the 2016 Kumamoto earthquake 
(MJMA 7.3) (Kawamoto et al. 2016), the 2019 Yamagata–
Oki earthquake (MJMA 6.7), and the 2021 Fukushima–
Oki earthquake (MJMA 7.3). These rapid inferences of 
REGARD include the slip distribution model on a plate 
interface in a subduction zone and a single rectangular 
fault estimation to address non-interplate earthquakes, 
such as inland and intra-slab earthquakes. The fault mod-
els estimated by REGARD were also adopted as part of 
the real-time tsunami inundation and damage forecast 
system operated by the Cabinet Office, Government of 
Japan (Musa et al. 2018; Ohta et al. 2018). It is important 
to accurately understand the estimation uncertainty of 
the estimated fault models to predict tsunamis and other 
natural disasters.

For uncertainty evaluation, a Bayesian statistics inter-
pretation is often used to solve the inverse problem. This 
method is used to quantitatively assess the uncertainty 
of the prediction using the posterior probability den-
sity function (PDF) of model parameters while explicitly 

integrating prior information. Amey et al. (2018) applied 
the Bayesian inversion method to the inference of the 
slip distribution in the 2014 Napa Valley earthquake with 
self-similarity of the fault slip (Mai and Beroza 2002) as 
prior information. In addition, many previous studies 
have used Bayesian inversion (Sambridge and Mosegaard 
2002; Fukuda and Johnson 2008; Dettmer et  al. 2014; 
Ohno et al. 2022).

With non-interplate earthquakes such as the 2008 
Iwate–Miyagi Nairiku earthquake (MJMA 7.2) or the 2019 
Yamagata–Oki earthquake (MJMA 6.7), fault geometries 
are complex or unknown, and many earthquakes are 
difficult to assume the fault geometry in advance (Ohta 
et  al. 2008; Ohno et  al. 2021). The assumption of fault 
geometry required in the slip distribution model can 
make inferences ambiguous and affect the inferred result 
(Fukahata and Wright 2008; Fukuda and Johnson 2010; 
Duputel et al. 2014; Agata et al. 2021; Dutta et al. 2021).

Previous studies have satisfied the two requirements 
of rapid estimation and quantitative uncertainty assess-
ment; for example, Minson et al. (2014) developed a real-
time estimation method using Bayesian linear regression 
including the fault geometry selection with the assess-
ment of its uncertainty and the slip distribution estima-
tion on that geometry. Ohno et al. (2021) also developed 
Bayesian fault estimation methods that acquire the 
uncertainty of the fault parameters of a single rectangu-
lar fault by directly drawing the PDF using the Markov 
chain Monte Carlo (MCMC) method for real-time pur-
pose. Their method incorporates the parallel tempering 
(Swendsen and Wang 1986; Geyer 1991) and an algo-
rithm to automatically determine hyperparameters for 
real time and automatic fault estimation.

An MCMC sampling method typically used in the 
context of Bayesian fault estimation is the Random 
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walk Metropolis–Hastings (RWMH) method (Metrop-
olis et  al. 1953; Hastings 1970). RWMH forms a 
Markov chain based on the judgment of acceptance 
or rejection, depending on the ratio of the posterior 
distribution between a current parameter set and a 
transition candidate sampled randomly. Because of 
its simplicity, this algorithm has been applied to many 
studies in various fields, including fault estimation. 
However, RWMH exhibits a disadvantageous trade-
off relationship between the acceptance ratio and the 
transition distance of parameters. RWMH sampling 
tend to decrease its acceptance ratio in proportion to 
the transition distance in the parameter space, espe-
cially for the sampling after the burn-in. Although 
the transition distance is often adjusted based on an 
acceptance ratio of approximately 30 to 50%, this low 
acceptance makes the inference inefficient. Further-
more, regarding the higher dimensional problems, the 
relevant volume shrinks in relation to the total model 
space volume (the curse of dimensionality), thus the 
acceptance ratio is low and the transition distance is 
further shortened. To address the trade-off problem, 
the RWMH method requires a relatively long chain 
and mixing time.

Considering this problem, we focus on the Hamilto-
nian Monte Carlo (HMC; Duane et  al. 1987) method 
instead of the RWMH method. The HMC method 
requires a relatively short Markov chain to converge a 
sampling because this method can transition long dis-
tances while maintaining a higher acceptance ratio by 
utilizing the gradient information of the posterior PDF. 
Fichtner and Simute (2018) applied the weakly nonlin-
ear problem of source point determination and devel-
oped an efficient and accurate algorithm. This study 
also proposed application to higher dimensional prob-
lems to capitalize on the efficiency of HMC–HMC is 
frequently used in the study of seismic tomography 
(Fichtner et  al. 2019; Gebraad et  al. 2020; Muir and 
Tkalčić 2020). However, HMC has not been applied to 
fault estimation problems in the past and its applicabil-
ity needs to be verified.

