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Abstract
In this paper, we study the qualitative behavior of the following modified
Nicholson-Bailey host-parasitoid model:

xn+1 =
bxne–ayn

1 + dxn
, yn+1 = cxn(1 – e–ayn),

where a, b, c, d and the initial conditions x0, y0 are positive real numbers. More
precisely, we investigate the boundedness character, existence and uniqueness of a
positive equilibrium point, local asymptotic stability and global stability of the unique
positive equilibrium point, and the rate of convergence of positive solutions of the
system. Some numerical examples are also given to verify our theoretical results.
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1 Introduction
Many ecological models are governed by differential as well as difference equations. In
particular, ecological models with non-overlapping populations are better formulated as
discrete dynamical systems compared to the continuous time models. These models have
been extensively studied in recent years because of their wide applicability to the study
of population dynamics [, ]. In fact, in the case of discrete dynamical systems, one has
more efficient computational results for numerical simulations and also has rich dynamics
as compared to the continuous ones. In recent years, several papers have been published
on the mathematical models of biology that discuss the system of difference equations
generated from the associated system of differential equations as well as the associated
numerical methods [, ]. In mathematical biology, the model such as the host-parasitoid
has attracted many researchers during the last few decades. Usually, the biologists believe
that a unique, positive, locally asymptotically stable equilibrium point in an ecological sys-
tem is very important []. Therefore, it is pertinent to find conditions which may guarantee
the global stability of a positive equilibrium point, if it exist, for the given system. See []
for introduction to mathematical models in biological sciences.

The prime example of an ecologically interesting discrete-time model for interacting
populations is the Nicholson-Bailey model for host-parasitoid dynamics. Parasitoids are
insect species whose larvae develop by feeding on the bodies of other arthropods, usually
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killing them. Larvae emerge from the host and develop into free-living adults. The adults
then lay their eggs in a subsequent generation of hosts. Most parasitoid larvae require
a specific life-stage of the host, so parasitoid and host generations are linked to one an-
other. Consequently host-parasitoid models often use a discrete time step corresponding
to the common generation length of host and parasitoid. The classic model was derived
by Nicholson and Bailey (). The assumptions of the Nicholson-Bailey model are as
follows:

(i) Hosts are distributed at random, at density xn per unit area in generation n.
(ii) Parasitoids search at random and independently, each having an ‘area of discovery’

a, and lay an egg in each host found.
(iii) Each parasitized host gives rise to one new parasitoid in generation n + .
(iv) Each unparasitized host gives rise to b >  new hosts in generation n + .
Each parasitoid attacks the hosts found in a units of area, so the expected number of

hosts attacked by each parasitoid is ax. The expected total number of attacks is axy. The
total number of attacks can also be written as the sum over hosts of the number of attacks
on each host. All hosts have the same expected number of attacks, so the expected number
of attacks on any given host must be ay. Under the assumptions listed above, the number
of eggs per host has a Poisson distribution. Consequently, the expected fraction of hosts
that are not parasitized is the probability that a Poisson random variable with mean ay
takes the value zero. The resulting population dynamics are

xn+ = bxne–ayn , yn+ = cxn
(
 – e–ayn

)
.

Here, xn and yn represent the densities of the host and parasitoid population at year n.
b is the number of offspring of an unparasitized host surviving to the next year. Assum-
ing random encounter between hosts and parasitoids, the probability that a host escapes
parasitism can be approximated by e–ayn , where a is a proportionality constant. Similarly,
the probability to become infected is then given by  – e–ayn . The parameter c describes
the number of parasitoids that hatch from an infected host.

Now, assume that the host has bounded dynamics in absence of parasitoid, i.e., has self-
regulation (density dependence). For example, assume host dynamics are inherently lo-
gistic (e.g., the Beverton-Holt model).

Then a modified form of the Nicholson-Bailey host-parasitoid model is

xn+ =
bxne–ayn

 + dxn
, yn+ = cxn

(
 – e–ayn

)
, ()

where a, b, c, d and the initial conditions x, y are positive real numbers.
In this paper our aim is to study the dynamics of system (). More precisely, we investi-

gate the boundedness character, existence and uniqueness of a positive equilibrium point,
local asymptotic stability and global stability of the unique positive equilibrium point, and
the rate of convergence of positive solutions of system (). To investigate the dynamics we
shall use standard results from theory of rational difference equations. However, we shall
state the results that we employ and refer the interested readers for a systematic study of
rational difference equations to [–] and the references therein. In Refs. [–] quali-
tative behavior of some biological models is discussed. The rest of the paper is organized
as follows. In Section  the required known results about linearized stability are given.
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Section  discusses the boundedness character of the model. Section  is about the exis-
tence and uniqueness of the positive equilibrium point. It also contains the local stability
of the equilibrium point. Section  discusses the global behavior of the equilibrium point.
Whereas Section  is about the rate of convergence and Section  gives the numerical
examples of the proved results. In the last section a brief conclusion is given.

