Kozlov and Rossmann Boundary Value Problems 2014, 2014:252 0 BOU nda ry Va | ue PrOblemS

http://www.boundaryvalueproblems.com/content/2014/1/252 a SpringerOpen Journal

RESEARCH Open Access

Asymptotics of solutions of second order
parabolic equations near conical points and

edges

Vladimir A Kozlov' and Jirgen Rossmann?”

"Correspondence:
juergen.rossmann@uni-rostock.de
2Institute of Mathematics, University
of Rostock, Rostock, 18051,
Germany

Full list of author information is
available at the end of the article

@ Springer

Abstract

The authors consider the first boundary value problem for a second order parabolic
equation with variable coefficients in a domain with conical points or edges. In the
first part of the paper, they study the Green function for this problem in the domain

K x R™™ where K is an infinite cone in R, 2 < m < n. They obtain the asymptotics
of the Green function near the vertex (n = m) and edge (n > m), respectively. This
result is applied in the second part of the paper, which deals with the initial-boundary
value problem in this domain. Here, the right-hand side f of the differential equation
belongs to a weighted L, space. At the end of the paper, the initial-boundary value
problem in a bounded domain with conical points or edges is studied.

1 Introduction

The present paper is concerned with an initial-boundary value problem for a second order
parabolic equation in a n-dimensional domain with a (# — m)-dimensional edge M, n >
m > 2. In particular, we are interested in the asymptotics of the solution near the edge.
The largest part of the paper deals with the problem

deu(x,t) — L(x, 8, 0 )u(x, t) =f(x,t) forxeD,t>0, "
1

ulanR+ =0, M|t:0 =0

in the domain D = K x R"”™, Here
K={eR":0=x/]x| e},

is an infinite cone (angle if m = 2), Q is a subdomain of the unit sphere S with C!
boundary 9€2, and

L(x,t,05) = ) (6, £)0,0 + Y (%, 1)y + (3, ), (2)
ij=1 j=1

is a linear second order differential operator with variable coefficients.

Initial-boundary value problems for parabolic equations in domains with angular or
conical points and edges were studied in a number of papers. Most of these papers deal
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with the heat equation. Concerning the heat equation in domains with angular or coni-
cal points, we mention the papers by Grisvard [1], Kozlov and Maz’ya [2], de Coster and
Nicaise [3], where the asymptotics of the solutions near the singular boundary points was
studied. For domains with edges, Solonnikov [4, 5] and Nazarov [6] estimated the Green
function and proved the existence of solutions of the Dirichlet and Neumann problems for
the heat equation in weighted Sobolev spaces. Kozlov and Rossmann [7, 8] and Kweon [9]
investigated the asymptotics of solutions of the Dirichlet problem for the heat equation
near an edge.

A theory for general parabolic problems with time-independent coefficients in domains
with conical points was developed in papers by Kozlov [10—12]. This theory includes the
asymptotics of solutions in weighed L, Sobolev spaces and a description of the singulari-
ties of the Green function near the conical points. The goal of the present paper is to extend
these results to the case of time-dependent coefficients and to domains with edges. More-
over, we consider solutions in weighted L, Sobolev spaces with arbitrary p € (1, 00). How-
ever, we restrict ourselves to second order parabolic equations, and we consider only the
first terms in the asymptotics. In our previous paper [13], we obtained point estimates for
the Green function. These estimates together with results of the theory of elliptic bound-
ary value problems are used in the present paper in order to describe the behavior of so-
lutions near the edge.

We outline the main results of the present paper. For an arbitrary point x = (xy,...,%,) €
R”, we put ¥’ = (x1,...,%5) and &” = (X,,41,...,%,). The same notation is used for multi-
indices o = (e, ..., 0,). We assume that a;; = a;; are real-valued functions and that

laj(x,0) —a;0,0) <€, |an)| <el¥|",  |aotx0)| <elx|” (3)

where € is a small positive number. Besides this assumption, we impose some smoothness
conditions on the coefficients a; and a; (see (21) and (22)). The condition (3) ensures in
particular that the difference of the operators L(x, £, d,) and

LO (0: 0, ax) = Z 611’/‘(0, 0)876, ax/'

ij=1

is small in the operator norm W[i}lj(DT) — Ly,s(Dr). Here W;;iél (Dr) is the Sobolev space
on Dy =D x (0, T) with the norm

T 1/p
(B=2042K+1]) |  k nct
||u||W;%z(DT):(// S e “"|afaxu(x,t)|”dxdt> . (4)
g 0

D gkslal<2i

For [ = 0, this space is denoted by L,,s(Dr).

In Sections 2 and 3, we deal with the asymptotics of the Green function near the edge
M of D. In the case of constant coefficients a;;, the asymptotics can easily be obtained by
means of the asymptotics of the Green function for the heat equation which is given in [7,
8]. If the coefficients are variable, then the terms in the asymptotics contain the eigenvalues
and eigenfunctions of the following operator pencil 20(x”, £; 1):

A, 1) D(w) = | [ Lo (0,4, £, 0,0, 0) || (), @ € WA(<). (5)
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Let A} (x”,t) be the smallest positive eigenvalue and let &7 (x”, t; ®) be the corresponding
eigenfunction. As was proved in [13], the Green function G(x,y,t,7) of the problem (1)

satisfies the estimate

. /| * | * k| — y]*
Glx,y,t,7)| <clt-t ”/2( exp| -————
Gy en|sce-0" Z = ) (G =) Pl

forO<t-t<T, || <2, |y'| <2, where A < A{(0,0) — C/e. Analogous estimates are

valid for the derivatives of G (¢f Theorem 3.1). Using this result, we show in Section 3 (see

Theorem 3.2) that G(x, y,t, T) admits the decomposition
Gy, 67) =y (¥, 3,1, 7) |x/|kl+(x”’t)cl>1+ (", t;w) + R(x,,t,7), (6)

where

L 1NN k(11” + 12 =y 1)
|[R(x,y,,7)] < c(t - 7) /2<m) \/ty_—f exp( == t-t :

for 0 <t — 1 < T and |#| < 4/t — 7. Here, u is a certain number greater than sup 1] (x”,¢).
The coefficient v, in (6) satisfies the estimate

e o\ k(ly 1+ 17 =y )
xyt,7)| < et — 1) M ’t))/z(— exp( -
V(&3 t7) | < et = 7) —) e -

for 0 < £ — v < T. Moreover, ¥; admits the decomposition

Yi(x", 3, 67) = Wio(x", 0.6, 7) + (%", 3,6, 7),

where W is the function (37) and

nlent '\ k(ly 2 + 2" =y %)
(X y,t )| <clt —7) T ,t))/2<— exp( —
@y t7)] < et -1) =) e P

forO<t-tv<T.

In Section 4, we apply the results of the foregoing section in order to describe the be-
havior of the solutions of the problem (1) near the edge M. By Theorem 4.2, the following
result holds. Suppose that f € L,,s(Dr), where

supAf (x”,8) <2 - B —m/p <1{(0,0) +1- Cy/e, 2- B —mlp<infaj(x’,t) — Ve.
Then the solution of the problem (1) admits the decomposition

ule,t) = Em) e )| |10 (", £50) + vi, 1),

where

t
n(x", 1) = /0 /D V(5. 6,7)f 0, 7) dy d,
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£ is the extension operator introduced in Section 4.2, and v € szé (D7). Note that the
function /4 belongs to the anisotropic Sobolev-Slobodetskii space W;'S/ (R % (0, T)),
where s is the function s(x”,t) =2 — B — A] (x”, t) — m/p.

Section 5 in closing deals with the initial-boundary value problem in a bounded domain
with an edge. Under some smoothness conditions on the coefficients of the differential
operator, we obtain the same decomposition of the weak solution near an edge point as in

the case of the previously considered domain D (see Theorem 5.1 at the end of the paper).

2 Green function of parabolic equations with constant coefficients
In this section, we assume that

n
Lo(ax) = Zai,jaxi axj = V,;Avx:
ij=1

where a;; are real numbers, a;; = a;; for all i, j. Here A denotes the square matrix with the
elements a;;, V, is the nabla operator and V! its transposed, i.e., V. is the row vector with
the components 9.

There exists a coordinate transformation & = Sx with a constant square matrix S such
that the problem

Opu(x, t) — Lo(3)u(x,t) = f(x,2) forxeD,teR, ulypxr, =0, (7)
takes the form
ou—ANsu=f foréEeD' =K eR"™ teR, ulyprxr =0 (8)

in the new coordinates &, where K’ is a certain cone in R” with vertex at the origin. This
coordinate transformation can be constructed as follows. Let A" be the matrix with the
elements a;;, i,j = 1,...,m, A” the matrix with the elements a;;, i,j = m + 1,...,n, and B the
matrix with the elements a;;, i =1,...,m, j = m +1,...,n. Furthermore, let V,» and V,~ be
the nabla operators in the coordinates x and x”, respectively. Then the operator L, can be

written as
Lo(3x) = VL (A'Vy + BVy) + VL, (B' Ve + A"Vy).

There exists an invertible matrix U such that UA'UT = I, (the m x m identity matrix).
This is true for the matrix U = A™2V, where A is the diagonal matrix of the (positive)
eigenvalues of the matrix A" and the rows of V are the orthonormalized eigenvectors of A’.
For the coordinates y' = Ux',y" = x” —BTA’ %', wehave Vy = U TVy/ —A/’lBVyn, V=V
and, consequently,

Lo(3:) = Ay + V), (A" = BTA'B) V.
Obviously, the transformation (¥, x”) — (Ux’,x” —BTA %) = (¥/,y”) maps K x R" onto

the set D' = K’ x R", where K’ = UK is a cone in R”. Since A” — BT A’ B is a symmet-
ric matrix with only positive eigenvalues, there exists an invertible matrix W such that
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W(A” -BTA'B)WT =1,_,,. For £ =y and £” = Wy, we get

Lo(3y) = Agr + Agr.
Hence, the equation (7) has the form (8) after the coordinate transformation

g=Ux, £ =W -BTATY). )
We denote the Green function of the problem (8) by Go(&,n,t). This means that

(3 — Ae)Go(E,m,0) = 8(E —n)8(t) forg,neD,teR,

Go(fﬂ?,t)=0 fOf‘E 639/,77677, GO(&:’]J”KO =0.
Then the function
Go(x,,t) = | det S|Go (S, Sy, 1) (10)

is the Green function of the problem (7).

