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1  Introduction
One of the main pillars of the fifth generation (5G) mobile broadband standards is ultra-
reliable low-latency communications (URLLC), which aims to provide extremely high 
service availabilities paired with latency values of only a few milliseconds. To realize 
even more ambitious quality of service (QoS) requirements compared to 5G, URLLC 
inevitably has to play a key role also during research of the sixth generation (6G) mobile 
broadband standards [1, 2].

The ongoing development of URLLC is driven by a wide variety of applications. 
In recent years, many of these applications were industry-focused, where wireless 
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solutions allow for shorter product cycles, more product individualization and an 
overall increased flexibility [3]. One major challenge is wireless closed-loop control 
as losing packets and the latency of the transmission might lead to plant instabil-
ity, which in turn could cause damage or even human harm. Latency-critical mobile 
connectivity is also required when humans are involved in the control loop [4, 5]. In 
industry, this is the case, e.g., in teleoperating applications or during installation of 
machines, where a human could train the machine instead of programming it. In the 
future, URLLC might also find its way to consumer products for entertainment, for 
health or even for human learning.

The major challenges for URLLC are the imperfections of the wireless link, espe-
cially the fast fading of the channel. Due to reflections in the environment, many cop-
ies of the transmit signal arrive at the receiver simultaneously and interfere which 
each other. When the transmitter or the receiver moves, the channel conditions con-
tinuously change since the waves interfere differently at different locations [6]. In the 
best case, all signals constructively add up at the receive antenna. In the worst case, 
however, all signals destructively cancel each other out, effectively leading to zero 
receive power. Situations where the receive power is low, so-called outages, have to be 
avoided for the successful realization of URLLC.

Different from well-established conventional approaches that cost severe resources 
either in hardware (spatial diversity through many antennas and signal process-
ing chains) or at the air interface (bandwidth), the basic concept of this article is to 
monitor the fast fading channel and schedule users only to resources that are opera-
tional. Due to the spatial variation of the channel, a resource that is in outage for 
one user can have perfect channel conditions for another. Therefore, this approach is 
expected to realize URLLC’s ambitious QoS targets while keeping the required addi-
tional resource consumption low. This is of utmost importance when considering the 
scalability of a URLLC deployment, i.e., when many devices need to be served simul-
taneously. The resource consumption becomes even more important when realizing 
high payload applications with latency requirements, e.g., cloud rendered virtual or 
augmented reality.

Rapidly varying channel conditions are challenging when monitoring fast fading chan-
nels. In a real deployment, a monitoring delay τ exists between receiving the last chan-
nel observation, scheduling and eventually transmitting the actual payload. Consider 
the case that users were scheduled based on the last channel observation. In this case, 
many actual outages would be missed; i.e., the channel is monitored to be operable at 
time t, but non-operable during payload transmission at t + τ . The performance for Ray-
leigh fading is visualized in Fig. 1, where the effective outage probability of such a sys-
tem Pr(effective outage) is plotted against the Doppler frequency normalized monitoring 
delay τ fm for different fading margins F. It is clearly visible that most of the monitor-
ing gain disappears already for small monitoring delays. In other words, with increas-
ing delay the monitoring quickly becomes pointless and the effective outage probability 
asymptotically converges towards the average link outage probability.

A solution to overcome this time delay is to employ predictive methods. Although the 
fast fading channel conditions change quickly, they still change continuously, which ena-
bles predictions. The main contribution of this article is to describe the design and the 
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performance of an outage predictor. This article is based on and extends our previous 
works [7, 8], where outage predictors for Rayleigh and Rician fading were proposed for 
the first time. The contributions of this article are summarized as follows:

•	 Outage predictors for Rayleigh and Rician fading channels are described.
•	 The Rayleigh und Rician fading outage predictors are compared. Their differences are 

highlighted and their areas of application are contrasted.
•	 Relevant related work regarding fading prediction is discussed.
•	 An analysis of the predictor parameters for Rician fading is presented. The param-

eters define the number and periodicity of channel observations at the input of the 
predictor.

•	 Performance metrics tailored to the use-case of radio resource scheduling for 
URLLC are proposed.

•	 Performance evaluation is conducted by means of extensive simulation. Compared to 
our previous works [7, 8], generalized results are provided.

2 � Methods/experimental
This article aims to study the performance of a novel outage prediction scheme in 
Rayleigh and Rician fading channels. The predictor combines a Wiener filter with a 
threshold comparison for the identification of future outages. In the Rician fading 
case, additional line-of-sight (LOS) parameter estimation is employed. The focus dur-
ing design and analysis of the prediction scheme is set on a prospective application to 
URLLC radio resource scheduling.