2 Linearized stability
Let us consider the two-dimensional discrete dynamical system of the form

xn+ = f (xn, yn),

yn+ = g(xn, yn), n = , , . . . ,
()

where f : I × J → I and g : I × J → J are continuously differentiable functions and I , J
are some intervals of real numbers. Furthermore, a solution {(xn, yn)}∞n= of system () is
uniquely determined by initial conditions (x, y) ∈ I × J . An equilibrium point of () is a
point (x̄, ȳ) that satisfies

x̄ = f (x̄, ȳ),

ȳ = g(x̄, ȳ).

Definition . Let (x̄, ȳ) be an equilibrium point of system ().
(i) An equilibrium point (x̄, ȳ) is said to be stable if for every ε > , there exists δ > 

such that for every initial condition (x, y), ‖(x, y) – (x̄, ȳ)‖ < δ implies
‖(xn, yn) – (x̄, ȳ)‖ < ε for all n > , where ‖ · ‖ is the usual Euclidian norm in R

.
(ii) An equilibrium point (x̄, ȳ) is said to be unstable if it is not stable.

(iii) An equilibrium point (x̄, ȳ) is said to be asymptotically stable if there exists η > 
such that ‖(x, y) – (x̄, ȳ)‖ < η and (xn, yn) → (x̄, ȳ) as n → ∞.

(iv) An equilibrium point (x̄, ȳ) is called a global attractor if (xn, yn) → (x̄, ȳ) as n → ∞.
(v) An equilibrium point (x̄, ȳ) is called an asymptotic global attractor if it is a global

attractor and stable.

Definition . Let (x̄, ȳ) be an equilibrium point of the map F(x, y) = (f (x, y), g(x, y)), where
f and g are continuously differentiable functions at (x̄, ȳ). The linearized system of ()
about the equilibrium point (x̄, ȳ) is given by

Xn+ = F(Xn) = FJ Xn,

where Xn =
( xn

yn

)
and FJ is a Jacobian matrix of system () about the equilibrium point (x̄, ȳ).

Let (x̄, ȳ) be an equilibrium point of system (), then

x̄ =
bx̄e–aȳ

 + dx̄
, ȳ = cx̄

(
 – e–aȳ). ()

The Jacobian matrix of the linearized system of () about the fixed point (x̄, ȳ) is given by

FJ (x̄, ȳ) =

(
be–aȳ

(+dx̄) – abx̄e–aȳ

+dx̄

c( – e–aȳ) acx̄e–aȳ

)

.
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Lemma . [] Consider the second-degree polynomial equation

λ – pλ – q = , ()

where p and q are real numbers.
(i) If both roots of Equation () lie in the open unit disk |λ| < , then the equilibrium

point (x̄, ȳ) is locally asymptotically stable.
(ii) If at least one of the roots of Equation () has absolute value greater than one, then

the equilibrium point (x̄, ȳ) is unstable.
(iii) A necessary and sufficient condition for both roots of Equation () to lie inside the

open disk |λ| <  is

|p| <  – q < .

In this case the locally asymptotically stable equilibrium (x̄, ȳ) is also called a sink.
(iv) A necessary and sufficient condition for both roots of Equation () to have absolute

value greater than one is

|q| > , |p| < | – q|.

In this case (x̄, ȳ) is a repeller.
(v) A necessary and sufficient condition for one root of Equation () to have absolute

value greater than one and for the other to have absolute value less than one is

p + q > , |p| > | – q|.

In this case the unstable equilibrium (x̄, ȳ) is called a saddle point.
(vi) A necessary and sufficient condition for a root of Equation () to have absolute value

equal to one is

|p| = | – q|.

In this case the equilibrium (x̄, ȳ) is called a non-hyperbolic point.

3 Boundedness
The following theorem shows that every positive solution {(xn, yn)}∞n= of system () is
bounded.

Theorem . Every positive solution {(xn, yn)}∞n= of system () is bounded.