In order to describe the asymptotics of Gy near the edge, i.e., for small |x'|, we introduce
the following notation. We denote by {A;} the nondecreasing sequence of eigenvalues of
the Beltrami operator —§ on the subdomain Q' = K’ N §”~! of the unit sphere §”~! with
Dirichlet boundary condition, and by {¢;} an orthonormalized (in L,(£2')) system of eigen-
function to the eigenvalues A;. Furthermore, let

2-m 1
+ /
)‘i =Ti5 (2—m)2+4A,~

be the solutions of the quadratic equation A(m — 2 + A) = A;. Then the functions

1

“rrmz 1 9
]

5(£) = |8 ¢ywe) and (€)=

are special solutions of the equation Ag i = 0 in K'. We also introduce the functions

~ ’ 2 —Ar-m/2 ~ / |77/|2
(1) = ————— (@4 "y =),
w(n',1) ro; )4 () exp( ==

which are special solutions of the heat equation (3; — A,/)w(n’,t) =0 for ' € K’ and ¢ > 0.
Suppose that . is a real number satisfying the inequalities A} < <A +1and u # 2] for
all j. By [8, Theorem 2.1], the Green function G, admits the decomposition

GO(E’ n,t) = (D(%-” - TI”» t)g(%-/’ 77/7 t)

- t)(z i, )it () + (€ t)), (1)

)»/-+<M

where ®(&”,t) = (4mrt)m="12 exp(—'i—;‘z) is the fundamental solution of the heat equation

in R and g(&', 7, ¢) is the Green function of the Dirichlet problem for the heat equation
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in K’. The remainder 7(¢,7/, t) in (11) satisfies the estimate

ok 57" | < ettty (Y (It Y
A ) | P L <_) <7>
RERK N 1+t

AE)\" (d()\" el
X(m) (In/l) e"p(' t) (12)

for |&'] < cv/t, |&'] <2, |y'| < 2. Here, &, = 0 for || <1, while &, is an arbitrarily small

positive real number if || = 2.
Using the decomposition (11), we obtain an analogous decomposition for the Green
function Gy (%, y, t). For this, we introduce the functions

wi(x) = i;(Ux'), vi(x) = [det U|v;(Ux’)

and

|W(x// _y// + BTA/—ly/)|2>

Yio(x",,t) = | det S|(4m ) """, (Uy, £) exp(— P

2 (m=m)12 (44 —Af-n/2 X -y
SR Jerp(- 105 72), 13)

" [detA[ 2T (A + m/2) 7V T

where g(y',y") denotes the quadratic form
a(/y") = W/ [+ W+ BTAy) [

Note that the form g(y/,y") is independent of the coordinate transformation since U7 U =
A and WIW = (A" — BTA'B)™L. Since U and W are invertible matrices, there exists a

positive constant « such that
q(v>y") ZK(|y/|2+ |y”|2) forally,y". (14)

We furthermore note that both #;(x’) and v;(x’) are solutions of the equation

m
Loy, 0)u =Y azdydyu=0 inK
ij=1

which have the form
w() = [T 07 @) () = [ @ (@)

This means in particular that kf are eigenvalues and <I>ji are eigenfunctions of the pencil
(1) which is defined as

AG) () =[x [ Lo (0, 0)| | D), ® € WL(Q).

Theorem 2.1 Suppose that A{ < u < A{ +1and L/ for all j. Then the Green function
Go(x,y,t) admits the decomposition

GO(x;y; t) = Z I;0]',0 (x//’y’ t)u](x/) + RO (x’y’ t)’

A;'<y.
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where

ke (el ly )/ |x| p—le| |y/| )‘1+*|V/\*5
9,0, 0) Ro(x,y,£)| < ct™ ey ( ) < )
26053 R, NG Y1+

X(d(x ) (d(y)) exp(_xuy%|x”—y"|2>) s
W)\ :

for x| <t a= ("), y =, y"), |&'| <2,and |y’| <2.Here, &y =0 for |a'| <1, while
&y s an arbitrarily small positive real number if || = 2.

Proof By (10) and (11), we have

Go(x,9,t) = | det S|Go(Sx, Sy, £) = | det S|®(&” — ", £)g(8', 0, £)

= |detS|D(&" =y + WBTA ™, £) Y (0, £)i5; (&) + Ro(x, 3, £), (16)

A]f</4
where £ = Ux', ' = Uy, £" = W(x" —BTA''x'), and " = W(y’ —BTA/fly/), and

Ro(x,y,t) = |detS|(<I>(§” - n”,t) - <1>(§-‘” —n"+WBTA %, t))g(l,[x/, uy, t)
+ | det S| (" - " + WBTA' W, t)F (&', t).

The right-hand side of (16) is equal to

D 0@y, )u(x') + Ro(,,2).

A <n
Using (12), one can easily check that Ry satisfies (15). O
We derive another formula for the coefficient v;¢(x”,y,t) in Theorem 2.1. If £ > 0, then
Agg(&',n',t) = 0,g(&',1',t)

for&,n' e K'. Let Vzg:ﬂ (K) denote the weighted Sobolev space (closure of C5°(K\{0})) with

the norm

lllve (f2| PPl e (/){pdx/>1/p.

la|<l

It follows from (11) and (12) that 9,g(-, ', ¢) € Vlgﬂ (K”) for arbitrary p and 8 such that p(8 +
A7) > —m. Hence, the coefficient w;(n’, £) in (11) is given by the formula

wi(n,t) = /K (E) A (€' t)ag 17)
(¢f [14, Theorem 5.1]). Let

UE,nt)=g(&n,t)(®E" -n"t)- @ -n" - WB'U"Et)).


http://www.boundaryvalueproblems.com/content/2014/1/252

Kozlov and Rossmann Boundary Value Problems 2014, 2014:252 Page 8 of 37
http://www.boundaryvalueproblems.com/content/2014/1/252

In the integral
wi(n',t) = /K / V(&) Ae UE,n, 1) dE’ (18)

one can integrate by parts for ¢ > 0. Since Azv;(§') =0 and g(§',7/,t) = v;(§') =0 for &’ €
dK’, we conclude that the integral (18) vanishes. Hence, it follows from (17) that

ﬂ/j(n,’t)q)(‘i:” _ 77”’ t) — ~/I‘<r aj(%-,)AE’g(g/r T)/, t)d)(g” _ n// _ WBTUT%J,I‘I) dg/

Weset&” = Wa’, 0’ = Uy, n” = W(y" —BTA'™'y'), and we substitute &’ = Ux' in the integral
on the right-hand side. Then we obtain

iy (Uy, )@ (W (x" " + BTA™Y), 1) = / V(%) Lo (3, 0)Go(Sx, Sy, 1) dx'.
K
Multiplying the last equality by | det S|, we arrive at the formula
Yio(x",yt) = / vi(%")Lo(3y,0)G(x,y,t) dxx'. 19)
K

3 Green function of parabolic equations with variable coefficients
Now let L(x, ¢, d,) be the operator (2) with x- and ¢-depending coefficients satisfying the
condition (3). We consider the Green function G(x,y, t, ) for the operator

L=0;—L(x,t,0,)
in D =K x R"7, ie., the solution of the problem

(at — L(x, ¢, ax))G(x,y, t,7)=8(x-y)8(t-t) forx,yeD,t,t €R,
(20)
G(x,7,t,7)=0 forxedD,yeD,teR, G(x,9,8,7)|tr = 0.

In this section, we will employ an estimate for the Green function which was proved in [13].
For this end, we assume in the following that the coefficients of L satisfy some additional
smoothness conditions. To be more precise, we suppose that

Ya; e C*°?(DxR) for|y|<2 and Ao, @), O, dj € C°°2(D x R) (21)

with some o € (0,1) for i,j =1,...,n and that
n n
N larag ofay|+ Y D |0 0% ofaj] + |92 0fag| < C  for || <4,k <2. (22)
ij=1|y|<2 j=1 ly|<1

3.1 Estimates of Green function
Let

Lo(0,8",6,05) = > a;(0,5",£)d,,3,, and  Lo(0,2",2,8,,0) = Y a5(0,&”,£) 3y, 0y,

ij=1 bj=1
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Furthermore, let the pencil 2(x”, £; A) be defined by (5), and let )\f (x”,t) be its eigenvalues,
where

<A <A[<2-m<0<A <Ay <
The following estimate for the Green function G(x, y,¢, t) is proved in [13, Theorem 4.4].

Theorem 3.1 Suppose that the coefficients of L satisfy the conditions (3), (21), and (22). If
T is a positive number and ). < 1} (0,0) — C/€, then G(x,y,t, T) satisfies the estimate

|9f9L0% 87 G(x, 9,8, 7))

t Yt¥x Yy

<c(t- .,:)—(n+2k+21+\oz|+lyl)/2 (L)Kla l(L)AW \
_ Wi+vi-t)  \yl+vi-t
d —€of d -1 2
() (H00) 5 "

forO<t—t<T,|&|<2,1Y|<2,|&"| <4, |y"| £4, k,l <2. Here, &, denotes the same
nonnegative number as in Theorem 2.1.

3.2 Asymptotics of Green function
Analogously to the matrix U in Section 2, let U(x”, t) be a matrix such that

U, )A (&, e)U" (5", £) = L,

where A’(x”,t) is the matrix with the elements a;(0,x",¢), i,j = 1,...,m. Under our as-
sumptions on the coefficients, we may assume that the elements of I/ are C?-functions.

Then the numbers A;(x”,t) = A;(x”, t)kj‘(x”, t) are eigenvalues of the Beltrami operator

—§ (with Dirichlet boundary conditions) on the subdomain Q'(x”,¢) = K'(x”,£) N §™1 of
the unit sphere, where K'(x”,£) = U(x",£)K. As in Section 2, we denote by {¢;(x",¢; w)}
an orthonormalized system of eigenfunctions corresponding to the eigenvalues A;(x”, t).
Moreover, we set

i 68) = | [T g ) and
v+, 6¢) =—m|5 70w 6 ).
Then the functions
wi(x", tx) = (x5 Ux),  vi(x) = |detU|y;(x", t; Ux') (24)
are special solutions of the equation Ly(0, %", ¢,d,,0)u(x') = 0 for ' € K. By (20), we have
Lo(0,4",t,0¢,0)G(%,9,t,7) = 9,G + (Lo (0,4",2,0x,0) — L(x, 2, 0,)) G(x, 7, £, T) (25)

for x € D, t > 7. Suppose that p and 8 are such that

27(0,0) <2—B-mlp<2{(0,0) +1-Cy/e, 2-B-mlp#1 (x",t) foralljx",t,
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where C is the same constant as in Theorem 3.1. Then by Theorem 3.1, the right-hand side
of (25) belongs to the space V?