The performance of the outage prediction scheme is analyzed using analytical state-
ments and Monte-Carlo computer simulation for a practical set of parameters. Noisy 
channel coefficients are generated randomly and fed into the predictor. The predictions 
are then compared with the respective true future value. Evaluation is conducted using 
classical binary classification analysis and application-related metrics that are proposed 
in this work. The number of repetitions is individually specified during discussion. The 
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Fig. 1  Performance of outage identification, when relying purely on the latest channel observation
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underlying data of this study is generated from mathematical models, which are com-
pletely described in Sect. 4.

3 � Related work
Estimating the current state and predicting future behavior of wireless channels has 
been a research challenge for many years. As expected, the used estimation methods 
have been evolving along with the wireless communications technologies and standards.

With the ever-growing demand of higher transmission rates without sacrificing trans-
mission quality in terms of bit error rate (BER), the availability of channel state infor-
mation became a necessity. Adaptive transmission techniques allow a more efficient 
resource usage, e.g., by choosing the modulation scheme according to the current fad-
ing conditions [9]. Early approaches were based on the sum-of-sinusoids (SOS) mod-
eling. The deterministic fading modeling is based on the estimation of Doppler shifts, 
amplitudes and phases of the overlaid sinusoids through ESPRIT- and MUSIC-based 
algorithms [10, 11]. This is done under the assumption that scatterers in the environ-
ment remain constant and the process is dominated by a few dominant scatterers. The 
first advances were followed by many variants of auto-regressive (AR) approaches. These 
predicted channel samples as a weighted sum of previous samples using the minimum 
mean square error (MMSE) criterion. This method requires an estimate of the correla-
tion function of the channel samples. Promising results were obtained, e.g. in [9], where 
a Wiener filter is used for the prediction of in-phase and quadrature (I/Q) Rayleigh fad-
ing channels. The predictor is tested using data generated by ray-tracing and real data 
from vehicular channel measurements. Similar investigations were performed in [12, 
13]. In these works, an unbiased power predictor is additionally derived based on solely 
the channel power instead of the complex channel gain. The works [9, 14, 15] extended 
the predictor by the use of efficient adaptive filtering techniques to update the predictor 
coefficients in case of varying long-term channel conditions. Motivation for investigat-
ing fading prediction techniques was exclusively the raise of spectral efficiency.

When orthogonal frequency-division multiplexing (OFDM) became part of the fourth 
generation (4G) mobile broadband standard, channel prediction research was directed 
towards adaptive bit allocation in OFDM symbols, aiming again to increase the spectral 
efficiency. In [16], the MMSE predictor, the Wiener filter predictor, as well as the adap-
tive methods normalized least mean squares (NLMS) and recursive least squares (RLS) 
are derived for a single input single output (SISO) OFDM system. The predictors are 
compared in terms of their mean prediction errors. Similarly, for SISO OFDM systems, 
a simplified MMSE predictor and its extension to the adaptive least mean squares (LMS) 
and RLS techniques were proposed in [14]. Evaluations were conducted in terms of aver-
age prediction error and spectral efficiency. Similar to OFDM, [15] also exploits channel 
prediction for adaptive frequency hopping by adapting transmission parameters to the 
channel conditions at the next chosen frequency. Other approaches include the estima-
tion of time varying fading parameters with the help of Kalman filter variants to enhance 
the prediction performance [17]. In [18], a Kalman filter is used to directly predict Ray-
leigh fading. The used state space model is based on the SOS model. Recently, oppos-
ing to statistical methods, machine learning approaches have been proposed for fading 
channel prediction. For example, in [19] a back propagation neural network is used to 
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predict I/Q channel coefficients in Rayleigh fading. A recurrent neural-network-based 
approach is used in [20] and analyzed in terms of average prediction errors and bit error 
rates. Those data-driven approaches do not require any modeling or parameterization.

In today’s 5G and future’s 6G mobile broadband standard, very high data rates are only 
one of the envisioned features. For the realization of URLLC, more attention needs to 
be directed towards the reliability of transmissions rather than solely maximizing spec-
tral efficiency. Consequently, research on fast fading channel prediction has to perform a 
paradigm shift as well. To allow the scheduling system to achieve a certain QoS, the pre-
dictor needs to be built around suitable reliability measures. For URLLC, the analysis of 
average prediction errors and BERs is not enough anymore. Under the URLLC premise, 
only very few investigations have been conducted. In [21, 22] cooperative communica-
tions schemes, where messages are transmitted over multiple relays, are investigated for 
URLLC. The authors employ fading monitoring and prediction to choose the most suit-
able relays. It is shown that the coherence time is an insufficient metric to quantify the 
reliability of fading prediction methods. This article contributes to fill this gap and pro-
vides prediction methods and metrics for general URLLC architectures.