Proof Let {(xn, xn)}∞n= be any positive solution of system (), then

xn+ =
bxne–ayn

 + dxn
≤ bxn

dxn
≤ b

d
, n = , , . . . . ()

Also

yn+ = cxn
(
 – e–ayn

) ≤ cxn ≤ bc
d

, n = , , . . . . ()
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Hence from () and (), we have

 ≤ xn ≤ b
d

,  ≤ yn ≤ bc
d

, n = , , . . . . ()
�

Theorem . Let {(xn, yn)} be a positive solution of system (). Then [, b
d ] × [, bc

d ] is an
invariant set for system ().

Proof It follows from induction. �

4 Existence and uniqueness of a positive equilibrium point and local stability
The following theorem shows the existence and uniqueness of a positive equilibrium point
of system ().

Theorem . If b >  and d < ac
b ln( +b

b )
, then system () has a unique positive equilibrium

point (x̄, ȳ) in [, b
d ] × [, bc

d ].

Proof Consider the following system:

x =
bxe–ay

 + dx
, y = cx

(
 – e–ay). ()

Assume that (x̄, ȳ) in [, b
d ] × [, bc

d ], then it follows from () that

y =

a

ln

(
b

 + dx

)
, x =

y
c( – e–ay)

.

Define F(x) = h(x)
c(–e–ah(x)) – x, where h(x) = 

a ln( b
+dx ) and x ∈ [, b

d ]. It is easy to see that

F() = b ln b
ac(b–) >  if b > . Also, F( b

d ) = b ln( +b
b )

ac – b
d <  if d < ac

b ln( +b
b )

. Hence, F(x) has at least
one positive solution in the interval [, b

d ]. Furthermore, it is easy to show that F ′(x) =
(–e–ah(x)–ah(x)e–ah(x))h′(x)–c(–e–ah(x))

c(–e–ah(x)) < , where h′(x) = – d
a(+dx) for all x ∈ [, b

d ]. Hence, F(x) =
 has a unique positive solution x ∈ [, b

d ]. �

Theorem . For the unique positive equilibrium point (x̄, ȳ) in [, b
d ] × [, bc

d ] of system
(), the following statements hold true:

(i) The unique positive equilibrium point of system () is locally asymptotically stable if
and only if

beacr(bdr+–b)(acr( + bdr) + )
( + bdr)

<  –
abcreacr(bdr+–b)(bdr(eacr(bdr+–b) – ) – )

( + bdr) < .

(ii) The unique positive equilibrium point is a repeller if and only if

∣∣
∣∣
abcreacr(bdr+–b)(bdr(eacr(bdr+–b) – ) – )

( + bdr)

∣∣
∣∣ > 
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and

beacr(bdr+–b)(acr( + bdr) + )
( + bdr)

<
∣∣
∣∣ –

abcreacr(bdr+–b)(bdr(eacr(bdr+–b) – ) – )
( + bdr)

∣∣
∣∣.

(iii) The unique positive equilibrium point is a saddle point if and only if

(
beacr(bdr+–b)(acr( + bdr) + )

( + bdr)

)

+ 
(

abcreacr(bdr+–b)(bdr(eacr(bdr+–b) – ) – )
( + bdr)

)
> 

and

beacr(bdr+–b)(acr( + bdr) + )
( + bdr)

>
∣∣
∣∣ –

abcreacr(bdr+–b)(bdr(eacr(bdr+–b) – ) – )
( + bdr)

∣∣
∣∣.

(iv) The unique positive equilibrium point is non-hyperbolic if and only if

beacr(bdr+–b)(acr( + bdr) + )
( + bdr)

=
∣
∣∣
∣ –

abcreacr(bdr+–b)(bdr(eacr(bdr+–b) – ) – )
( + bdr)

∣
∣∣
∣.

Proof (i) The characteristic polynomial of the Jacobian matrix FJ (x̄, ȳ) about the equilib-
rium point (x̄, ȳ) is given by

P(λ) = λ –
e–aȳ(acx̄( + dx̄) + b)

( + dx̄) λ +
abcx̄e–aȳ(eaȳ( + dx̄) – dx̄)

( + dx̄) . ()

As pointed out in [], it is convenient to discuss stability behavior in terms of the quan-
tity r. So, for the equilibrium point (x̄, ȳ) of system (), we have from system ()

e–aȳ =

b

+ dr,

where r = x̄
b is the ratio of steady-state x̄ with b. Moreover,

ȳ = cr(b –  – bdr).