In this study, as an application test, we developed an 
algorithm for a single rectangular fault estimation using 
HMC. To evaluate its performance, the algorithm was 
applied to the 2016 Kumamoto earthquake. Further-
more, to examine the accuracy and efficiency of the 
HMC method estimation, the results were compared 
with those of the conventional RWMH method. We 
mainly discuss the applicability of HMC to the estima-
tion of earthquake source fault models and a total sam-
ple size required for our estimation, but only have a 
brief discussion of the computational time for real time 
usage.

Method
Bayes’ theorem
Bayesian inversion is based on Bayes’ theorem (Taran-
tola 2005; Gelman et al. 2021) is represented by Eq. (1) on 
a model parameter vector θ , and a data vector d , used in 
estimation:

where f (θ |d) is the posterior PDF, f (θ) is the prior 
PDF, f (d|θ) is the likelihood function, and f (d), which 
does not depend on the model parameters, is the nor-
malization constant. According to Eq.  (1), the posterior 
PDF is proportional to the prior PDF and the likelihood 
function.

Sampling method
Hamiltonian Monte Carlo method
We developed a method for single rectangular fault estima-
tion using the HMC method (Duane et al. 1987; Neal 2011) 
and evaluated its ability in this study. First, in the HMC 
method, an auxiliary parameter vector p with the same 
dimensions as the model parameter vector θ , is introduced. 
Then, the Hamiltonian H is expressed by Eqs. (2) and (3) in 
the phase space at position θ and momentum p:

where h(θ) is the potential energy as a function of posi-
tion θ , and the Hamiltonian H is calculated using the 
set of θ and p . Subsequently, the transition in the phase 
space is performed while satisfying the conservation 
of energy, keeping the H value, with some error aris-
ing from numerical integration. In the HMC method, 
the leapfrog method is used for the simulation because 
it ensures volume-preservation, time reversibility, and 
detailed balance. The standard procedure for a single step 
of the leapfrog method is shown in Eqs. (4)–(6):

where θi and pi are the i th unknown and auxiliary param-
eters, respectively, e is the step size, t is the current step 
number, and L is the total number of step. Equations (4)–
(6) are iterated from t = 1 to L , where L is the total step 

(1)f (θ |d) = f (θ)f (d|θ)
f (d)

(2)H(θ ,p) = h(θ)+ 1
2p

Tp

(3)h(θ) = − log
(
f (θ |d)

)

(4)pi

(
t + 1

2

)
= pi(t)− e

2
∂h(θ(t))

∂θi

(5)θi(t + 1) = θi(t)+ epi

(
t + 1

2

)

(6)pi(t + 1) = pi

(
t + 1

2

)
− e

2
∂h(θ(t+1))

∂θi
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size of the leapfrog. We adopted an automatic differen-
tiation in the Python/PyTorch module to calculate the 
derivative in Eqs.  (4) and (6). Note that a gradient cal-
culation may improve its efficiency with the analytical 
differentiation of Eq. (3). Furthermore, e and L are hyper-
parameters, and their settings can considerably affect an 
estimation efficiency for a general inverse problem. Sub-
sequently, a numerical error, including the final param-
eters θL and pL , is evaluated using the acceptance ratio 
paccept :

where 
(
θ
(τ ),p(τ )

)
 represents the current parameter ( t = 1 

in leapfrog), where τ is the current sample number and (
θ(τ

′),p(τ
′)
)
 dose the candidate parameter ( t = L ). In 

Eq.  (8), the Hamiltonian is theoretically preserved and 
only a small numerical error affects Eq.  (8); therefore, a 
higher probability of acceptance than RWMH is realized.

The HMC method enables sampling that transitions a 
long distance in parameter space with a high acceptance 
ratio through the above procedure. This procedure is 
conducted as follows:

(i)	 An initial parameter 
(
θ
(1)
)
 , total sample size (T) , and 

the hyperparameters e and L are set.
(ii)	 Random numbers are generated from a standard 

normal distribution and set to p(τ ).
(iii)	Transition from the current point 

(
θ
(τ ),p(τ )

)
 to the 

candidate point 
(
θ(τ

′),p(τ
′)
)
 is performed using 

the leapfrog method and hyperparameters e and L 
(Eqs. 4–6).

(iv)	The candidate point is accepted or rejected using 
the acceptance ratio paccept.

(v)	 (ii)–(iv) are iterated from τ = 1 to T.

Figure  1 shows an example of exploration using the 
HMC method. As seen in the figure, HMC acts on the set-
tings where the hyperparameters are (e, L) =

(
10−3, 10

)
.