4 � System model
The overall system model considered in this article is shown in Fig. 2. It is assumed that 
the user equipments (UEs) periodically transmit training signals, which are used to 
acquire channel information between the base station (BS) and the individual UE. We 
assume channel reciprocity such that by measuring the uplink (UL) channel, the down-
link (DL) channel can also be rated. This is practical after a calibration phase to account 
for differences in the circuits of transmitter and receiver as shown in [23]. Monitoring 
the uplink channel is preferred over the downlink since thereby the necessary informa-
tion is directly available to the scheduler at the BS. The channel estimations are fed into 
the outage predictor, whose design and performance will be the main topic of this arti-
cle. For each monitored carrier frequency, the predictor calculates for the next possible 
UL and DL scheduling opportunity if the respective link is operational or not. Based on 
this information, the scheduler allocates resources to the UEs. As usual, the scheduling 
decision is transmitted to the UEs. In the following, the necessary assumptions for the 
fading channel and the communications system are explained.

URLLC UEsBase Station

Scheduler
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Scheduling Decision

Channel Estimation

Outage Prediction
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Fig. 2  Overall system model. The outage predictor is highlighted and topic of this article
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4.1 � Fading channel

In this article, we first consider Rayleigh fading with classical Doppler spectra before 
extending our findings to the Rician fading model. Rayleigh fading can be used to model 
challenging non-line-of-sight (NLOS) conditions and is often used as a starting point for 
analysis due to its beneficial mathematical properties. In the second part of this paper, 
we extend our findings to the Rician fading case by allowing for a LOS component. By 
doing so the question how the presence of a LOS component affects the prediction per-
formance is answered.

4.1.1 � Rayleigh fading

Rayleigh fading assumes that numerous independent multi-path components arrive at 
the receive antenna simultaneously. In this case, the central limit theorem can be applied 
and therefore the real and imaginary part of the channel coefficient h(t) can be modeled 
as Gaussian distributed. Thus, the channel coefficient

follows a zero mean complex Gaussian distribution with variance 2σ 2 , since we define 
hNLOS(t) ∼ CN (0, 1) . The variance of the complex channel coefficient 2σ 2 is then deter-
mined by the mean power of the channel �NLOS according to 2σ 2

= �NLOS.
An underlying assumption for the widely assumed classical Doppler spectrum is that 

waves arrive solely in the horizontal plane with equally distributed angles of arrival. The 
UE is considered to move with a constant velocity v in an otherwise static environment, 
which results in a maximum Doppler shift fm . It is well-known that this leads to the clas-
sical Doppler spectrum with its autocovariance function

Thereby, J0 denotes the zeroth order Bessel function of the first kind.

4.1.2 � Rician fading

When additionally allowing for a LOS component, the Rician fading case arises with its 
I/Q channel coefficient [24]

The NLOS component 
√

2σ · hNLOS(t) is similar to the Rayleigh fading case described 
above. The LOS component A · hLOS(t) is modeled to be purely deterministic following

In this formula, A is the amplitude, fD,LOS is the Doppler frequency, ϕ0 is the initial phase 
of the LOS component and t0 is the reference time at which the phase of the LOS com-
ponent equals the initial phase ϕ0.

In Rician fading the K-factor defines the ratio of power in the LOS component �LOS 
over the power in the NLOS component �NLOS

(1)h(t) =
√

2σ · hNLOS(t),

(2)rNLOS(t1, t2) = 2σ 2J0
(

2π fm(t2 − t1)
)

.

(3)h(t) =
√

2σ · hNLOS(t)+ A · hLOS(t).

(4)A · hLOS(t) = A · exp
(

j(2π fD,LOS(t − t0)+ ϕ0)
)

.



Page 7 of 25Traßl et al. J Wireless Com Network         (2021) 2021:92 	

Thus, the standard deviation of the complex NLOS component 
√

2σ and the amplitude 
of the LOS component A can alternatively be expressed over the K-factor and the aver-
age power � = �LOS +�NLOS using

For the special case of K = 0 , (1) and (3) coincide. Thus, the more general Rician fading 
model also includes the Rayleigh fading case.

4.1.3 � Two state fading model

Our predictor is built upon an abstract fading model in which the fading is classified in 
two states up and outage depending on the channel gain. This fading model is depicted in 
Fig. 3. The respective fading state is based on the relation of the channel gain to a chosen 
threshold value |hmin| . A different form to characterize the threshold |hmin| is the fading 
margin F = |havg|

2/|hmin|
2 , which relates the threshold |hmin| to the average channel gain 

|havg| . When the channel gain is greater than the threshold |h(t)| > |hmin| the current 
fading state is denoted as up. In the up-state the signal/noise ratio (SNR) at the receiver 
is high enough for an URLLC application to be working satisfactory. Packet errors are 
still possible in the up-state, but the probability for an error is low and long error bursts 
are rare. Analogously, an outage occurs if the channel gain is below the threshold value 
|h(t)| < |hmin| . In outage, the SNR is usually too low for successful decoding, leading to 
high probabilities of packet errors and long error bursts. Following these considerations, 
a URLLC service is expected to work satisfactory in the up-state and fail in the outage 
state.