So, in terms of r, Equation () takes the form

P(λ) = λ –
beacr(bdr+–b)(acr( + bdr) + )

( + bdr) λ

–
abcreacr(bdr+–b)(bdr(eacr(bdr+–b) – ) – )

( + bdr) .
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Let

p =
beacr(bdr+–b)(acr( + bdr) + )

( + bdr) ,

q =
abcreacr(bdr+–b)(bdr(eacr(bdr+–b) – ) – )

( + bdr) .

Then it follows from Lemma . that the unique positive equilibrium point (x̄, ȳ) of system
() is locally asymptotically stable if and only if

beacr(bdr+–b)(acr( + bdr) + )
( + bdr) <  –

abcreacr(bdr+–b)(bdr(eacr(bdr+–b) – ) – )
( + bdr) < .

Obviously, one can prove (ii), (iii) and (iv). �

5 Global character
Lemma . [] Let I = [a, b] and J = [c, d] be real intervals, and let f : I × J → I and g : I ×
J → J be continuous functions. Consider system () with initial conditions (x, y) ∈ I × J .
Suppose that the following statements are true:

(i) f (x, y) is non-decreasing in x and non-increasing in y.
(ii) g(x, y) is non-decreasing in both arguments.

(iii) If (m, M, m, M) ∈ I × J is a solution of the system

m = f (m, M), M = f (M, m),

m = g(m, m), M = g(M, M)

such that m = M and m = M, then there exists exactly one equilibrium point
(x̄, ȳ) of system () such that limn→∞(xn, yn) = (x̄, ȳ).

Theorem . Assume that ac + d > abc, then the unique positive equilibrium point (x̄, ȳ)
in [, b

d ] × [, bc
d ] of system () is a global attractor.

Proof Let f (x, y) = bxe–ay

+dx and g(x, y) = cx( – e–ay). Then it is easy to see that f (x, y) is non-
decreasing in x and non-increasing in y. Moreover, g(x, y) is non-decreasing in both argu-
ments x and y. Let (m, M, m, M) be a positive solution of the system

m = f (m, M), M = f (M, m),

m = g(m, m), M = g(M, M).

Then one has

m =
bme–aM

 + dm
, M =

bMe–am

 + dM
()

and

m = cm
(
 – e–am

)
, M = cM

(
 – e–aM

)
. ()
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From () one has

m =
be–aM – 

d
, M =

be–am – 
d

. ()

From () one has

m =
c(be–aM – )( – e–am )

d
, M =

c(be–am – )( – e–aM )
d

. ()

From () we have

m – M =
b
d

e–am–aM
(
eam – eaM

)
. ()

From () we have

m – M =
c(b – )

d
e–am–aM

(
eam – eaM

)
. ()

Moreover, one has

eam – eaM = aeγ (m – M), ()

where

min{m, M} ≤ γ ≤ max{m, M}.

From () and (), we get

m – M =
ab
d

e–am–aM+γ (m – M). ()

From () it follows that

|m – M| ≤ ab
d

|m – M|. ()

From () and (), we get

m – M =
ac(b – )

d
e–am–aM+γ (m – M). ()

From () it follows that

|m – M| ≤ ac(b – )
d

|m – M|. ()

From () we get
(

ac + d – abc
d

)
|m – M| ≤ ,

from which it follows that m = M and similarly it is easy to show that m = M. Hence,
from Lemma . the unique positive equilibrium point of system () is a global attrac-
tor. �
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Lemma . The unique positive equilibrium point (x̄, ȳ) in [, b
d ] × [, bc

d ] of system () is
globally asymptotically stable if and only if

beacr(bdr+–b)(acr( + bdr) + )
( + bdr) <  –

abcreacr(bdr+–b)(bdr(eacr(bdr+–b) – ) – )
( + bdr) < .

Proof The proof is a direct consequence of Theorems . and .. �

6 The rate of convergence
In this section we will determine the rate of convergence of a solution that converges to
the unique positive equilibrium point of system ().

The following result gives the rate of convergence of solutions of the system of difference
equations

Xn+ =
(
A + B(n)

)
Xn, ()

where Xn is an m-dimensional vector, A ∈ Cm×m is a constant matrix, and B : Z+ → Cm×m

is a matrix function satisfying

∥
∥B(n)

∥
∥ →  ()

as n → ∞, where ‖ · ‖ denotes any matrix norm which is associated with the vector norm

∥
∥(x, y)

∥
∥ =

√
x + y.

Proposition . (Perron’s theorem []) Suppose that condition () holds. If Xn is a so-
lution of (), then either Xn =  for all large n or

ρ = lim
n→∞

(‖Xn‖
)/n

exists and is equal to the modulus of one of the eigenvalues of matrix A.