5(K) for arbitrary fixed x” € R"™, y € D, ¢ > . Applying
[15, Theorem 4.2], we obtain

G, %", y,t,7) = Z Vit 7)ui(x", 64') + R(x, 9,8, T)

A;<2—ﬂ—m/p
where R(-,x",y,t,7) € Vzﬂ(K) The coefficients ;(x”, y, t, T) satisfy the equality (cf. (19))

V(" p.t, r) = / vi(x", ;") Lo (0,%", £, 3y, 0) G(x,y,t,7)dx. (26)
K

In the following lemma, we give an estimate of these functions

Lemma 3.1 Suppose that sup A (x",t) <A{(0) +1~ C./€, where C is the same constant as
in Theorem 3.1. Then the function (26) satisfies the estimate

" (! / )ﬁ‘y/l d 781’/
|3t 81;3;1// 8}/1#]‘( ,y,t ‘L’)| <clt-1) —k=l=(r+la” [+ ly|+1] (7, t))/2< [yl ) ( 0’))

NI [yl

t—71

/12 VANAV)
Xexp<_f<(|y| + 1" -y )) 27)

forO<t—-1<T,k<1,1<1,and|a"|,|y'|,|y"| < 2. Here, « is a certain positive number,
A is an arbitrary number less than A{(0)

C\/€, and e, is the same nonnegative number
as in Theorem 2.1.
Proof We define K; = {x € K : |x'| < «/t} for ¢ > 0. Then

00,08 0 Uy 30, 7)
:/K dafalas, Byv,(x 5x')Lo(0,%”,t,0¢,0)G(x, 3,8, T) da’
t-r
+ /K\K akalas, 3 vi(x",64') Lo (0,4, 2, 8, 0) G(x, y, 2, T) dx’
it

We estimate the first integral on the right-hand side of the last equality using the decom-
position (25). Theorem 3.1 yields

|3} a,a;;,,ay (Lo(0,%",t,0¢,0) = L(%,£,0x)) G(x, 5,2, 7)|

—€ / A=ly']
< C(t _ .L,)vl(n+|y|+|cr|+k+l)/2|x/|)~1<d(x)> ( Iy | )
B x| ly'| +vt—1

A\ [ k(Y + =y
X(m) e""(‘ 20— 1) )

for |x'|><t—-1<T,o <a”, and v < k, where ¢ is an arbitrarily small positive number.
Furthermore,

’EJf"’B;"/:/ vi(%,t; x)| < c‘x | j t)(l + |log|x/’|)k+|a//|_v_la|.

Page 10 of 37
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The number A can be chosen such that sup )L]f' (x”,t) < 1 + 1. Consequently,

t Ut x

/ akalae V,»(x”, 5x) 3y (Lo (O,x”, t, 0y, O) —L(x,t, Bx))G(x,y, t,7)dx
Kt

ly/] A=yl
<c(t- .[)—k—l—(n+|oz”|+|y|+A+1)/2 <y7>

yI+vt-1

)\ Ky P+ 1 =y P)
X(W) e""(' 2t - 1) )

% /K |x/|k—k;r(x/’,t)+l—m (1 + |10g|x/| Dl+|a”\ (d(x)) dx'
-1

%]

k-1 eyt 1Y d
< o{ = ) e ety 145 ) ( )

V-t

dly)\ ™ k(Y12 + 1% = y"1%)
X(m) e"p(’ at—71) )

The same estimate holds for

t Ut

/ 8k318°‘,:/vj(x”,t;x’) 3,0) G(x,y,t,7) dx’
Kt

Thus, we obtain

/ af 8;‘,7 v (x”, t x’)Lo (0, x",t, 0y, 0) Bi 3 Gxy,t,7) dx’ '
Kt—r

—k—l—-(n+|” |+|y|+1T (",8)) /2 |J/| Al
<c(t-1) i —

i
A\ Ky 2+ 1 =y P)
X(m) exp(_ a(t-7) )

Since Lo(0,x",t,0,,0)vj(x",£;x") = 0 for ' € K and akalae, 3y G(x,9,£,7) is exponentially

t Ve Yy

decaying for large |x|, we get

/ 858;:,7 v (x”, L x’)Lo (0, X', t, 0y, 0) Bf 3 Gx,y,t,7)dx
K\Kp-r

n
= f atka;:/:/ Zﬂw‘(o,xﬁ, t)
Sl—r

ij=1
x (vi(«", 8 x/)ax]. a! 3 Glx,y,t,7) - 3! 3 Glx,y,t, t)ax/.v,»(x”, t;x')) cos(n, x;) do,
where S;_; is the intersection of K with the sphere |x'| = /¢ — 7 and n is the normal vector

to this sphere. By Theorem 3.1, the integrand on the right-hand side of the last equality
has the upper bound

k(| [+ ly | +1=A7 (D)2 ly'] ol
c(t-1) j A

V]|++t—1

—&.,1 /12 V)
» (d(y)> v exp(_fc(lyl + 16"~y ))'
[y'] i-t

Page 11 of 37


http://www.boundaryvalueproblems.com/content/2014/1/252

Kozlov and Rossmann Boundary Value Problems 2014, 2014:252 Page 12 of 37
http://www.boundaryvalueproblems.com/content/2014/1/252

Therefore,

/ atka;;i’ Vi (x”, t; x’)Lo (0, X't 8,4)85 3G y,t7) dx'
K\Ki—r

ketturiaiptear oz (Y1 YT
SC(t—T)_ —l—(n+|o |+|y|+j x", < )

V=T

dy)\ ™ k(Y12 + 18" = y"1%)
X(m) exp(' 2(t—1) )

This proves the lemma. O

For the estimation of the remainder R(x,y,t, ), we need the following lemma.

Lemma 3.2 Suppose that u € V;;ﬁ (K) is a solution of the problem Ly(0,x",¢t,0,,0)u =f in
K, u =0 on oK, where )L;(x”, H+e<2-B-mlp< )»}7'+1(x’/, t) — ¢ for a certain integer j > 1.
Then

c(x”, 1)
u < —- 28
” ”V;;B(K) = e ”f”‘/lg;ﬂ(lo ( )

with a constant c(x”, t) independent of .

Proof First note that the eigenvalues ); (x”,t) and )‘;u («”,t) of the pencil 2((x”, ¢; 1) have no
generalized eigenfunctions (see, e.g., [16, Section 2.2]). Let g(x',y') be the Green function
of the Dirichlet problem for the operator Ly(0,x”, ¢, d,,0) in the cone K, £g(-,y') € sz;ﬂ (K)
for smooth ¢ vanishing in a neighborhood of y'. Then

) = [ 0.
By [17, Theorem 2.2], the function g satisfies the estimates

o) <l 91 foraly <y

+ () et
A/ (« ,t)|y/|2 n A] (t)

e,/)| =l for [ > 2]

Moreover, in the case |y'| < 2|x'| < 4|y'|, the estimates |g(x’,y')| < c|x’ — ¥/'|>™ for m > 2
and |g(x',y)| < c|log|x’ —¥'|| for m = 2 are valid. For arbitrary integer v, let x,(x") =1 for
2V < |&'| <2, xu(®) = 0 else. Furthermore, let

u, () = /K 2 0 )

Then it follows from the above estimates for g(x’, ') and from [18, Lemmas 3.5.1 and 3.5.4]
that

(-v)(} (" 1) -2 /p) :
”X”MVHVIQ,S_Z(K) <c2 H=v)(] (x +B+mlp ”XVf”VI?,ﬁ(K) lfﬂ >,

(m=v)(Af, (& 5)-2 /p) .
”XMMVHVI%_Z(K) <c2 H=V){Aj +B+mlp ”X"f”\/lgﬁ(l() if < v,
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where ¢ is independent of u, v, and f (¢f [18, Lemma 3.5.6]). Consequently,

p
p _ p
lulo o = ; Dl o = XM:(Z ||x,Luv||V;ﬁ_2(K))
p
<c el .
< ;(Z e o

By Holder’s inequality,

P p-1
—&|u—v| [u=v| —¢&lp-vl
(Zz ey ||xvf||vgﬁ(,o> (Zz S W (,O) (Zz el )
28 + 1\~
= (28_1) Zz R P [y

Thus, we obtain
2¢ + 1\
4 —e|lpu—v| 4
lalo o < c(zg _1> Y2 10
" v
28 +1\?
p
( ) S 1 Vg - (ﬁ) ¥

The last inequality together with the estimate

”u”‘/;;ﬁ(]() = C(”f”v;;ﬂ(]() + ”u”vﬁﬁ_z(]())
(see, e.g, [18, Theorem 3.3.5]) implies (28). O
Now we are able to prove the main result of this section.

Theorem 3.2 Suppose that A < A{(0) — C/€ and
A7(0) < < AT(0) +1 - C/e, A (",t) ¢ [u— Ve, u+ el foralljx',t, (29)

where C is the same constant as in Theorem 3.1. Then the Green function G(x,y,t, T) admits
the decomposition

G(x,y,t,1) = ZW, ,y,tru,(x tx)+R(x,y,t 7), (30)

}»+<p.

where u; is defined by (24), and

|x/| pu=le| |y/| A=1y'|
R AR

y <d_(y)>_81/ exp(_K(ly/|2 + |x// _y//|2)) (31)
Iyl -t
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forOo<t—t<T,|¥|<t—71, || <1, [&",1Y'l,ly"] <2, k,l <1. Here, ¢, is the same
constant as in Theorem 2.1. The coefficients V;(x",y,t, T) satisfy the estimate (27).

Proof Let ¢ be a smooth function on the interval (0,00), ¢(r) =1 for r <1 and ¢ (r) = 0 for
r > 2. Furthermore, let x (x',t) = ¢ (t%|«’|) for x = (x',x”) € D and ¢ > 0. It follows from
the equality

Lo(0,%",£,0,,0)R(%, 9, £,7) = Lo (0,5, 05, 0) G(x, %, £, T)
= (LO (O,x”, t, 0y, 0) —L(x,£,0,))G(x,9, £, 7)

+0;G(x,9,t, 1)
that
Lo(0,&,£,0,,0) x (¢, £ — 7)0L0) R(x, 3,8, 7) = f (x,7,2,T)
for t > 7, where

f=x (x’, t— r)afa; ((Lo (O,x”, t, 0y, 0) —L(x,t, 8x))G(x,y, t,7) + 9,Glx,y,t, ‘E))

+[Lo(0,x",t,0,0), x (x', £ — r)]ai 3y <G(x,y, LT) - Z vyt T)ui (27, t;x/)>.