4.2 � Communications system and channel estimation

For the communications system we assume that the transmission between the UE and 
the BS is affected only by the fading of the wireless channel, resulting in the complex 
channel coefficient h(t), and complex white Gaussian noise (CWGN) n(t) with variance 
2σ 2

n  . Hence, the transmit signal x(t) and the receive signal y(t) are related by

(5)K =

�LOS

�NLOS
=

A2

2σ 2
.

(6)
√

2σ =

√

�

K + 1
, A =

√

�K

K + 1
.

(7)y(t) = x(t) · h(t)+ n(t).

t
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Fig. 3  Two state fading model
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To acquire information about the wireless channel, a column vector p consisting of 
P pilot symbols is transmitted for the estimation of h(t). Thus, when taking (7) into 
account, this leads to

With knowledge of the sent pilot symbols at the receiver, the influence of the fading can 
be observed by estimating the complex channel coefficient h(t). For this purpose, we use 
the minimum variance unbiased (MVU) channel estimator [25]

which corresponds the least squares (LS) and maximum likelihood (ML) channel esti-
mator. Inserting (8) in (9) yields

Thus, under the given assumptions the estimate ˆh(t) is superimposed by CWGN n′ with 
variance 2σ 2

n′ = 2σ 2
n (p

Hp)−1 . When only one pilot is used for channel estimation, 
2σ ′2

n = 2σ 2
n applies. The relationship between channel estimation and noise (10) is the 

starting point for the derivation of the predictor. The performance of the predictor will 
be determined by the SNR of the channel estimation, SNR =

�

2σ ′2
n

.

5 � Problem statement
Prediction of the channel state involves so-called binary classification. Usually, the 
results of the classification problem are simply called positive and negative. Since the 
outage predictor aims at predicting outages, this article defines the up-state prediction 
as the negative and the outage prediction as the positive classification result. In binary 
classification, four potential outcomes exist. Apart from true positive and true negative 
(correct classification), also the two error types false positive and false negative prevail. 
In the context of outage prediction these four outcomes represent the following:

•	 true positive—detection of a future outage
•	 true negative—detection that an outage will not occur
•	 false positive—miss that an outage will not occur
•	 false negative—miss of a future outage

The evaluation of such binary classification problems is well known and various metrics 
for different applications are available. Three important metrics are summarized from 
[26], where a good overview is given. An intuitive metric for evaluation of a classifier is 
its accuracy, which is defined as

In this formula TP is the number of true positives and TN is the number of true nega-
tives. Similarly, FP is the number of false positives and FN is the number of false nega-
tives. An accuracy of 0.8 means that 20% of the prediction results are wrong. However, 

(8)y = p · h(t)+ n.

(9)ˆh(t) = (pHp)−1pHy,

(10)ˆh(t) = h(t)+ n′(t).

(11)accuracy =
TP+ TN

TP+ FP+ TN + FN
.
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by investigating the accuracy metric alone it is impossible to say if these errors are false 
positives or false negatives. The metric is of limited benefit for URLLC outage predic-
tion since the error types have a different impact on the reliability of the wireless link. 
In the context of QoS-focused URLLC, false negative classifications have a much higher 
impact than false positives as they can be a cause for transmission errors which ulti-
mately lowers the reliability of the wireless communications system. This emphasizes the 
importance of choosing the right metric. Investigating the individual probabilities for 
correct or wrong classification allows for more explicit statements. Two common met-
rics to fully describe the classifier are the probability of false alarm (also known as the 
false positive rate)

and the probability of detection (also known as the true positive rate)

The above metrics are well suited to investigate binary test results. However, they do not 
provide intuitive interpretation in the context of URLLC radio resource scheduling. For 
example, in the case of very high Rician K-factors even Pr(detection) = 0 (all outages are 
missed) could be acceptable as outages are already very rare. Therefore, Pr(detection) 
has only little qualitative meaning if the predictor performs well enough for scheduling 
purposes. Here, we propose two new metrics: the compound probability for an up-state 
prediction, but the channel being truly in outage

and the average probability to have an up-state prediction on the monitored link

First, Pr(effective outage) covers the risk of fatal failures due to prediction errors. 
Thus, this metric enables statements about the reliability of the system. For example, 
Pr(effective outage) = 10−3 indicates that on average 1 in 1000 predictions will result 
in an outage. Here, we assume that a (perfect) scheduler can prevent any predicted 
outage, since the design of the scheduler is beyond the scope of this article. Second, 
Pr(predicted up) is defined in a way to assess the utilizability of the resource, i.e., how 
often the observed link can be used for URLLC traffic of a specific UE. The more false 
alarms occur, the lower Pr(predicted up) gets. For example, Pr(predicted up) = 0.8 indi-
cates that the observed link can be considered for URLLC traffic in 80% of the time, 
whereas in the remaining 20% the link will not be assigned to that particular UE for 
transmission.