Proposition . [] Suppose that condition () holds. If Xn is a solution of (), then
either Xn =  for all large n or

ρ = lim
n→∞

‖Xn+‖
‖Xn‖

exists and is equal to the modulus of one of the eigenvalues of matrix A.

Let {(xn, yn)} be any solution of system () such that limn→∞ xn = x̄ and limn→∞ yn = ȳ.
To find the error terms, one has from system ()

xn+ – x̄ =
bxne–ayn

 + dxn
–

bx̄e–aȳ

 + dx̄

=
be–ayn

( + dxn)( + dx̄)
(xn – x̄) +

bx̄(e–ayn – e–aȳ)
( + dx̄)(yn – ȳ)

(yn – ȳ)
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and

yn+ – ȳ = cxn
(
 – e–ayn

)
– cx̄

(
 – e–aȳ)

= c
(
 – e–ayn

)
(xn – x̄) –

cx̄(e–ayn – e–aȳ)
yn – ȳ

(yn – ȳ).

Let e
n = xn – x̄ and e

n = yn – ȳ, then one has

e
n+ = ane

n + bne
n

and

e
n+ = cne

n + dne
n,

where

an =
be–ayn

( + dxn)( + dx̄)
, bn =

bx̄(e–ayn – e–aȳ)
( + dx̄)(yn – ȳ)

,

cn = c
(
 – e–ayn

)
, dn = –

cx̄(e–ayn – e–aȳ)
yn – ȳ

.

Moreover,

lim
n→∞ an =

be–aȳ

( + dx̄) , lim
n→∞ bn = –

abx̄e–aȳ

 + dx̄
,

lim
n→∞ cn = c

(
 – e–aȳ), lim

n→∞ dn = acx̄e–aȳ.

Now the limiting system of error terms can be written as

(
e

n+

e
n+

)

=

(
be–aȳ

(+dx̄) – abx̄e–aȳ

+dx̄

c( – e–aȳ) acx̄e–aȳ

)(
e

n

e
n

)

,

which is similar to the linearized system of () about the equilibrium point (x̄, ȳ).
Using proposition (.), one has following result.

Theorem . Assume that {(xn, yn)} is a positive solution of system () such that
limn→∞ xn = x̄, and limn→∞ yn = ȳ, where x̄ in [, b

d ] and ȳ in [, bc
d ]. Then the error vec-

tor en =
( e

n
e

n

)
of every solution of () satisfies both of the following asymptotic relations:

lim
n→∞

(‖en‖
) 

n =
∣
∣λ,FJ (x̄, ȳ)

∣
∣, lim

n→∞
‖en+‖
‖en‖ =

∣
∣λ,FJ (x̄, ȳ)

∣
∣,

where λ,FJ (x̄, ȳ) are the characteristic roots of the Jacobian matrix FJ (x̄, ȳ).

7 Examples
In order to support our theoretical discussions, we consider several interesting numerical
examples in this section. These examples represent different types of qualitative behavior
of solutions to the system of nonlinear difference equations (). All plots in this section
are drawn with Mathematica.
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(a) Plot of xn for system () (b) Plot of yn for system ()

(c) An attractor of system ()

Figure 1 Plots for system (23).

Example  Let a = ., b = ., c = ., d = .. Then system () can be written as

xn+ =
.xne–.yn

 + .xn
, yn+ = .xn

(
 – e–.yn

)
, n = , , . . . , ()

with initial conditions x = ., y = ..
In this case the unique positive equilibrium point of system () is given by (x̄, ȳ) =

(., .). Moreover, in Figure  the plot of xn is shown in Figure (a), the plot
of yn is shown in Figure (b) and an attractor of system () is shown in Figure (c).

Example  Let a = ., b = ., c = ., d = .. Then system () can be written as

xn+ =
.xne–.yn

 + .xn
, yn+ = .xn

(
 – e–.yn

)
, n = , , . . . , ()

with initial conditions x = ., y = ..
In this case the unique positive equilibrium point of system () is given by (x̄, ȳ) =

(., .). Moreover, in Figure  the plot of xn is shown in Figure (a), the plot
of yn is shown in Figure (b) and an attractor of system () is shown in Figure (c).

Example  Let a = ., b = ., c = ., d = .. Then system () can be written as

xn+ =
.xne–.yn

 + .xn
, yn+ = .xn

(
 – e–.yn

)
, n = , , . . . , ()

with initial conditions x = ., y = ..