No‑U‑Turn sampler
The HMC method requires hyperparameters e and L 
which have a significant effect on the sampling efficiency. 
Therefore, optimization is needed to use this method effi-
ciently. If L is too small, the transition distance between 
samples may be too short and more iteration is needed. 
However, if L is too large, the leapfrog will generate 
“U-Turn” trajectories; therefore, the final transition dis-
tance can become shorter than the middle. To address 

(7)paccept = min (1, r)

(8)r = exp
(
H
(
θ
(τ ),p(τ )

)
−H

(
θ(τ

′),p(τ
′)
))

these problems, especially to avoid the “U-Turn” transi-
tion, we used the No-U-Turn Sampler (NUTS; Hoffman 
and Gelman 2014), the extended method of the HMC.

Although the usual HMC uses the constant L through-
out the sampling, the NUTS is designed not to need 
the constant L in sampling. Instead of stopping at the 
L th time’s integration, the leapfrog transition is termi-
nated based on the detection of “U-Turn”. The “U-Turn” 
in phase space defines the shortening of the distance Q 
between a leftmost point, θ+ , and a rightmost point, θ− , 
of leapfrog transition, it is determined using the time 
derivative of Q:

where the current sample number τ represents the time 
in the phase space, and p+ and p− are the momentum at 
θ
+ and θ− , respectively.
The above method enables the flexible escape of 

U-Turn, but the arbitrary stop of the leapfrog breaks the 
time reversibility. The NUTS algorithm overcomes this 
issue to introduce a procedure such as slice sampling, one 

(9)Q = 1
2

(
θ
+ − θ

−)T(
θ
+ − θ

−)

(10)

dQ
dτ =

(
θ
+ − θ

−)Tp+ < 0 or
(
θ
+ − θ

−)Tp− < 0

Fig. 1  Example of sampling using the Hamiltonian Monte Carlo 
(HMC) method. This figure shows the exploration of a mean 
parameter of a simple normal distribution from synthetic gaussian 
data 

(
f
(
θ |d

)
∝ exp

(
−θ2

))
 . The contours show the constant 

Hamiltonian and their values. Triangles, circles, and squares show 
the start points, transition points, and end points of each leapfrog 
transition, respectively. The blue triangle particularly represents 
the initial point of the sampling. In addition, the orange line shows 
the jump to the next momentum generated by standard normal 
distribution after acceptance of the candidate point
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of the   MCMC method. This is done by exploring from 
the current point θ (τ ) by building a binary tree to a ran-
dom time direction (a sign of L ), selecting the candidate 
state set C based on the condition below, and eventually 
selecting the subsequent states from C uniformly:

where B is the set of all visited states and u is the so-called 
slice generated as a uniform random number between 0 
and the current posterior probability 
exp

(
−H

(
θ
(τ ),p(τ )

))
.

Comparison with Metropolis–Hastings
To verify the accuracy and efficiency of our method, we 
used the Random walk Metropolis–Hastings (RWMH) 
that was adopted by Ohno et  al. (2021) to compare the 
estimation by the HMC method to that by the RWMH 
method (Metropolis et  al. 1953; Hastings 1970), which 
is often used to solve the geophysical problem (Fukuda 
and Johnson 2008; Ito et  al. 2012; Dettmer et  al. 2014; 
Minson et al. 2014; Ohno et al. 2022). The basic part of 
the RWMH we used, is detailed in Ohno et  al. (2021). 
Although Ohno et  al. (2021) introduced an automatic 
determination method for likelihood variance and the 
parallel tempering, we use the same variance value as 
HMC and estimate using only a single Markov chain for 
a single parameter to strictly compare both methods. 
Ohno et  al. (2021) developed the method to automati-
cally adjust the variances of the perturbation of param-
eters. However, here we adjusted it manually to transition 
quickly from the initial point of parameters on the sam-
pling without the parallel tempering.

Setting of a single rectangular fault estimation
We estimated parameter θ of the single rectangular fault 
model in Okada (1992) from permanent displacement 
data d based on real-time GNSS by the HMC and NUTS 
algorithms. The parameter vector θ includes length and 
angle parameters of the rectangular in a uniform elas-
tic half-space, that is, latitude and longitude of the fault 
plane, top depth, strike, dip, rake, fault length, fault 
width, and slip amount. In this section, we describe the 
setting of the estimation, such as the prior distribution or 
likelihood function.

Prior distribution
We prepared a normal distribution as prior distributions 
of latitude and longitude because we can use some exter-
nal information such as the Earthquake Early Warning 
system by the Japan Meteorological Agency, and a uni-
form distribution such as a non-informative prior distri-
bution of other parameters. The standard deviation of 2° 

(11)C = {θ ′|θ ′ ∈ B ∩H
(
θ
′,p′

)
< u}

for latitude and longitude prior, is slightly large but has 
been set roughly for a weak restriction. In addition, we 
set a uniform distribution for the stress drop �sd which 
is known to fall within a certain range. The upper and 
lower range of the prior is based on Ohno et al. (2021), 
which refers to the fault’s scaling law. The stress drop is 
calculated using the following equation:

where c and µ are a geometric factor and rigidity, respec-
tively. We assumed these parameters as 0.5 and 30 [GPa] , 
respectively. FL , FW  , and S denote the length, width, and 
slip amount of the rectangular fault, respectively. We also 
established a uniform distribution for the ratio of fault 
width to fault length because the length is longer than 
the width usually. All prior distributions are shown in 
Table 1.