The ultimate goal for the predictor is to maximize Pr(predicted up) and minimize 
Pr(effective outage) given a certain prediction horizon tp.

(12)Pr(false alarm) =
FP

TN + FP

(13)Pr(detection) =
TP

FN + TP
.

(14)Pr(effective outage) =
FN

TP+ FP+ TN + FN

(15)Pr(predicted up) =
FN + TN

TP+ FP+ TN + FN
.
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6 � Outage prediction
In the following, we describe the structure of the outage predictor. We first address the 
Rayleigh fading case and pursue to the more complex Rician fading afterwards.

6.1 � Rayleigh fading prediction

The outage predictor for the Rayleigh fading case is shown in Fig. 4 and its structure 
is briefly explained here before providing mathematical details.

The starting point for outage prediction is a history of channel estimations which 
is collected at the input of the outage predictor. Afterwards, I/Q channel coefficients 
need to be predicted from the available channel estimations by an appropriate pre-
diction technique. In order to obtain a binary prediction for the channel state (up 
or outage), the predicted I/Q channel coefficient is compared with a threshold |h′min| . 
Subsequently, an outage prediction is available which can be used, e.g., for scheduling 
purposes. For the Rayleigh fading case, the exact distribution of the I/Q prediction 
error is known at the Wiener filter output. Thus, additionally to the outage prediction 
also the probability for a future outage can be calculated for future time instants. In 
the next sections, a detailed description of each block in Fig. 4 is provided.

6.1.1 � I/Q prediction

Based on the history of channel estimations, predictions of I/Q channel coefficients 
need to be calculated. For this purpose, a well investigated Wiener-filter-based 
approach is employed [9, 12]. It was shown that the Wiener filter has a promising 
performance not only under the Rayleigh fading assumption, but also for real fad-
ing channels where empirical covariances need to be utilized. In contrast to machine 
learning-based approaches, analytical statements about the prediction error can be 
derived, which allow calculation of future outage probabilities in the Rayleigh fading 
case. For these reasons, the Wiener filter was preferred over other available fading 
prediction techniques. Nevertheless, if only the outage prediction is of interest, other 
I/Q prediction techniques can be easily incorporated into the proposed framework as 
well and replace the Wiener filter. The key statements to implement the Wiener filter 
for the Rayleigh case are summarized from [12].

For a prediction horizon tp , the prediction of the I/Q channel coefficient

Fig. 4  Structure of the outage predictor for Rayleigh fading
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is the output of a finite impulse response (FIR) filter with coefficients θ . The observation 
vector

contains M past channel estimations with a fixed time between the observations �t . The 
filter coefficients

are calculated from the cross-covariance between channel coefficient and observations 
rNLOS and the autocovariance matrix RNLOS of the observations according to

To design the Wiener filter, knowledge about the variance 2σ 2 , the maximum Dop-
pler frequency fm and the noise variance 2σ ′2

n  is needed. However, knowledge of these 
parameters is only required in a model-based analysis, which we concentrate on in this 
article, and not in measured fading channels, since the autocovariance is directly esti-
mated in this case anyway. Therefore, we are saving efforts and do not introduce esti-
mators for these parameters. Instead, we assume that they are known throughout the 
article. Using the outage predictor for measured fading channels is beyond the scope of 
this article and instead left for future work.

6.1.2 � Comparison with threshold

Since we are interested if an up-state or an outage will occur, the predicted I/Q chan-
nel coefficient is compared with the threshold |h′min| . Our idea is to choose a different 
threshold value for the predicted channel coefficient |h′min| and not the threshold in the 
two state fading model |hmin| . This idea is depicted in Fig. 5.

By using the threshold |h′min| for the prediction, we are able to adjust the trade-off 
between the effective outage probability and the probability for an up-state prediction 
as discussed in Sect. 5. The objective is to get a more conservative predictor, such that 
falsely predicted up-states are rare, which allows the predictor to be used for URLLC 
scheduling. In return, falsely predicted outages occur more frequently, which the sched-
uler has to deal with. Numerical evaluation of this trade-off is presented in Sect. 7.3.