Here, [Lo, x] = Lox — xLo denotes the commutator of Ly and x. Furthermore, 85 Byy R(x,y,
t,7) = 0 for ¥ € 0K. We estimate the sz;ﬂ(l()-norm of the function x (-, £ — r)ai BJ'R(',x”,y,
t,7) for 2 — 8 — m/p = . By [15, Theorem 4.1],

[ x (.t =0)a8) R(-a", 3,8, 7)| V2 = c|f(-a" 387 | VLK)’ (32)
Here, the constant c is independent of x”, y, £, T. Indeed, by Lemma 3.2, we have

|x (ot =)L) R(- 2"y, 6,7) | V2,(K)

¢ %
= ﬁ ||L0(0: 0, 9y, O)X(: l- T)aia}];/R(’x a2 7") || V19;/3(K)’

with a constant ¢ independent of x”, y, £, . Furthermore, under the condition (3), the
inequality

|| (LO (O7x//7 t, ax’: O) - LO(O: O¢ ax’¢ 0))X(: t— r)Bi 8_))//R(.’x//’y’ 12 'L') H V[?'ﬂ(K)

= ce|xCot =Ry ROyt 7) |2

holds. Thus,

| x(e=)al9) R( &, 3, 8,7) | V2(K)

c
= Cl\/E”X(" t- T)aia}/R("x”’y’ t,7) “ V24 (K) * 72g |Lf(~,x”,y, t,7) “ Vs (K)
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which implies (32) if € is sufficiently small. Next, we estimate the ng; p-norm of f(-,x",y,t).
By Theorem 3.1,

|x (&'t =1)0}0) (Lo (0,4",2,0,,0) — L(x,£,0,)) G(x, 7,1, T)|

_g , A /‘
<t — )y 2] 21 <d(x)> ( |yl ) 4
%'l VE-T

—£&.,/ /12 1 a2
5 (d(y)) ’ exp(_K(Iyl +1x" -y ))
[yl t-t

for 0 < ¢—1 < T, where A < 1] (0) — C/e. Here, A can be chosen such that p(8 + 1 —1) > —m.
Therefore,

[t =)0:0) (Lo (04", £,8,0) = L(" 1, 0:)) G (12,3017 [ o sy

|y/| )\*‘V,l
< C(t _ T)—l+(/3—n—\y|—2+m/p)/2 ( )

N1

5 (@)—E}// eXp(_K(|y/|2+|x//_y//|2)).
1yl t-t

Analogously, we obtain

2t =327 G220 |0,

ly/] A=ly']
< C(t _ T)—l+(ﬁ—n—y|—2+m/p)/2( J )

N1

=€,/ /12 1 a2
" (d(y)) v exp(_x(lyl +1x" -y ))_
[y'] -t

Since [Lo(0,x”,¢,9,), x (', t—T)]G(x,,t, T) vanishes for |x'| < /t — T and |x'| > 24/t — T, we
obtain the estimate

I[£0(04",8:3010) x (£~ D)3 6" 3,8 o

ly| =1yl
<c(t- .L,)—l+(ﬁ—n—y|—2+m/p)/2< ) )

N1

y (@)‘EV’ exp(_K(Iy’l2 + | —y”lz))
1y t-t

by means of Theorem 3.1. Using Lemma 3.1, we get the same estimate for the Vlf;ﬁ (K)-
norm of the functions [L(0,x”,t,0,,0), x(-,t — r)]aiayyl//j(x”,y, t, T)uj(x",t;-). Conse-
quently, (32) implies

” X(’ t— 1)853;’13(',96”,}/, t, 7:) ” V;;/S(K)

|y/| A=y
< C(t _ ,L,)—l+(/3—n—y|—2+m/p)/2< )

N

o (d(y)>‘sy’ exp(_K(Iy’I2 + Ix”—y”lz)> (33)
[yl t—-71
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for 0 <t -7 < T. We prove an analogous estimate for the x”- and ¢-derivatives of 3/3) R.

Obviously,

Lo(0,&",2,0,0) (x (¢, £ — T) 3,00 R(x,,2,T))

le—

= 04, (%, 9,2,7) — (0L (0,4", 2,057, 0) ) (x (', £ = 7)3,0) R(x, 7,2, 7))

forj > m+1, where f is the same function as above. Since, moreover, A, 8£ 8},’ R(x,y,t,7)=0

forx’ € 9K andj > m + 1, we get

Ix (e t)3x13£3ny('»x”»J” t,7)| V2, (K)

< c(105fvo, a0 + [ X (ot = DGR 2 8.7) |12 )

forj>m+1. The Vﬁ;ﬁ (K)-norms of d,f can be estimated in the same way as f. This to-
gether with (33) leads to the estimate

oot = 000920 RO 387 2,

|y/| A=y
< C(t _ T)—l+(ﬁ—n—\y|—3+m/p)/2 (_)

VE—T

—&,/ /12 1" a2
y (d(y)) Y exp(_lc(lyl +1x" -y )>
[y'] t-t

for j > m + 1. Analogously, the inequality

” X(’ t— 1)858";‘,:/853}),/13(-,96”,)/, t, T) ” V;;/S(K)

" Iyl A=yl
<t — ) KA Bl |—y—2+m/p)/2< )

JE-T
y (N))SV’ exp(_x(ly’P + [x” —y”|2)>
[yl t-t

holds for || <2 and k < 1. Applying the estimate

S g v, ] < el 7) e

lo'|<1

for v(x,y,t,7) = x (x', ¢ — 1)81‘89‘2‘,;/ 3L9) R(x,y,t,7), p>m (cf [18, Lemma 1.2.3]), we get

|x/| U-—W/\ |y/| A=yl
|afa§aga;R(x,y,r,r)|gc(t—r)-k-l-<"+“'+'yl>/2(ﬁ) ( m)

y <d_(y)>” exp(_x(ly’F + | —y”|2)>
11 t-t

for |¥'| </t—1,0<t—t<T, || <1, |&"|,1¥'],|¥"| < 2. This proves (31). |
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Comparing the representation (30) with the estimate (23), we conclude that
inf ] (x”,£) > 2{(0,0) - CV/e, (34)
x"t
where C is the same constant as in Theorem 3.1.

3.3 Asymptotics of the coefficients ¥;(x”,y, t, T)
Let Go(x”,t;2,9,s) be the Green function of the first boundary value problem for the op-

erator

82
aZl' BZ]'

n
B Lo(0,4,6,30) = -~ 3 a1, (0,41
ij=1

with constant coefficients a;;(0,x”,t) depending on the parameters x” and ¢. This means
that

(05— Lo(0,%",8,0,)) Go(x", t;2,7,5) = 8(z - y)3(s) forz,y e D,s€R,

Go(x",t;2,5,s) =0 forzedD,yeD,seR, Go(x",£2,9,8)ls<0 = 0.
We write the operator Ly(0,x”, ¢, d,) in the form
Lo(0,x",8,9,) = VI(A'(x",t)Vy + B(x",t) V) + VL (BT (&, )V + A" (2, £) V),

where V, and V,» denote the nabla operators in the z’- and z”-variables, respectively. As
in Section 2, let U = U(x",£) and W = W(x”, t) be square and continuously differentiable
(with respect to x” and t) matrices such that L/A'U” = I,, and W (A" —BTA'BYWT =1,_,,.
By Theorem 2.1, the function Gy admits the decomposition

Go(x", 62, 3,8) = Z Vio(¥", :2",y,8)ui(x",6:2) + Ro(x, £; 2,9, 9)

)\If' ", t)<p

AT (", 8) < <Af(®",t) +1and A («”,t) for all j. Here,
Vio (x”, t7",y, s) = / v; (x”, L x/)Lo (0, X" t, 0y, 0) Go (x”, tx, 2"y, s) dx’ (35)
K

(¢f. (19)), the functions u;(x",t;-) and vj(x”,;-) are defined by (24), and R satisfies the
estimate in Theorem 2.1. A more explicit formula for the function v, is

977 (m=m)/2 (4S)_A/T (" ,t)-n/2

3 //,t; //, . - . //,t; /
Violr',6:2",3:9) | det AT (A + m/2) 4« :)
//’t; /’ //_ s
4s

(¢f (13)), where A(x”, t) is the coefficients matrix of the operator Ly(0,x”,t,d,), and

q(x//’ t;y/,y”) _ |Uy/’2 ; ‘W(y// +BTA/—1y/)‘2
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is a quadratic form with respect to y' and y” satisfying the inequality (14). We define
Yo", 3,8,7) = Yo", 2", y,t = 1), L,

2T (m-n)/2 (4t _ 41_)—)»;' " ,0)-n/2

\IJ‘ //’ ,t, — A //’ t; /
o(22.67) | det AT (A + m)2) (" 6)
q(x//, t;y,,x” _y//)
SIS 37
X exp( 2_1) (37)

forx” e R"™,yeD, t <t
Theorem 3.3 The coefficients \;(x",y,t,v) in Theorem 3.2 admit the decomposition
Ui, 2,6 7) = W (6,3, 6, 7) + 15" 9,6, 7),

where r; satisfies the estimate

T) HCH |)/| * K(|y/|2 | ! J’//| )
rj x”; b T <c(t - (n-1 )‘/( )2 < + X —

forO<t—1<T,A<Af(0)-Cife.