Likelihood function
The likelihood function is expressed by Eqs. (13) and (14):

where N is the number of stations, and d̂i(θ) is the sur-
face displacement of model θ calculated by the method 
of Okada (1992). Subscripts h and v represent the com-
ponents of horizontal and vertical displacements, respec-
tively, and we assumed that they were independent. 

(12)�sd = 2cµS√
FL·FW

(13)

f (d|θ) = 1√
2πσ 2

h

2N exp

(
−1
2σ 2

h

rTh rh

)
× 1√

2πσ 2
v

N exp
(

−1
2σ 2

v
rTv rv

)

(14)ri = d̂i(θ)− di

Table 1  Prior parameter for fault parameters and certain 
calculated parameters

A mean of normal distribution for latitude and longitude is assumed as their 
initial parameter. A reference point of latitude and longitude is the fault center, 
and depth is fault top. N

(
µ, σ 2

)
 represents a normal distribution with mean µ , 

variance σ2 and U(a, b) represents a uniform distribution with a lower limit a and 
an upper limit b

Parameter Prior

Latitude (°) N(init, 4)

Longitude (°) N(init, 4)

Depth (km) U(0,∞)

Strike (°) U(0, 360)

Dip (°) U(0, 90)

Rake angle (°) U(−180, 180)

Fault length (km) U(0,∞)

Fault width (km) U(0,∞)

Slip amount (m) U(0,∞)

Stress drop (MPa) U(0.2, 21.2)

width/length (–) U(0, 1)
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Equation  (13) assumes that the residuals, including the 
model and observational error, follow the normal distri-
bution with mean 0 and variance σ 2

h and σ 2
v .

Change in variables
HMC and NUTS use a gradient from the posterior PDF 
to the transition parameters. We observed the gradients 
of latitude and longitude to be notably large, except for 
seven parameters, resulting in the very low efficiency of 
the exploration. A potential method for correcting the 
gradients is the application of an adjustment hyperpa-
rameter e , which is the coefficient of the gradient, but the 
parameter e is common among the parameters; therefore, 
addressing our case is complicated by the differences 
among each gradient. Therefore, we applied a change of 
variables to the seven parameters to change the param-
eter scale. In addition, the sampling can be disturbed by 
a rejection due to a running to out of the parameter’s 
domain, where 0 probability area, so we adopted log and 
logit translation as the change of variables to enlarge 
the sampling range. The depth D , fault length FL , fault 
width  FW, and slip amount S were applied to the log 
translation (Eq. 15), and the strike ∅ , dip δ , and rake angle 
� were applied to logit (Eq. 16).

Log translation from x ∈ (a,∞) to x′ ∈ (−∞,∞):

Logit translation from x ∈ (a, b) to x′ ∈ (−∞,∞):

Equations  (15) and (16), for example, D ∈ (0,∞)[km] 
are translated to D′ = log (D) and ∅ ∈ (0, 360)[◦] to 
∅′ = log {∅/(360− ∅)} . These changes of the sampling 
parameter implicitly assume not to include each value 
on the domain boundary of parameters, improve the effi-
ciency of exploration, and expand practically the explora-
tion range to the whole of real space. To correct our PDF 
using the Jacobian formula along with change variables, 
we estimated the following PDF by adding Jacobian J 
(Tarantola 2005; Gelman et al. 2021):

where Z is a normalizing constant that is independent of 
θ . Note we set the parameter’s domain as δ ∈ (0, 90)[◦] , 
� ∈ (−180, 180)[◦] , FL ∈ (0,∞)[km] , FW ∈ (0,∞)[km] , 
and S ∈ (0,∞)[m] , respectively. It should be also 
described that the depth parameter is multiplied by a 
constant value before the log variable change to adapt to 

(15)x′ = log (x − a)

(16)x′ = logit(x) = log
(
x−a
b−x

)

(17)f (θ |d) = 1
Z · f (θ) · f (d|θ) · |J|

(18)|J| = eD
′
eFL

′
eFW

′
eS

′ 360e∅
′

(
1+e∅′

)2
90eδ

′
(
1+eδ

′
)2

360e�
′

(
1+e�

′
)2

the 2016 Kumamoto earthquake we discussed later. In 
this study, we chose 106 as the sufficiently large value, that 
means we treat depth as millimeter-scale, because the 
event occurred in a shallow place in the crust and actually 
the surface deformation was observed. This linear trans-
formation of depth only involves multiplying the Jacobian 
(Eq.  18) by 10−6 . These log and logit translations in the 
posterior distribution were naturally reflected in the gra-
dient computation detailed in “Hamiltonian Monte Carlo 
method” section.