6.1.3 � Prediction error analysis

For the given assumptions in Sect. 4 it can be shown that the prediction error

follows a zero mean complex Gaussian distribution

(16)ˆh(t + tp| t) = ϕθ

(17)ϕ =

[

ˆh(t) ˆh(t −�t) . . . ˆh(t − (M − 1)�t)
]

(18)θ = R−1
NLOSrNLOS

(19)[rNLOS]j = 2σ 2J0
(

2π fm(tp + (j − 1)�t)
)

,

(20)[RNLOS]ij =

{

2σ 2J0(2π fm|j − i|�t), i �= j

2σ 2
+ 2σ 2

n′ , i = j
.

(21)e(t) = h(t + tp)− ˆh(t + tp| t)
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This originates from the fact that both h(t) and ˆh(t + tp| t) are zero mean complex Gauss-
ian distributed and therefore also their difference follows a zero mean complex Gaussian 
distribution. Similarly, the filtering operation in (16) does not change the distribution 
type, as scaled and summed zero mean complex Gaussian random variables are again 
zero mean complex Gaussian. Thus, the distribution of (22) is completely parameterized 
by the variance of the prediction error [12]

Knowing the distribution of the prediction error, a predicted channel coeffi-
cient value can now be associated with the probability of outage. We denote the 

(22)e(t) ∼ CN

(

0, 2σ 2
e

)

.

(23)2σ 2
e = IE

[

|e(t)|2
]

= 1− rTNLOSR
−1
NLOSrNLOS.
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Fig. 5  Outage prediction concept. A threshold for the prediction |h′min| different from the outage threshold 
|hmin| is introduced to tune the prediction uncertainty

Fig. 6  Illustration of the integration area to calculate the future outage probability. The red circle marks the 
integration area and has radius |hmin|
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probability for a future outage given a certain predicted channel coefficient ˆh(t + tp| t) 
as Pr(future outage) . As illustrated in Fig. 6, a future outage occurs when the prediction 
error e(t) lies in the complex plane within an area S of a circle around −ˆh(t + tp| t) with 
radius |hmin| . This is because the sum of predicted channel coefficient ˆh(t + tp| t) and 
prediction error e(t) is the true value of the future fading (rearranged version of (21)). 
Consequently, for a prediction error within the area S the true channel coefficient lies 
within the outage region. Therefore, Pr(future outage) is determined by an area integral 
over the area S according to

Here, fe(t)(x, y) is the zero mean bivariate Gaussian probability density with variance σ 2
e  

for both dimensions I and Q. As there is no closed-form solution available for this inte-
gral, it must be evaluated numerically.

6.2 � Rician fading prediction

We now extend the outage predictor for the more general Rician fading, where not only 
NLOS fading, but also a LOS component is present. The structure of the outage predic-
tor for the Rician fading case is presented in Fig. 7.

Rician fading has a nonzero I/Q mean generated by the LOS-component, which is 
incompatible with a Wiener filter prediction. Therefore, the strategy when dealing with 
nonzero mean processes is to subtract the mean before filtering and adding the mean 
back again at the Wiener filter output [27]. As the time varying LOS-component can 
hardly be assumed to be known, the outage predictor in the Rician fading case has to 
employ estimators for the LOS parameters A, fD,LOS and ϕ0 as a first step. The estimated 
LOS parameters lead to the full description of the LOS component at time t. After sub-
tracting it from the history of channel estimations, the filter coefficients are calculated 

(24)Pr(future outage) =

∫

S
fe(t)(x, y) dS.

Fig. 7  Structure of the outage predictor for Rician fading
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and the NLOS component can be predicted equal to the Rayleigh fading case. In parallel, 
the LOS parameters are used to calculate a prediction of the LOS component at time 
t + tp which can then be added to the Wiener filter output. This leads to a predicted I/Q 
channel sample, which can be thresholded against |h′min| to obtain an outage prediction. 
All steps from the LOS parameter estimation to the comparison with the threshold, are 
repeated when a new prediction needs to be calculated.

When comparing the outage predictor in Fig.  7 with Fig.  4, it can be seen that for 
Rician fading no outage probability is calculated. This is due to the fact, that it is not 
possible to analytically calculate the error distribution of the introduced LOS parameter 
estimation. The result is that also the distribution of the prediction error is unknown 
and outage probabilities cannot be calculated. The same problem arises when measured 
fading is predicted and the assumptions about the distributions do not hold anymore. In 
the rest of this section, we explain the individual predictor elements shown in Fig. 7 in 
detail.

6.2.1 � Parameter estimation

Different from the Rayleigh fading case, a time varying LOS component is present and 
the parameters A, fD,NLOS , ϕ0 need to be estimated from a history of channel estimations.