Proof For shortness, we write A/ instead of A/ (x”, ) in the proof of this theorem. Since
(35— Lo(0,4”,¢,0,))Go(x”, £;%,y,8) = 0 for x,y € D, s > 0, we have

(05 = Lo(0,x",t,0y) )0 (x", :2",,8) = 0
foryeD,s>0,x",2" € R"™,t € R. This means that the function ¥, satisfies the equation
(=0 = Lo(0,%",£,0,)) W0 (x",3,t,7) =0 forye D, <t
On the other hand, it follows from (26) that
(=0: —=L*(9,7,0,))¥;(x",y,t,7) =0 forye D, <t.
Here L* denotes the formally adjoint differential operator to L. Consequently,
(=0: = L*(»,7,0))ri(x", 3, t,7) = (L* (9, 7,0y) — Lo (0, %", £,3,) ) W0 (2,3, £, T)

for y € D and t < t. Furthermore, r;(x", y,t,t) = 0 for x” € R**, y € D. This follows from
the representation

y (x”,y, t r) = /K V,'(x”, t; x’)Lo (O,x”, t, 0y, O) (G(x,y, t,1) -Gy (x”, L%,y b — ‘E)) dx'

of the function r; = /; — Wjo (¢f (26) and (35)) and from the equality G(x,y,t,t) =
Go(x”,t;%,9,0) = §(x — y). Thus,

t
r,(x”,y,t,r)=/ /DG(z,y,s,t)(L*(z,s,az)—LO(O,x”,t,BZ))\IJj,O(x”,z,t,s)dzds.
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Since W, has the form (37), we get
|(L*(z,5,8;) = Lo (0,4, £,8;) ) W0 (5", 2,1, ) |

< c(Z Wi (x",z.t,8) + (|| + | = &"| +£=5) Z Wi (x"z, t,s))

Jer] <1 Jer|=2

~ K Z/2+x//_z//2
SC(t_s))LJrl n/2|z| exp<— (| | tl )
-S

for 0 < £ —s < T, where c and « are positive constants. The last estimate together with (23)
implies

+ / A
}" ,,t‘L’ < n/2 S—A}+1 n)/2 Z,)\j—z |y|
e = [ oo TV

(2N (el
L) expf =220
|[Z|+4/s—T P s—T

/12 "2
xexp(—K(|Z| th 2] )>dzds

t—s

for 0 <¢—1t < T, where % < 1{(0) — C/€. Using the equalities

2=y FP_e-0F —-sy P

s—T t-s (t-1)t-s)(s—1)

and
|Z//_y//|2 |Z//_x//|2 |(t_.L,)(Z//_x//)_(t_s)(y//_x//)|2 |y//_x//|2
+ = b
s—1 t—s t-t)t-9)(s—1) t—1
we obtain

2 /" /" . .
|7 (", 3,5 ‘E)|<cexp< eyl :I_x —yl ))// 02— S)—A/+(1—n)/2|z/|A/—2

X( 'l )A( 12 )*ex ( -7 - (t-s)y |2>

]+s—-71 |Z|++/s—T P (t-1)t-s)(s—1)
|(t - t)(zl/ // (y// _x /" /

X (/anexp<—/< (t—r)(t—s)(s—‘c) )a’z)dz ds.

The inner integral over R”"" is equal to (¢ —s)""~"/%(

s —17)mM/2 (¢ — 7)tm=m/2 Substituting
=g/Vt-s, y=nVt-tr, t-s=st-1), s-t=(1-5)t-1),

we obtain

/12 " 712
—(F +n— K + [x" —
(3,8, 7)| < et =) A 1WeXI)(— W1"+ =y ))

t—71

1
X/o ‘/KF(S,n,s)dé ds', (38)
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where

! A
F /, /, _ —()»;'+1)/2 o mi2 /)»1'—2( |§ |\/g )
(rvs) = 2= T e v

X( i )Aexp(—xlé/_n/\/ﬂz)
'l +v1-s 1-s ’

Let K1 = {§' € K: 1§ —n'/s| < 2|n’|/s} and K, = K\K;. We may assume that A > 0. Then
obviously

12 ' , '\ [ Gomrt—1)/2) oy |A4AF=2 .,
F(E,n,s)dé ds <c| — s |g| 1 7C dE' ds
0o JIr '] +1 o JiEnams

|77/| * ,)L+)L/*—2+m
={fi1) 1" '

If £ € Ky, then |€' — n/\/s| < 2|€’| < 3|&’ — 1’/s|. Therefore, the substitution &’ — n'y/s = ¢’
yields

12
/ /F(s”n’,s)dsds
o Jry
- '\ [ Oadt1)2| oy JthF =2 2y
<c s TR T exp(—x|¢]7) dE ds.
0 R

'l +1

The number A can be chosen such that k]f (x”,t) < A +1 for all x”, t. Thus,
1/2 |77/| A
F(&',n',s dg/dsfc( ) .
./o -/Kz ( ) 'l +1
Next, we consider the integral of F(£',7,s) for the interval 1/2 < s < 1. Obviously,

/I;/KF@/, n',s)d&' ds

1 nif-2 ’ A I 2
Scf / &1 /2< 1| ) exp(—K|§ '/l >d$/ds.
2k A=8)"2\|n/| + V/1=5 1-s

We define

K{={&eK:2|& -n'Vs| < |0
Ky={¢ eK:|&-n'Vs|>2]n

b

L K= K\K\K;.

If¢’ € K{and1/2 <s <1, then (v2-1)|n| < 2|&'| < 3|n'|. Thus, the substitution &' — ' /s =
¢’'/1-syields

1
//F(S’,n/,s)dé’ds
12 JK|

1 / A
< /A;—2/< |77| )/ _ /Zd,d
=cl| 2\ ++1-s 2\:/|¢§<W\exp( <le'T)de'ds
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00 ’ A
<c /’\;_2/ (—|77| ) / exp(—k|¢'|?) de’ ds
el o \ImlI+s/ Jaeigsam, p(-fe'T) e

In'2 © (Y

. il

<clnl" 2(/ / exp(-«|¢’|? dé“/dS+_/ (_> / d;"ds)
| - ( | | ) |2 ﬁ 21¢’|/s<In’]

=l [7%.

If¢& € Kjand 1/2 <s <1, then || < |§'| and |&' — ' /5] < 2|&’| < 3|&" — ' +/5]. Substituting
g —n's=0'\/1-s, weget

1
//F(é’,n’,s)d“g"ds
12 Jx}

1 / A
(F-2)2 'l S22 P
SC/ / (1—5)" <7> ¢ e dc' ds.
12 J1¢/ 1V Tss20| | ++/1—s &

We denote the integrand on the right-hand side of the last inequality by H(¢', 7/, s). Obvi-

ously,
H( o) < el | 2@=721¢ |7 exp(—«¢'])

for /1 -s<|n'| and |¢’|+/1 =5 > 2|7’|. On the other hand,

’ A .
H(es) <=9 (L) e T exp-e e )

for +/1—s > |/|. Consequently,
1 2 1 A2 AFE)
/ / F(slrn/;s)ds/dsfcyn/r / (1_3)1‘/ dszc/‘n/‘ix,
12 /K o

for |? > 1/2. For |’|? < 1/2 we obtain

1
//F(S’,n’,s)d“;"ds
112 K}

1-|y'|?

1
< c|77'|72 / a- s)'\i "2 ds + c|n/|A 1- s)('\i 202 g
1-|n/|2 1/2

<c(||7 +|n'|log|n|))-

Finally, since |§'| < 3|n/| for &’ € K}, we get

1
//F(é/,n’,s)dé’ds
12 JKy
<[] WZ( ) exp(~2
T Jo Jenan " Nin'l+ s 4s

simea (0] +4/5)7 k| ?
Sc|n/|)»+kl +m 2/ (|77| \/—) CXp(— |Z| )dSZC/|T}/
0 S

smi2

+ a
)‘j (x ,t)'
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The above obtained estimates for the integrals of F(§', 7/, s) together with (38) imply

’Vj(x”;y; £, T)‘ < C(t _ _L_)—(n—1+)\;(x”,t))/2’n/’}» eXp(—K(b/'Z + |x// _y//|2)>’

t—t
where A < A7 (0) — C/€. This proves the desired estimate. d

4 Asymptotics of solutions of the problem (1)
Now, we consider the solution

u(x,t):/t‘/DG(x,y,t,t)f(y,t)dydr
0

of the problem (1), where G(x, v, t, 7) denotes the Green function introduced in the last sec-
tion. We assume that the coefficients of the operator L(x, £, 9,) satisfy the same conditions
(3), (21), and (22) as in the foregoing section and that f € L,3(Dr) = L,(0, T; Vz(f);ﬁ (D)),
where p, B are such that u = 2 — B — m/p satisfies the inequalities (29). Then by Theo-
rem 3.2, the function G has the representation

Gx,y,t,7) = Z Vi (6", 3, 67 )ui (", %) + R(x, p, 8, T)

A]T<u

with a remainder R(x, y, £, T) satisfying the estimate (31). Let ¢ be an infinitely differentiable
function on R, = (0, 00) which is equal to one on the interval (0,1) and to zero on (2, c0).
Furthermore, we define

xl(x/,y/):§<|x—/|>, x2(x,6,7) =§( il >

[yl t—1
Obviously,
u(x, t) = Z H;(x, t)uj(x", %) + v(x, 1), (39)
A;<M
where
t
H;(x,t) = / / (&) xe (s 6, 0) ("3, 6, 7)f (v, T) dy de (40)
0o Jp
and

v(x, t) = /0 /D(G(x,y, LT) = XixX2 Z Vi(x", 3 t,r)u,(x”, t;x’))f(y,r)dydr. (41)

}»f <
We estimate the remainder v and the coefficients H; in the decomposition (39).

4.1 An estimate for a weighted L, Sobolev norm of the remainder
Let / be a nonnegative integer, and let p, 8 be real numbers, p > 1. Then the space W;%Z(DT)
is defined as the set of all functions u(x,t) on Dy = D x (0, T) with finite norm (4). An
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equivalent norm is

T / 1/p
”M” — (/ / Z( Z ’x/‘Pﬁ|atk8§M’P + |x/ ’P(ﬂ2l+2k)|atku‘p> dxdt)
0 D

k=0 “a|=21-2k

(see, e.g., [18, Lemma 2.1.6]). In order to estimate the first order x-derivatives of the re-
mainder v, we employ the following lemma (cf. [19, Lemma A.1]).

Lemma 4.1 Let K be the integral operator

(Kf)(x,t):/(; /DK(x,y,t,t)f(y,t)dydt

with a kernel K(x,y,t,t) satisfying the estimate

/ +r b
IK| < c(t— r)—(n+2—r)/2< |+'] )a < vl >
- ¥ ++/t—T ly'|+4t—T
T (o
ly'1? t-t

forO<t<t<TandxyeD, wherek >0,0<r<2,a+b>-m -5 -a<p<m-22+b.
Then K is bounded on L,(Dr).

Analogously to [8, Lemma 2.3], we prove the following lemma.

Lemma 4.2 Suppose that f € L,z(Dr), where p and B are such that |1 = 2 — B — m/p sat-
isfies (29). Furthermore, let v be the function (41). Then 93V € Lyg_o.10)(Dr) for |a| <1
and

Z ” a;tVHLp:ﬁ*ZJrlal('DT) = CllfHLP;ﬁ(DT)

la]<1
with a constant ¢ independent of f.