Convergence test
In this study, the convergence of each Markov chain 
was evaluated using two criteria. First, we confirmed 
the smoothness of the histograms for each model 
parameter. Although it is a subjective perspective, it is 
required for convenience in later discussions using the 
central tendency value such as mode. Second, we used 
the method of convergence decision by Gelman (1996) 
for objective judgment. This method can determine the 
convergence by comparing a sample’s variance between 
a full chain and a divided one. We applied this test to 
all model parameters individually and confirmed their 
convergence.

If the Markov chain whose length is T excluded burn-
in, it is divided into K equal chains, and T/K length 
chains are prepared. Then the following two indi-
ces of a chain’s variance are calculated, where θ  and 
θk(k = 1, 2, ..., K) are the mean values of a parameter in 
the full chain and the k th divided chain, respectively:

Equations  (19) and (20) roughly represent the vari-
ance between the chains and the average variance of 
each chain, respectively. Then, the index of a conver-
gence decision using the two indices above is expressed 
in the following equation:

The R value is almost 1 on the converged chain; in 
fact, limitless sampling must yield a converged Markov 
chain; it is explicitly stated for Eq. (21) that the R value 
converges to 1, where T → ∞ . In this study, the conver-
gence threshold is given as R < 1.1 , according to Gel-
man (1996).

(19)VARB = T
K−1

K∑

k=1

(
θk − θ

)2

(20)VARW = 1
K(T−1)

K∑

k=1

T∑
t=1

(
θ
(t)
k − θk

)2

(21)R =
√

T−1
T + 1

T
VARB
VARW
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Data and the setting of hyperparameters
We applied our method to the 2016 Kumamoto earth-
quake (MJMA 7.3), which occurred at 16:25:05 (UTC) 
in the Kyusyu region, southwestern Japan. Ground dis-
placement data including three components (east–west, 
north–south, and up-down) were obtained using the 
REGARD system (Kawamoto et al. 2016) in real time, and 
we used the data at 60 s after the mainshock at 200 sta-
tions near the source (Fig. 2).

Table  2 shows the settings of the hyperparameters in 
both methods, HMC and RWMH estimation. The total 

number of step, L,  was optimized in each leapfrog step 
using the NUTS algorithm explained above. In contrast, 
the step size of leapfrog e was determined manually. The 

Fig. 2  Location of GNSS stations. A map corresponds to the red rectangular area in an inserted map. The red triangles represent the 200 GNSS 
stations for estimation

Table 2  Setting of hyperparameters

Leapfrog’s 
step size e

Variance in 
likelihood (cm2)

Chain length 
(count)

Burn-in 
chain 
(count)

HMC 1× 10−3 4 2× 104 1× 103

RWMH – 4 1× 106 5× 104
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step size was adjusted a priori by halving or doubling 
the attempt according to the initial VR’s soaring. There 
is still a hyperparameter mass matrix to be optimized, 
which is a covariance matrix of the normal distribution 
for momentum p (that means to use the normal distri-
bution with arbitrary covariance as the proposal distri-
bution of p ) and relates with a mixing time of sampling. 
Typically, the mass matrix is optimized adaptively in 
a burn-in chain and the efficiency of estimation can be 
ameliorated. However, in this study, we have not adjusted 
the hyperparameter to simplify the algorithm and leave it 
for future work. The length of the entire chain was deter-
mined using the convergence test explained above, and 
the length of the burn-in chain was determined by eval-
uating the trace plot of parameters, especially variance 
reduction (VR) calculated by the following equation:

where d and r denote the vector of all the displacement 
data and residuals between the data and model displace-
ment ( d =

(
dTh ,d

T
v

)T and r =
(
rTh , r

T
v

)T ), respectively.
Additional file  1: Figures  S1 and S2 show the results 

of the convergence test and the entire trace plot of each 
parameter, respectively. We continued the HMC sam-
pling with 20,000 samples because the parameters should 
satisfy both criteria; nevertheless, these figures indicate 
the convergence with 3000 samples. The burn-in samples 
are often determined using a trace plot of VR or poste-
rior probability (Amey et  al. 2018); therefore, we also 
removed the first 5% of the chain similarly. Although the 
observation error of GNSS may appear to result from the 
horizontal error being smaller than the vertical error, we 
assumed the standard deviation in likelihood, σh and σv, 
representing the same error value, σh = σv = 2 cm to 
simplify the inversion.

Table  2 also shows the hyperparameters in terms of 
RWMH sampling. The entire burn-in chain length was 
determined the same way as the HMC, a factor of 50, 
compared to HMC (Additional file 1: Figs. S1, S2).