Khan and Qureshi Advances in Difference Equations  (2015) 2015:23 Page 12 of 15

(a) Plot of xn for system () (b) Plot of yn for system ()

(c) An attractor of system ()

Figure 2 Plots for system (24).

In this case the unique positive equilibrium point of system () is given by (x̄, ȳ) =
(., .). Moreover, in Figure  the plot of xn is shown in Figure (a), the
plot of yn is shown in Figure (b) and an attractor of system () is shown in Fig-
ure (c).

Example  Let a = ., b = ., c = ., d = .. Then system () can be written as

xn+ =
.xne–.yn

 + .xn
, yn+ = .xn

(
 – e–.yn

)
, n = , , . . . , ()

with initial conditions x = ., y = ..
In this case the unique positive equilibrium point of system () is unstable. Moreover,

in Figure  the plot of xn is shown in Figure (a), the plot of yn is shown in Figure (b) and
a phase portrait of system () is shown in Figure (c).

Example  Let a = ., b = ., c = ., d = .. Then system () can be written as

xn+ =
.xne–.yn

 + .xn
, yn+ = .xn

(
 – e–.yn

)
, n = , , . . . , ()

with initial conditions x = ., y = ..
In this case the unique positive equilibrium point of system () is unstable. Moreover,

in Figure  the plot of xn is shown in Figure (a), the plot of yn is shown in Figure (b) and
a phase portrait of system () is shown in Figure (c).



Khan and Qureshi Advances in Difference Equations  (2015) 2015:23 Page 13 of 15

(a) Plot of xn for system () (b) Plot of yn for system ()

(c) An attractor of system ()

Figure 3 Plots for system (25).

(a) Plot of xn for system () (b) Plot of yn for system ()

(c) Phase portrait of system ()

Figure 4 Plots for system (26).
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(a) Plot of xn for system () (b) Plot of yn for system ()

(c) Phase portrait of system ()

Figure 5 Plots for system (27).

8 Conclusion
This work is related to the qualitative behavior of the modified Nicholson-Bailey host-
parasitoid model. We have investigated the existence and uniqueness of positive steady-
state of system (). Under certain parametric conditions, the boundedness of positive so-
lutions is proved. Moreover, we have shown that the unique positive equilibrium (x̄, ȳ)
in the [, b

d ] × [, bc
d ] point of system () is locally asymptotically stable if and only if

beacr(bdr+–b)(acr(+bdr)+)
(+bdr) <  – abcreacr(bdr+–b)(bdr(eacr(bdr+–b)–)–)

(+bdr) <  hold true. The main objec-
tive of dynamical systems theory is to predict the global behavior of a system based on
the knowledge of its present state. An approach to this problem consists of determining
possible global behaviors of the system and determining which initial conditions lead to
these long-term behaviors. Furthermore, the rate of convergence of positive solutions of
() which converge to its unique positive equilibrium point is demonstrated. Finally, some
numerical examples are provided to support our theoretical results. These examples are
experimental verification of our theoretical discussions.
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25. Kalabušić, S, Kulenović, MRS, Pilav, E: Dynamics of a two-dimensional system of rational difference equations of

Leslie-Gower type. Adv. Differ. Equ. (2011). doi:10.1186/1687-1847-2011-29
26. Din, Q, Khan, AQ, Qureshi, MN: Qualitative behavior of a host-pathogen model. Adv. Differ. Equ. (2013).

doi:10.1186/1687-1847-2013-263
27. Edelstein-Keshet, L: Mathematical Models in Biology. McGraw-Hill, New York (1988)
28. Pituk, M: More on Poincare’s and Perron’s theorems for difference equations. J. Differ. Equ. Appl. 8, 201-216 (2002)

http://dx.doi.org/10.1155/2014/607281
http://dx.doi.org/10.1002/mma.3392
http://dx.doi.org/10.1155/2011/295308
http://dx.doi.org/10.1186/1687-1847-2013-79
http://dx.doi.org/10.1186/1687-1847-2011-29
http://dx.doi.org/10.1186/1687-1847-2013-263

	Dynamics of a modiﬁed Nicholson-Bailey host-parasitoid model
	Abstract
	MSC
	Keywords

	Introduction
	Linearized stability
	Boundedness
	Existence and uniqueness of a positive equilibrium point and local stability
	Global character
	The rate of convergence
	Examples
	Conclusion
	Competing interests
	Authors' contributions
	Acknowledgements
	References