Proof Obviously,

3 pt
V= lefo A‘G(x’y,t,fy(y,r)dydr,

where

Vi, y,t,T) = X2 (x’, t, r)R(x,y, L, 1),

Vo, y,67) = (1- x2 (%, 8,7)) G, 3, £, T)

and

Va3, 61) = (1- x1(x,)) x2 (¥, 2, 7) Z Vit T)ui (2, 5%7).

A;'<y.


http://www.boundaryvalueproblems.com/content/2014/1/252

Kozlov and Rossmann Boundary Value Problems 2014, 2014:252
http://www.boundaryvalueproblems.com/content/2014/1/252

Using Theorem 3.2, we obtain the estimate

(mrlal)2 |x/| p—la|-e
3“\/1(96, ,t,f) SC(t—f)7 e (7)
9 I | || +VE—T

y ( vl )*exp(_xmyﬂ)
yl+VE-t t-t
for 0 <t -1 < T and |a| <1, where 0 <A <1{(0) — C/€ and ¢ is a sufficiently small pos-
itive number. The same estimate holds for 97V, and 97 V3 by means of Theorem 3.1 and
Lemma 3.1, respectively. Consequently by Lemma 4.1, the integral operators with the ker-
nels |x/[f=2+1el]y/ =P 9 Vj(x,9,t,7) are bounded in L, (D7) for || <1, j =1,2,3. This proves
the lemma. O

Next, we estimate the L,,s norm of (9; — L)v.

Lemma 4.3 Suppose that f € Lys(Dr), where p and B are such that =2 — 8 — m/p sat-
isfies the condition (29). Then the function (41) satisfies the estimate

” (at - L(x: t; ax))V”Lp;ﬂ(DT) E C”f”Lp;ﬂ('DT)
with a constant ¢ independent of f.

Proof By the definition of v, we have

(0 = L(x, £, 0))v(x,8) = £ (5, £) — (3 — L(x, £, 04)) Y Hylor, gy (", £5).

)L; <
Here,
(0 = L(x, , 0) ) (H; (%, uy (2, 154) )

= / /D(E)t —Lx,t,0)) x1(x, ¥ ) 2 (&, 6 T) W ("3, £, T )i (&, 154 )f (9, T) dy diT.

By Lemma 3.1,

030 (5,0 ) x2 (%, £, T) W (67, 9, £, T )1y (), £ |

<C(t_f)1n/2< KLNT WY (e =)
- Vi-t N -1 ’

where A is an arbitrary positive number less than A (0) — C/€. Using the fact that x| <
24/t — T on the support of x,, we obtain

%11 o (3 ) (' 6 0) 05 (3,1, 0 (7 150

AAT (1) +2 —A—
<C(t__[)n/2< |x/| ) + /(x )+ |x/|ﬂ A=2 eXp(_le_y|2>
- Wit 1P i

Page 24 of 37
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By (29) and (34), we have infA; > p -1 Therefore, we can apply Lemma 4.1 (with a =
A +infAf and b = 0) and conclude that the operator with the kernel |x'|?|y'| 29, x Xo
is bounded in L,(Dr). Furthermore, we obtain the estimate

|x/|’8 |y’|_ﬂ |(L(x,t,00) = Lo(0,4”, 2,3, 0)) xa (%, ) x2 (&, £, T ) ¥y (6, 3, £, T )y (7, 154 |

AT (0 +1 A
<C(t_.’:)n/2( |x/| ) + 1(x )+ |x/|ﬁ A2 exp(_K|x_y|2>
= |x/|+ /t_r |y/|ﬁf)\ t—1

by means of Lemma 3.1. Again Lemma 4.1 (with a2 = A + infA -1 and b = 0) implies
the boundedness of the integral operator with the kernel |x'|?|y'|#(L(x, ¢, d,) — Lo(0, ", t,
0x,0)) x1x2ju;. Using the equality Lo(0,x”,t, 0y, 0)u;(x”,£;x') = 0, one can show anal-
ogously that the integral operator with the kernel |x'|P|y/|7#Lo(0,4”,¢, 8y, 0) x1 x2 %14 is
bounded in L,(D7). Hence the mapping

Lys(Dr) 5 f — (3, — L(x, £, 0,)) (Hj(%, t)uj (", %)) € Lyip(Dr)
is bounded. This proves the lemma. O
For the estimation of the second order derivatives of v, we need the following lemma.
Lemma 4.4 Let u be a solution of the problem (1). If u € Lyp2(Dr), dxu € Lyp1(Dr) for

j=L1,...,nandf € Lyps(Dr), then u € W;’;(DT) and

n
Il o,y = c(ﬂflup;ﬁ@ﬂ  #llLyp D)+ Y ||ax,u||Lp;,“<DT)), (42)
: <

where c is independent of u.

Proof Let ¢, be infinitely differentiable functions on D depending only on r = [x'| such
that

+00
supp ¢, C {x 2V lerc 2””}, Z & =1, |8;",§V(x)| < 27"
V=—00

for all o, where ¢, is independent of v and x. Then ¢, u satisfies the equations

(0 = L(x,8,00))cou=f, inD x (0,T),

Lu=0 ondD x(0,T), Colt]s=o = 0.

where f, = ¢,f — [L(x, £, 9,), £, ]u. By [6, Theorem 1.1], the operator d; — A, of the heat equa-

tion realizes an isomorphism from the space
{u € W;';(DT),M =0o0n dDr,u(x,t)=0fort = O}

onto L,,, (Dr) for y + m/p =1+ m/2. Using the coordinate transformation (9), we obtain
the same result for the operator 9; — L (0, d,). Under the condition (3) on the coefficients
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of L(x,t,0,), the operator L(x,t, d;) — Lo(0, d;) is small in the operator norm Wz 1 (Dr) —
L,,, (Dr). Consequently, the function ¢, u satisfies the estimate

||€uu||W;';(DT) <clhls,, o
with a constant ¢ independent of f and v. Multiplying this inequality by 2"(#~?), we obtain
1608123 gy = €l l1p (43)
with a constant ¢ independent of # and v. Obviously,
foll,pmr) < N8uf llL,pmr) + C(”nl)u”Lp;,g_z('DT) + ”anMHLp;,«;_l('DT))r
where 1, = {,_1 + ¢, + {y41 and ¢ is a constant independent of f and v. Hence, (43) implies
1621 5, = UGS+ Il o+ Il )
Summing up over all v, we get (42). O
Using the last three lemmas, we can easily prove the following theorem.
Theorem 4.1 Suppose that f € L,3(Dr), where p and B are such that u =2 - — m/p
satisfies the condition (29). Then the solution u of the problem (1) admits the decomposition

(39) with a remainder v € WZI(DT) The coefficients Hj(x, t) depend only on |x'|, x”, t, and
satisfy the estimates

” 1||L /3+)\+—1(DT C”f”Lpﬂ (D7) (44)

and

”3 ) ”L pip+2] 4204 lal-2 (Dr) — C”f” p:8(DT) (45)

for1 <2l + |a| < 2. The constant c in (44) and (45) is independent of f.

Proof By Lemma 4.2, the solution u has the representation (39), where 95 v € L,,5_2.14|(Dr)
for |o| <1.Furthermore, by Lemma 4.3, (3; — L(x, ¢, 9x))v € L,,3(Dr). Applying Lemma 4.4,
we conclude that v € W;é (D7) and

”V”\V;1 <C|Lf|| B (Dr)-
In order to prove (45), we have to show that the integral operator with the kernel

B+rf+2l+|a|-2) ,1-B
= [ |

K(x,y,t,7) = 3102 x1 (¢, ) x2 (¢, 6, ) W (2, 3,1, T)

is bounded in L,(Dr). Using the estimates

902 (.7 (¥ 1,7) | < el [ e = )
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and

n+|a”|+k+)\+( ”,t))/2| s
Y|

|8t128";‘,:/1/fj( A2 7:)| <c(t- r)
712 /" a2
Xexp(—K(|y| + 2" =y ))

t—1
(¢f Lemma 3.1), we obtain

|x/| )2l+|a”+k+kf(x”,t) |x/|ﬁ,)ﬁz

Vi-t |y 1P~
/12 1 a2
Xexp(_K(lyl +x =] ))'

|K(x’)/; L, T)| <ct- 7'-)—n/2<

t—-1
Since |x'| < 24/t — T on the support of x,, we can replace the term ‘x ‘ by e I’ ‘t -. Apply-
ing Lemma 4.1, we get the boundedness of the integral operator w1th the kernel K(x,y,t, 7).
This proves (45). The estimate (44) holds analogously. a
4.2 On the coefficient in the asymptotics
We consider the coefficients H; in (39) and their traces
t
:f / wj(x”,y, t,r)f(y,t)dydt (46)
0o Jp

on M x (0,T). In the next lemma, we show that /; belongs to the anisotropic Sobolev-
Slobodetskii space W;'S/ 2(R*™™ x (0, T)) with the norm

” h ” W;-S/Z (R (0,T))

T » 1/p
:(/(; ||h || sRn m)dt""/Rnim”h( " ”Ws/2 (0,T)) ) H

where s is a certain function on R"™ x (0, T) between 0 and 1.

Lemma 4.5 Suppose that f € L,g(Dr), where p and f are such that u =2 - — m/p
satisfies the condition (29). Then the trace h; of the function (40) belongs to the space
W;'S/Z(R”"" x (0,T)), where s(x",t) =2 - B — A (x",t) — m/p, and it satisfies the estimate

”h ”W“/Z R % (0,T)) C”f” p:8(DT) (47)

for & < . Moreover, th; € L,(R"™ x (0,T)) and

T
—ps(x",t)/2 b
fo /R )P de < el 1y (48)

with a constant c independent of f .
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Proof Note that 0 < infs(x”,£) < sups(x”’,£) <1 under the assumptions of the theorem.
Then the norm of / in W;'S/Z(R”‘”’ x (0,T)) is equal to

” h ” W;,SIZ (R %(0,T))

T /" /" )4
_ p |h(x ’t) _h(y 7t)| 7/ 7/
= (“hHLp(R””‘X(O,T)) + /0 /n_m /n_m |x// _y//|n7m+ps(x”,t) dx dy dt

T T h x”,t _ h x//, 14 1/p
+/ / / (<", ) (/, ) dtdrdx") .
wm Jo Jo lt-1 |1+ps(x 1)/2

We consider H; as a function of the variables = |x'|, x”, and ¢. By (44) and (45),

[e¢]
f / /Rmm rp(lfs)—l(u_[jlp + |8, HIP + |0 Hj P + rp|3tH,'|p) dx" drdt < C”f”IZp;ﬁ(DT)'

Using the estimate
» o0
5 )y nmy < € /0 / NP |+ Vo HP) d dr

(see, e.g., [20, Section 2.9.2, Theorem 1]), where c is independent of ¢, we get

T
12
| VDl e < 1
Obviously, 4;(x”, t) is also the trace of the function Gj(r,x",t) = H;(\/r,”,¢t). Thus,
!
“h/’( )” W2((0,7))

o0
Scf / p (|G ) + 9,6y ) + |Gy (o, 1) 1) di dp,
0 0

where ¢ is independent of x”. Integrating with respect to x” and substituting p = 72, we
obtain

/Rmm ”hi( 4 )” Ws/z 0,7))
0o pT
= C/ / / PO\ H P + |9, HlP + |rd Hy|P) dt dr dx”.
n—m 0 o

This proves (47). Since 2 — 8 — m/p > sup A{, there exist functions a(x”, t) and b(x", t) such
that

a+b=-n-2{, pinfa>m—-n-2 and pinfb>p(B-n-2)+n+2.