Results
Expression of posterior probability density functions
For geophysical interpretation, posterior PDFs regard-
ing the fault parameters are required. However, we can 
directly obtain the rescaled PDFs because of the change 
in variables (detailed in “Change in variables” section). 
Moreover, the changes using log and logit function 
whose Jacobian is not identity matrix complicate the res-
toration of their scale. Therefore, we developed a special 
plotting for log and logit translation. We firstly made the 
histograms on a changed parameter scale and inversely 

(22)VR = 100×
(
1−

rTr

dTd

)

changed the upper and lower boundary values of class 
division while maintaining the class frequency. Then, we 
plotted the normalized histograms on original param-
eter’s scale using the boundary values. The change in 
appearance following the use of our expression method is 
shown in Additional file 1: Fig. S3.

Results of the application for the Kumamoto earthquake
Figure  3 shows the posterior PDFs of each unknown 
parameter (latitude, longitude, depth, strike, dip, rake 
angle, fault length, fault width, and slip amount) and 
certain seismic parameters [moment magnitude (Mw), 
stress drop, and VR] computed for each sample inferred 
by HMC and RWMH.

The HMC results in Fig. 3 denote a shallow right-lateral 
fault dipping toward the northwest, and the displacement 
predictions calculated from each sample are consistent 
with the data (VR ~ 88%). The distribution of Mw is a rea-
sonable estimate with a peak of approximately 7.0, which 
is consistent with previous studies (Asano and Iwata 
2016; Kawamoto et  al. 2016; Yarai et  al. 2016; Tanaka 
et al. 2019).

Figure  3 shows considerable features that the PDFs 
obtained using HMC agree with RWMH in the shape 
of PDFs or representative values (mean, median, and 
mode); nevertheless, both methods estimate indepen-
dently. This means that HMC can be applied to the sin-
gle rectangular fault estimation. Conversely, there are 
a few differences in the PDF of strike that RWMH’s has 
multiple peaks. Although we conducted the RWMH and 
HMC sampling, whose chain length is 10 times the main 
result in the manuscript, they remain as they were (Addi-
tional file 1: Fig. S4). Both methods may shape different 
PDFs attributed to the difference between both sampling 
methodologies and to the implicit assumption of a posi-
tive depth on HMC sampling. However, the strike pos-
terior distributes in an extremely narrow range ( ∼ 4◦ ), 
which can only have a little effect on the surface deforma-
tion model. Therefore, we concluded their distributions 
were in rough agreement and will validate it in future by 
applying them to other events. There are also a few differ-
ences in PDFs of the depth. The outstanding peak of the 
depth’s PDF of the HMC near 0 must be induced by the 
log variable changes, even if we deal with the millimeter 
depth. The log change can adjust a gradient of a posterior 
at almost entirely a domain, but a trend of the gradient 
changes in x < 1 , resulting in that a transition distance of 
sampling is shortened and x less than 1 is often sampled. 
This is just an issue derived from the parametrization, so 
we would like to adopt a more effective one in the future.

For a comparison of surface deformation, Fig.  4a 
shows the rectangular fault of a mode model (the so-
called maximum a posteriori model) solved by HMC, 
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and the predicted displacement at each station assumed 
the model with the displacement data we used. Figure 4 
also shows a mode model solved by RWMH. As already 
mentioned, the HMC mode model adequately explains 
the displacement data and is consistent with the RWMH 
model. As illustrated in Fig.  4b, which is drawn using a 
method proposed by Ohno et  al. (2021), we exhibited 
the spatial frequency of the fault rectangular. This figure 
includes the color scale, considering overlaps among the 
rectangles of each HMC sample on the map. HMC mod-
els likely contain only a small uncertainty of estimation 
because the color scale expands in a significantly narrow 
region.

Discussion
Comparison of initial exploration
Figure 5 shows the Markov chains of the first 1000 sam-
ples in the HMC and RWMH methods. The HMC explor-
ing can produce estimates approximately the same as the 
final products within 40 samples and VR of 88%. In con-
trast, the trace plots of RWMH appear that the method 
is still seeking a more optimized solution at even 1,000 
samples, and then approximately 20,000 samples were 
spent to improve VR to 88% (Additional file  1: Fig. S2). 
Although now we compared both the methods in only a 
single case, that results are important to ensure efficient 
convergence of HMC, where HMC required less than 
1% chains of RWMH’s for model exploration. To use this 

Fig. 3  Inferred posterior probability density function (PDF) due to Hamiltonian Monte Carlo (HMC) and Random walk Metropolis–Hastings (RWMH) 
estimation. Both results of HMC and RWMH are shown by blue and red lines, respectively. The y-axis represent the normalized frequency of Markov 
chain Monte Carlo (MCMC). Then the insert values represent statistics (the mean, median, mode, and length of 95% confidence interval of PDFs 
from top to bottom) similarly presented in blue or red