When considering (10) as an estimation problem, where 2σ 2 , A and fD,LOS are the 
unknown parameters, both the CWGN n′(t) and the random NLOS component 
√

2σ · hNLOS(t) act as noise. We neglect the temporal correlation of the NLOS compo-
nent 

√

2σ · hNLOS(t) for parameter estimation, since the complexity of the derivation is 
lower and the resulting estimators still perform very well in our outage prediction use-
case. With both the CWGN and the NLOS component being complex Gaussian distrib-
uted the sum is complex Gaussian, too, and can be combined into a single variable.

This leads to the standard problem of estimating the parameters of a complex sinusoid 
in CWGN, which can be tackled using a ML estimation approach as shown in [25]. For 
the special case of noiseless Rician fading the desired ML estimators were derived in 
[28]. In the following, we adapt the estimators from [28] and employ an optimization to 
the frequency estimation.

A ML estimation of the frequency

is found by maximizing the periodogram with respect to fD,LOS . Since the periodogram 
is the square of a discrete Fourier transform (DFT), a practical implementation would 
utilize the fast Fourier transform (FFT) algorithm. The observation vector of the LOS 
estimation

consists of N values and is sampled at a discrete sampling period �t . Furthermore, a vec-
tor of exponential terms

(25)ˆfD,LOS = −argmax

(

∣

∣ϕ′eT
∣

∣

2

eeH

)

(26)ϕ′

=

[

ˆh(t − (N − 1)�t) . . . ˆh(t −�t) ˆh(t)
]
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is part of the estimator. Since the true value of the LOS Doppler frequency fD,LOS could 
be located between the bins of the periodogram, the frequency estimation can be greatly 
improved by interpolation as shown in [29]. The authors propose an iterative approach, 
which we also employ in this article to refine the frequency estimate (25). As suggested 
by the authors, we also use two iterations.

The ML estimates for the remaining parameters can then be calculated by inserting 
the frequency estimate in (27) (we denote this vector as ê in the following) and using

The estimator (29) yields a phase estimate of the last element in (26), which is preferable 
from a prediction point of view. Combining the estimates fD,LOS , ˆA and ϕ̂0 gives an esti-
mate of the LOS component

6.2.2 � I/Q prediction and comparison with threshold

With the available parameter estimations, a prediction of the I/Q channel coefficients 
in the Rician fading case can be performed. Since we are again using a Wiener Filter 
which relies on the input to be zero mean, a prediction of future I/Q channel samples

consists of the estimated LOS component at prediction time ˆA ·
ˆhLOS(t + tp) added to 

the FIR filter output 
(

ϕ −
ˆA ·

ˆhLOS

)

θ , with the observation vector of the Wiener filter ϕ
being adjusted for the estimate of the LOS component vector

at the input of the filter. Since after subtraction of the LOS component only the NLOS 
fading remains, the filter coefficient can be calculated in the same way as in the Rayleigh 
fading case, shown in Sect. 6.1.1. Also, the comparison with the threshold is no different 
from the Rayleigh fading case in Sect. 6.1.2.

7 � Results and discussion
In this section, the performance of the outage predictor for the Rayleigh and the 
Rician fading case is analyzed numerically. The scenario and the chosen parameters 
for numerical evaluation are described in Sect. 7.1. After investigating the influence 

(27)e =

[

exp
(

−j(2π fD,LOS(N − 1)�t)
)

. . . exp
(

−j(2π fD,LOS�t)
)

1
]

(28)ˆA =

∣

∣

∣

∣

∣

ϕ′ êH

êêH

∣

∣

∣

∣

∣

,

(29)ϕ̂0 = arg

{

ϕ′ êH

êêH

}

.

(30)ˆA ·
ˆhLOS(t) = ˆA · exp

(

j(2π ˆfD,LOS(t − t0)+ ϕ̂0)
)

.

(31)ˆh(t + tp| t) =
(

ϕ −
ˆA ·

ˆhLOS

)

θ +
ˆA ·

ˆhLOS(t + tp)

(32)ˆA ·
ˆhLOS =

ˆA ·

[

ˆhLOS(t0) ˆhLOS(t0 −�t) . . . ˆhLOS(t0 − (M − 1)�t)
]
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of the predictor parameters in Sect.  7.2, the performance evaluation of the outage 
prediction schemes is conducted in Sect. 7.3.