Using the estimate

|1/f,(x”,y, L ‘L')| <clt-t

)—(n+A]f'(x”,t))/2 exp<—K(|y/|2 + |x’/ _y//|2))
t—1

Page 28 of 37
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(¢f Lemma 3.1) and Holder’s inequality, we get

T VARV 1/p
|i(x",8)| < c(/ /D(t— 7yl 12y PP [f(y,r)|pexp<—M> dydr)
0 —

t

T , /12 1 a2 1/p
< </ /(t—‘E)p/b/2‘l:_1/2|y/|_pﬂexp(—K(b/l + |x" =" ))dydr) ’
0o JD I-t

where p’ = p/(p — 1). We denote the second integral on the right-hand side of the least
inequality by I;. With the substitutions y' = z'\/t — 7, " =" + Z’\/t — 7, and T = s, one
obtains the estimate

1 /
I = t(p/b—p ﬂ+n+1)/2/ (l_s)(p’b—p’ﬂ+n)/25—l/2 ds/ |z’|_pﬂexp(—ic|z|2) dz
0 D

< Ct(p’b—p’ﬁ+n+l)/2 .

Here, we used the fact that —p’8 > —m and p’(b — B8) + n > 2. Hence,

T
/ / £ Iy« ) |* do” dt
0 Rn—m
T
SC/ /|y/|pﬁ[f(y,f)|pf(p_l)/2
o JD

T /a2
X (/ At - )P exp(—%) dx”dt) dydr,
T Rr-m -

where A = g(b -B-s+n+1)- ”T*l Let I, denote the inner integral on the right-hand side
of the last inequality. With the substitutions x” = y” + 2”4/t — 7 and ¢ = s, we get

T/t
I, = T(l—p)/Z‘/. exp(—K|Zﬁ|2) </ SA(x”,ts)(S_ 1)(pu(x”,rs)+n—m)/2 dS) dx’
Rr-=m 1

< Ct(l—p)/2

since A + (pa+n—m)/2 =—(p +1)/2 and pinfa > m — n — 2. This proves (48). O

By (47) and (48), the function /; can be extended by zero to a function }Azj € W;'S/ 2R x
(—00, T)). We introduce the following extension operator £. Let /1 be a function on R*™ x
(=00, T). Then

(Eh)(r,x",t) = ¢(r) / / KO, t)h(x" =ry' t - r’t)dy’ dt
0 Jrem

t X'~y t—1 B B
=c(r)r'"‘”‘2/ /n_mK( =, )h(y,r)dy dr

forr>0,x” € R"™™, —oco <t < T. Here ¢ is an infinitely differentiable cut-off function on
(0,00),¢(r)=1forr<1,¢(r) =0 for r > 2, and K is a function of the form

K(,7)=n@) [ a0,

Jj=m+l
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where n € C5°(R), suppn C [0,1] and f n(t)dt = 1. The function £/ can be considered as
a function on D x (—o0, T) if r = |x/].

Lemma 4.6 Suppose that h € W;'S/Z(R”‘m x (—o00,T)), where s is continuously differen-
tiable and 0 < infs(x”,t) < sups(x”,t) < 1. Then

”‘Sh ”Lp;l,x,m/p('DX(foo,T)) =< C” h ” W;‘S/Z (R % (-00,T)) (49)
and
lqa
s gh“Lp;zwfsfm/pmx(—oo,T» < cllllysr@umy ooy Sori+lel=1, (50)

where c is independent of h.

Proof Since sups(x”, t) < 1, the L,1_s_m/,(D x (—00, T))-norm of £/ can easily be estimated
by the L,-norm of 4. We consider the ¢- and x”-derivatives of £4. Obviously,

8!92, (ER)(r, %", £)
t /" al _
] W B == s
—00 n—-m r r
1
= ¢ (r)r 21 / / K" &) (h(x" = ry" t - rzr) - h(x”, t)) dy’ dv
0 n-m

for 1+ || > 0, where K" (z,y") = 8} B;i/”K(y, 7). Consequently, 9/8% Eh = A, + Ay, where

X

1

A (V,x//, t) = ;(r)rle,\o,/q / / [((l'a//)(y//’ ‘L’) (h(x”,t _ rZ_L,) _ h(x”,t)) dy// dr

0 Jru-m

and
" ! ”

A2 (7’, x//, t) - é*(r)r—Zl—IOt | / / I((l,ot )(_)/”,'L’)

0 n—m

x (h(x" —ry',t = r*t) = h(x",t —r’7)) dy' dx.

Here

T
f f rp(21+\a”|—s)—m |A1|P dx dt
-o00JD

T 2
< C/ / / rP(21+|a//|_S)—1|A1 (V, x//’ t) |P dr dx/, dt
—00 n-m Jo

T 1 2
< C/ / / (/ r‘I’S(x”,t)—l‘h(x//,t _ 7'21') _ h(x”, t) ‘P dV) dr dx,, dr.
—00 n-m J 0

With the substitution ¢ — 7>t = s in the inner integral, we obtain
T
/ / rP(ZlHa”\—S)—m |A1 (I’, X, t) |1’ dx dt
-0 JD

T T l’l x”,t —h x”,s V4
< c/ / / [ )1 (/, /2)| dtdsdx’.
R J oo J oo |E =] )
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Furthermore,
T /
/ / rp(2l+\o/ |-s)—m iAz (r, x//’ t) |P dx dt
-00 JD

T 2, rl
< C/ / / (/ / P51 lg("y" b, 7) [ dy”’ dr) drdx" dt,
—o0 JR# J0 0 JIy'|<yn-m

where g(x”,y", 7, t,7) = h(x" —ry", t - r’t) = h(x",t - r*1). The L,-norm of the function

(r—s(x”'t)—l/p _ rs(x//,t—rzr)—l/p)g(x//,y//, i, ‘L')

x"t)—s(.

can easily be estimated by the L,-norm of /, since |1 — 7 x””"zf)l < cr. Consequently,

T
/_OO /.D ppRirla|=s)-m |4z (r, 5", 2) |p dxdt < C(||h||§p(7zn—mx(—oo,T)) +B),

where

T 2/ pl
B = / / / (/ / pps@ =’ )-1 |g(x”,y”,r, L‘,T)|p dy" dr) drdx" dt
—o0 JR™M J0 \JO Jly'|<yn-m

T 2
< / / / r—pS(x//,t)—l (/ |h(x// _ I"y”,t) _ h(x”, t) |17 dy//) dr dx” dr.
—co JR" JO [y |</n=m

Using the coordinates p” = |y”| and ” = y”/|y"| in the inner integral, we get

T = 1
b= / ,/ / (f / (0" " h( = rp" ", t) - h(x",t) | do” dp”)
—o0 JR"M J O 0 sn-m-1

drdx" dt

x rps(x”,t)+l ’

where §""! is the (n — m — 1)-dimensional unit sphere. The substitution rp” = 7’ leads to
the inequality

T 24/n-m dr' dx’ dt
/" " /" 2 1/
B< / i /R B /0 [5 = e o TS

T h(x" —2",8) = h(x", t)|P
< C/ / / I ~ ) ( ,E 5 ) dz" dx" dt.
—00 JR=m J |27 <2 |2 [ pss

This proves the estimate (50) for &’ = 0, |&”| + [ > 1. Using the representation

t ! /!
” ” mf X — t—71
kola% En = af 22l / / Kt >( =5 )
00 n-m r r

x (h(y',7) - h(x",¢t)) dy' dx

forr<1land k + [ + |&”| > 1, we can analogously prove (50) in the case o’ # 0. a

Suppose that % is a function on R”” x (0, T'). Then we define

(Eh)(r,a",t) = (Eit)(r,x”, t) forr>0,x" e R, te(0,T),
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where /1 is the extension of / by zero to R* x (—oo, T). As a consequence of Theorem 4.1
and Lemma 4.5, we obtain the following result.

Theorem 4.2 Suppose that f € Ly3(Dr), where p and B are such that i =2 - — m/p
satisfies the condition (29). Then the solution u of the problem (1) admits the decomposition

u(x,t) = Z (5hj)(r,x”,t)uj(x”, t;x’) +v(x, t),

A;'<M
where uj, hj are given by (24) and (46), respectively, and v € W;;;(DT).

Proof 1t follows from Lemma 4.5 that the extension 1:1, of the function 4; is an element
of the space Wy¥>(R"™ x (-0, T)), where s(x",t) =2 - f - A («",t) — m/p. Thus, by
Lemma 4.6, the function £/; satisfies the same estimates (44) and (45) as the function
H; in Theorem 4.1. Moreover, by Hardy’s inequality,

T T
/o /D 1P (Ehy - )| dxdt < c / /D o (Ehy - H)| dxdt < Iy

since Eh;—H; = 0 on M x (0, T). Thus, 8;8};‘(5}1] -H)) e Lp;ﬂ+)\j++21+|o,|,2(DT) for 21 + || < 2.
From this, we conclude that (£/; — H)u; € W;é (Dr). Applying Theorem 4.1, we obtain the

assertion of Theorem 4.2. O

5 Asymptotics of weak solutions of parabolic problems in a bounded domain
with an edge

Now let G be a bounded domain in R” whose boundary is of the class CH outside the

(n — m)-dimensional manifold M. We assume that for every point £ € M there exist a

neighborhood U; and a diffeomorphism (a C*-mapping) « such that « (&) is the origin

and «(G NUg) = De N By, where D = K¢ x R"™™, K; is a cone in R” with vertex at the

origin, and B; is the unit ball in R”.