Page 10 of 16Yamada et al. Earth, Planets and Space           (2022) 74:86 

Fig. 4  Map view results. a Each rectangular denotes the mode model; the red and blue ones filled with slanted lines are inferred using RWMH 
and HMC, respectively. In this figure, gray lines show known active faults; black and white arrows show the data and the mode model’s horizontal 
displacements, respectively. The residuals between the data and the model’s vertical displacements are also shown in a color scale. b Rectangular 
fault frequency drawn using each HMC sample. The color scale represents the frequency, whose warm color denotes a region of high frequency, 
and the region not colored indicates no estimation

Fig. 5  Trace plots of the first 1000 samples. The chains of nine model parameters (latitude, longitude, depth, strike, dip, rake angle, fault length, fault 
width, and slip amount) and three calculated parameters (Mw, stress drop, and VR) are shown in each figure. The blue and red solid lines indicate 
the traces produced by HMC and RWMH, respectively. Note that the black broken lines indicate the mode value of full chains produced by HMC
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efficiency, this method should be applied to high-dimen-
sional problems, such as slip distribution estimation or 
inversion using nonlinear Green’s function, which incurs 
a high computational cost for the forward calculation.

The motion of exploration appearing in trace plots also 
denotes an obviously high efficiency. The rake angle or 
slip amount chains using the RWMH method initially 
move in the opposite direction of the mode value of 
whole sampling, but the chains using the HMC method 
directly select the plausible direction. This shows that the 
HMC method is superior to the RWMH method because 
of the transition using gradients of the posterior PDF. 
Chains of latitude or strike denote that, even if HMC 
passes by following the mode value, a quick return to 
the same value is expected. It is an interesting explora-
tion tendency showing the ability of the HMC method to 
explore a wide range of parameters in a single transition 
and aim at a minimum posterior immediately. These fea-
tures cannot be realized by the RWMH method, whose 
transition is performed by adding only a small amount 
and whose acceptance ratio is generally low.

Figure 6 shows the marginal PDFs that appear in pairs 
of parameters, fault length, fault width, and slip amount. 
Figures using all parameters are also shown in Additional 
file 1: Figs. S5–S8. Figure 6a (HMC) and Fig. 6b (RWMH) 
display the marginal PDFs including the burn-in sam-
ples, indicating that the HMC method can reach the high 
probability area effectively with straight and stepping 
trace. This method only traces the plausible area because 
of the larger white area which has never been explored 
and smaller blue area whose samples are low posterior 
probability rather than the RWMH method. Consider-
ing that Fig. 6c (HMC) and Fig. 6d (RWMH) show that 
the HMC method can generate a similar correlation to 
RWMH among parameters, and we confirmed HMC can 
grasp the correlation more efficiently.

However, the HMC or other MCMC methods have 
the problem of ensuring minimum global exploration. 
One method to explore more broadly, with certainty, 
and efficiently in parameter space is the parallel temper-
ing (Dosso et  al. 2012; Sambridge 2013; Dettmer et  al. 
2014; Hallo and Gallovič 2020; Ohno et  al. 2021, 2022). 
In future work, we will develop a method that introduces 
this expanding method to the HMC and realize a more 
efficient and stable fault estimation.

Comparison regarding the autocorrelation of Markov 
chains
The RWMH method conducts the sampling of parameter 
exploration by slightly perturbating the model param-
eters. In contrast, HMC transitions from place to place 
and visits plausible samples if they are far away. Given 

these sampling characteristics, we analyzed the autocor-
relation of Markov chains generated by both methods.

Figure  7 shows the power spectral densities of the 
Markov chain regarded as a time series and its inclination 
(“a” value in the figure) using log approximation. In this 
figure, the results of the RWMH method explicitly denote 
the inverse proportion to frequency f [/count] and show 
random walk tendency; the inclination is roughly f −2 . 
The inclination in the zone over 1000 samples appears to 
be flat, similar to white noise. However, the results of the 
HMC method denote an inclination of less than 0.5 and 
a white noise-like tendency for most parameters. Only 
the result of the depth parameter denotes an inclination 
larger than the HMC’s other results, nearly 1.5, although 
it is slightly smaller than the RWMH method. This high 
autocorrelation is considered caused by exploration near 
the domain. Hallo and Gallovič (2020) address similar 
problems using the unique prior PDF reflected at the 
parameter domain.

For MCMC sampling, a higher autocorrelation induces 
deterioration of sampling efficiency and complicates 
the achievement of the proper posterior PDFs by finite-
length chains (Geyer 2011). RWMH sampling is often 
highly correlated between close samples. The thinning 
method, which discards all but every k th sampled value, 
is likely to address this problem (Link and Eaton 2012), 
but it does not guarantee improved estimation effi-
ciency (Geyer 2011; Link and Eaton 2012). In addition, 
even if we adopt this method to introduce RWMH, we 
must abandon several thousand samples for one sample 
because the PSD analysis shows a high autocorrelation 
in the zone over 1000 samples. Therefore, it is conceiv-
able that the HMC method can efficiently achieve a lower 
autocorrelation sampling without wasting samples.

More optimized utilization of the HMC
At the point of the number of samples, compared to the 
RWMH method, the HMC method can estimate pos-
terior PDFs more efficiently in the Bayesian analysis of 
coseismic fault estimation. However, the HMC can also 
be less efficient at the point of the calculation time, espe-
cially when applying to a problem where one sample’s 
computational cost of the forward calculation is low, such 
as in the problem in this study. Additional file 1: Figure 
S9 shows the ratio of calculation time in the HMC algo-
rithm. It shows that the backward calculation is more 
expensive than the forward in this problem, which is 
the inversion of the nine fault parameters. Therefore, 
the HMC can be used for problems that require copi-
ous amounts of resources for forward computation. We 
should also pay attention to the gradient calculation. The 
automatic differentiation we adopted to realize the com-
plicated gradient calculation of Eq. (3) has to execute the 
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forward calculation previously. Additional file  1: Figure 
S9 shows that around 66% of forwarding is executed 
for the purpose of automatic differentiation. Thus, 
refining the gradient calculation method or using the 

analytic differential must improve the algorithm effi-
ciency drastically.

To reduce the calculation time, a method for optimiz-
ing hyperparameter e, which represents the step size of 
the leapfrog, should be also developed. For example, 

Fig. 6  Two-dimensional (2D)-marginal posterior PDFs of the HMC and RWMH sampling. Each figure indicates the correlation among parts of the 
fault parameters (fault length, fault width, and slip amount). The upper figures show the marginal PDFs via the HMC (a) and RWMH (b) including 
burn-in exploration whose starting point is indicated by the red star. The lowers also show the marginal PDFs via the HMC (c) and RWMH (d) but 
excluded burn-in samples
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Stan (Hoffman and Gelman 2014) employs the dual 
averaging method developed by Nesterov (2009), a sto-
chastic gradient descent method, which is expected to 
optimize in the same way as our method.

Besides the hyperparameter, the calculation time of the 
estimation is based on the number of model parameters. 
It is difficult for the RWMH method to conduct efficient 
sampling in a parameter space that comprises many 

Fig. 7  Power spectral density (PSD) of Markov chains of nine model parameters. In each figure, red and blue show the results of RWMH and HMC, 
respectively. The light color line shows PDF and the heavy color line shows the moving average of PDF (the average of 25 points on the right and 
left side). The result of the log approximation is visually shown by the straight line and its estimated inclination is inserted on the bottom left of each 
figure (upper blue: HMC, lower red: RWMH)
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parameters because the space is vast for model explora-
tion (Roberts and Rosenthal 1998; Ringer et  al. 2021). 
However, as reported by Fichtner and Simute (2018), 
the HMC method can maintain the calculation time by 
using the differentiation of the posterior PDF which con-
tributes to ensuring the transition to the high posterior 
probability region. Therefore, the HMC can be superior 
and play an important role in solving high-dimensional 
problems, such as slip distribution estimation.

Conclusions
We developed a fault estimation algorithm using the 
HMC method; this was the first attempt to use the HMC 
method for fault estimation. The developed method 
performs efficiently following the adjustment of each 
parameter scale by changing the variables, well using the 
log and logit functions. We then applied the developed 
method to the 2016 Kumamoto earthquake (MJMA 7.3) 
and assessed its feasibility for the single rectangular fault 
estimation and its exploration efficiency by comparison 
with the RWMH method.

We found that the HMC method estimates the inform-
ative model that reproduces the observation data and 
substantially corresponds to the fault model predicted 
by the RWMH method, although both algorithms per-
form the estimation independently. This indicates that 
the HMC method can be used for the single rectan-
gular fault estimation. The length of the Markov chain 
required for HMC sampling was approximately 2% of 
that of the RWMH method, and 1% samples were needed 
to explore the high VR fault models (VR ~ 88%). We also 
clarified that the HMC method works as a low autocor-
relation and a long transition from sample to sample, as 
described by the PSD analysis of the Markov chains of 
each parameter. These results are attributed to the theo-
retical characteristics of the HMC method, which allows 
for an efficient search following the gradient of the poste-
rior distribution. This reasonable HMC sampling appears 
to be valid for high-dimensional problems, such as slip 
distribution estimation or problems using the nonlinear 
Green’s function, which incurs high computational costs 
for one sample.

In contrast, the HMC method requires a longer calcu-
lation time for one sample than the RWMH method. This 
indicates that using the RWMH method is more suitable 
than that of the HMC for the estimation of a single rec-
tangular fault, a low-dimensional problem. Therefore, the 
choice between the RWMH or HMC methods depends 
on the cost of forwarding calculation and the number of 
unknown parameters in the applied problem.
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