Furthermore, let L(x,t,9,) be the differential operator (2) with coefficients a; and 4;
satisfying the conditions (21) and (22) (with Gr instead of D x R). We assume that f €
Ly(Gr) and rPf € L,(Gr), where r = r(x) denotes the distance of the point x from M, and
we consider the weak solution (see, e.g., [21, Section 7.1]) of the problem

d
B_Ltt —L(x,t,0)u=f ingGr, (51)

ulxei)g = Oy u|t=0 = Oy (52)

ie,uecly(0,T; \;Vé(g)) and u; € L,(0, T; W5 1(G)). Our goal is to describe the behavior of
the solution near a point & € M. For the sake of simplicity, we assume that £ is the origin
and that G NU =D NU for a certain neighborhood U/ of the origin, where D = K x R"
is the same domain as in the foregoing sections.

Let € be a sufficiently small positive number, and let {£,} a be sufficiently fine partition of
unity on (GNU) x [0, T]. We can extend the coefficients a;; and a; of L outside the support
of ¢, to D x R such that the conditions (21), (22), and

’aij(x) t) - aij (x(v)7 tv) ’ <€ (53)
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with a point (x",¢,) € supp ¢, are satisfied. In the case supp ¢, N M # @, we may assume
that ) € M. We denote the differential operator with these coefficients by L, (x,t, d).
Then ¢, u satisfies the equations

0:(¢vu) =L, (¢yu) =f, inD xR, Ulxeap =0,
where
ﬁi = Cvf + (até—v)u + [Lw Cv]u;

[Ly,¢0] =Ly¢, — &L, is the commutator of L, and ¢,. By G, (x,,t, T), we denote the Green
function of the problem

du—Lu=f inDxR, Ulxeyp = 0. (54)

By Theorem 3.1, the function G, satisfies the estimate (23) with A <A} (x™M,t,) - C /€.
We define V[f; ﬂ(g ) as the weighted Sobolev space with the norm

1/p
_ (B-1 ) )4
"””"é;ﬁ@)—(/ Y e o)) dx) :

la|=t

An equivalent norm is (cf [18, Lemma 2.1.6])

1/p
el = ( /g (rp<ﬂ-l>|u<x)|"+erﬂ|a;;u(x)|f’) dx) .

lor|=]

Moreover, we define Wii}fﬂ (Gr) as the set of all function u = u(x, t) on G7 = G x (0, T) such

that 8tku € L,0,T; v;’,;”(g)) for k=0,...,I. The norm in this space is

T
[l2¢]] 5 200 = (/ (/
W91 o \Jg

In the case p = g we write W;;i;l(gT) instead of W;i‘,fﬂ(gT). Furthermore, let L, ,4(G7) =
W;’;;ﬂ(gT) and L,(G7) = Ly p,(G7). Analogous notation is used for functions on the set
Dr. Furthermore, for arbitrary (0,x”) € M NU and t € [0, T], we denote by 2A(x”,£ 1)
the operator pencil (5) and by A;'(x”, t) its eigenvalues: --- <A; <A] <2-m <0< Af <

+
)\’2<....

qlp 1/q
> rPWMk*'a>|afagu(x,t)|”dx) dt) :

lo|+2k <21

Lemma 5.1 Suppose that supp &, "M #9, f € Ly(Dr) N Ly,4(Dr) and
2-m-a(x",8) + Ce<2-B- % <af (@,8,) - Cv/e. (55)
Then the weak solution of the problem (54) satisfies the estimate
||””Wjj;;ﬁ(DT) < clfllz, 5 (D1)- (56)

This lemma was proved in [6] for the heat equation. However, the proof of [6, Theo-
rem 1.1] employs only the estimate (23) of the Green function. Therefore, the same result
holds for the problem (54).
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Using the last lemma, we can estimate the W;g (Gr)-norm of the function ¢,u if u is a
weak solution of the problem (51), (52).

Lemma 5.2 Let u be the weak solution of the problem (51), (52), where f € L,(Gr) N
L,,5(Gr). We assume that supp &, N M # () and that p and B satisfy the inequalities (55).
Then ¢,u € W;’é(gT) and

ety gry = W2t gy

Proof First, let p < 2. By our assumption, Vu € Ly(Gr). Using Holder’s inequality, we con-
clude that Vu € L,,, (Gr) if 2py > m(p — 2). Consequently,

. m m
fv €Ly, (Dr) 1fy2,8,y>5—;.

We can choose y such that in addition the condition of Lemma 5.1 is satisfied for this num-

ber. Then Lemma 5.1 implies ¢,u € W)

if n, is a smooth cut-off function with sufficiently small support and ¢, 7, = ¢,. Then ob-

(Dr). Obviously, we obtain also 7, u € sz; (Dr)

viously f, € L,,,/(Dr), where y’ = max(B, y — 1). It is evident that y’ also satisfies the con-
dition of Lemma 5.1. Consequently, ¢,u € W;';,(DT). Repeating this argument, we finally
get ¢u € W;é (Dy).

We consider the case p > 2. By means of Holder’s inequality, it can easily be shown that

) m m
Lpp(G1) C Lgpiy(G1) CLyg2y (Gr) ifqg<p,y>B+ PR

In particular, L,5(Gr) C Ly, (G7) if y > B+ % - 7. Hencef, € L,,,(Dr) for arbitrary y > 0,
y>B+ % — . Here, y can be chosen such that

2-m—i (6", t,) + CYle<2 -y - % <A (xW, 1) - CV/e.

Then Lemma 5.1 implies ¢,u € Wf;

a smooth cut-off function with sufficiently small support and ¢, 7, = ¢,. In particular, n,u €
L(0,T; V3, (D)) and 9 (n,u) € Ly(0, T; V. (D)). This implies 1,u € Lo (0, T; V3, (D)) and

(Dr). Obviously, we obtain also n,u € WZZ; (Dr)ifn, is

2 2 2
”nvu”Loo(O,T;Vzl,y('D)) S c(”nuu”Lz(O,T;sz’y(D)) + ||8t77vu||L2(0]T;V£y(D)))‘ (57)

Indeed, for the function v = n,u and 0 < s < £, we have
2 2 td 2
4Oy o0 = T o+ [ 31O oy
t
= ||v(s) ||f/21 o * 2/ / (r2V—2v(T)V’(T) + V() - Vl/(r)) dxdt
24 s JD
T
< [vts) IIZVZIV(D) +2 / /D V@) (P2 |v@)] + |V - (7 Vu(e)|) dudt
: 0

T
< [0y, 0+ [ (VOg 0y 10Nz ).
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Integrating with respect to s, we get (57). Consequently, n,u € L,(0, T; Vzl,y(D)). Since,
moreover, {,f € Ly, (Dr), we conclude that f, € L, ,,,, (Dr).

Let g be an arbitrary real number, 2 < g < p. We prove by induction in k = [5 — g] that
fo € Ly py (Dr) with a certain y satisfying the condition

2-m-i (", ) + CVe<2-y - "< A (M, 8) - CVe. (58)
q

For k = 0, this is already shown. Suppose that 1 < k < g — g < k +1 and the assertion is

proved for 7 — g < k. Obviously, there exists a number go € (2,4g) such that 5 — qlo <k and
qlo - g < 1. By the induction hypothesis, we get f;, € Ly, ;, (D7) with a certain y, satisfying
the condition
2-m—A} (x(”), )+ Cyle<2—yy— % )»f(x(”), ty) — Cy/e. (59)
q0

Then it follows from Lemma 5.1 that ¢,u € qu(;l’p;yo (Dr). Since the same is true for n,u if

1y is a smooth cut-off function with sufficiently small support and ¢,n, = ¢,, we obtain

(B¢ + [Lu, &]u € Ly (0, T; V,

40,Y0 (D)) cL, (0' T;V, (D)) = Lgpiy (Dr),

an
where y; =y — 1 + qlo - g (¢f [18, Lemma 2.1.1]). Since moreover ¢,f € Ly, (D7) for
> B+ % - %, we conclude that f, € L, (Dr) for arbitrary y > max(y1, y2). By (59), we
have 2 — m — A] (x), £,) + C\/e <2 -y — % for j=1andj = 2. Therefore, y can be chosen
such that (58) is satisfied.

Thus, it is shown that f, € L, (Dr) for arbitrary g, 2 < g < p, where y satisfies (58).
In particular, for g = p, we get f, € Ly, (Dr). Then Lemma 5.2 implies ¢,u € W;; (Dr).
Arguing as in the case p < 2, we get ¢, u € W/Ifé (Dr). O

We denote by My, the set of all x” € R”™ such that (0,x") e M NU.

Theorem 5.1 Let u be the weak solution of the problem (51), (52), where f € Ly(Gr) N
Ly,3(Gr) and p, B satisfy the inequalities

sup Af(x",t)<2-B-mlp< inf Aj(x",f) +1.
My x(0,T) 1( ) My x(0,T) 1( )

Moreover, we assume that 1; (x",t) #2 — B — m/p for all x", t and j =1,2,3,.... Then u
admits the decomposition

u(x,t) = Z (Eh)(x, t)u,(x”, t;x’) +v(x,t) forxeGNU,0<t<T,
A;'<2—ﬁ—m/p

S/',Sj/z

where v € W;’;(QT), u; is given by (24), hj e W, (My; x (0,T)),s;=2 - — )\; —m/p, and

& is the extension operator introduced in the last subsection.

Proof Let {¢,} be the same partition of unity as above. Obviously, there exist numbers g,
satisfying the inequalities (55) and 0 < 8, — B < 1. Since L,,3(G1) C Ly,s,(Gr), we conclude
from Lemma 5.2 that ¢{,u € W;’;U(QT). The same is obviously true for the function n,u
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if n, is a smooth cut-off function with sufficiently small support satisfying the equality
¢wny = ¢, Hence

fv = {vf + (3th)77uu + [Lvr;v]nvu el ;ﬂ(gT)~

Since the coefficients of L, satisfy the conditions (21), (22), and (53), we can apply Theo-
rem 4.2 and obtain the decomposition

tulnt) = > (El)(ra’ )u(x", 547) + v, (x, 1),

A;r<2—f3—m/p

. / . .
where #;, € VV;’ g 2(Mu x (0,T)) and v, € W;;’é(DT). Summing up over v, we obtain the
assertion of the theorem. O
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