7.1 � Scenarios

The numerical evaluation is conducted for selected numerical values which are sum-
marized in Table  1. In the following, three different K-factors are investigated to 
reflect the case of a strong LOS component ( K = 10 ), a medium LOS component 
( K = 5 ) and no LOS component ( K = 0 , Rayleigh fading case). The performance is 
shown for two different mean channel estimation SNRs of 20 dB and 10 dB. In both 
cases, the fading margin is set to F = 10 dB . All plots in the following sections are 
generalized by using times that are normalized to the maximum Doppler frequency 
fm . This allows the results to be used for evaluation of various applications without 
the need of re-simulation. To put the provided normalized plots into perspective, 
the example of a remote-controlled automated guided vehicle (AGV) in an industrial 
campus network is considered. For this use-case we assume a constant relative veloc-
ity v = 0.8m/s and a carrier frequency fc = 3.75GHz . According to fm =

fc·v
c  , where c 

is the speed of light, this yields a maximum Doppler shift of 10 Hz. In the Rician fad-
ing case, the LOS Doppler frequency fD,LOS and the starting phase of the LOS compo-
nent ϕ0 were varied randomly.

7.2 � Parameter analysis

Before being able to investigate the performance of the outage prediction schemes, 
the predictor requires parameterization. The Wiener filter is parameterized by its his-
tory length M and its sampling period �t . Furthermore, the history length N of the 
LOS estimator needs to be specified. In the following, an analysis of these param-
eters is conducted for the scenario described in Sect. 7.1 to obtain a satisfactory con-
figuration for the following performance evaluation. Throughout the whole section, 
the normalized prediction horizon tpfm is arbitrary set to 0.1. The results of this sec-
tion were generated by means of computer simulation according to the Monte-Carlo 
approach. For each point 4 × 105 predicted fading samples were compared with the 
respective ideal future fading value.

7.2.1 � Sampling period

In Fig. 8, the mean squared error (MSE) of the I/Q prediction is plotted against the 
normalized sampling period �tfm for a fixed history length of the Wiener filter and 
the LOS estimator. Although the MSE is not suitable to describe the outage predic-
tion performance directly, it can be used as a performance indicator. Generally 

Table 1  Values for numerical evaluation

Parameter Value

Rician K factor 0, 5, 10

Mean channel estimation SNR 20 dB, 10 dB

Fading margin F 10 dB
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speaking, the higher the error of the I/Q prediction, the worse the outage prediction 
performance after comparing the predicted I/Q channel coefficient with the threshold 
|h′min| . When looking at the curves in Fig. 8, it can be seen that very small as well as 
very large sampling periods do not perform well for the investigated SNRs and K fac-
tors. For a fixed history length, very small sampling periods �t result in the observa-
tion not spanning enough to capture the continuous variation of the fading. Similarly, 
very large sampling periods �t , which are greater than the coherence time, lead to 
uncorrelated observations. According to the popular rule of thumb from [6], the 
coherence time tcoh can be approximated as tcoh =

0.423
fm

 , which is close to the point in 
Fig. 8 where the MSE begins to rise steeply. In all cases, a long plateau of the MSE can 
be observed, where a wide range of sampling periods �t perform almost equally well. 
In case of a small SNR of 10  dB and especially for Rayleigh fading ( K = 0 ), a clear 
optimum for the sampling period arises. For practical systems, a sampling period 
between this optimum and the coherence time could be chosen. The choice of the 
sampling period is a trade-off: For scheduling purposes, large sampling periods una-
voidably lead to large prediction horizons, which generally lead to worse prediction 
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Fig. 8  Influence of the sampling period �t on the MSE of the prediction. F = 10 dB , M = 25 , N = 128 and 
tpfm = 0.1 ; the dashed line is an empirical value for the coherence time [6]
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Fig. 9  Influence of the Wiener filter history length M on the MSE of the prediction. F = 10 dB , �tfm = 0.05 
and N = 128 ; the dashed line is the point where M�t equals an empirical value for the coherence time [6]
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performance than short-term predictions. On the other hand, small sampling periods 
imply that training signals need to be sent more frequently. This, however, has a nega-
tive impact on the efficiency of the communications system and the number of users 
which can be allocated to send these training signals. For numerical evaluation, we 
settled on a normalized sampling period of �tfm = 0.05 . This equals a sampling 
period of �t = 5ms in the AGV use case described in Sect. 7.1.

7.2.2 � Wiener filter history length

In Fig. 9, the Wiener filter history length M is investigated. Throughout all curves, an 
increase in the history length M results in a reduction in the MSE. This is intuitive as 
adding more information to the estimation will not lead to degradation. However, the 
performance gain lowers with increasing M, which is also intuitive as recent samples 
carry more information about the future channel state compared to outdated samples. 
However, in the case of a very low K factor of K = 0 , high values of M still improve the 
performance. For higher K factors, as the LOS component dominates the NLOS compo-
nent, the curves become more flat even for small Wiener filter history lengths M. Since 
the Wiener filter is responsible for the NLOS prediction, the choice of M becomes less 
relevant for these high K factors. A good rule of thumb is to choose M such that M�t 
is larger than the coherence time. Throughout our numerical evaluation, we settle for a 
Wiener filter history length of M = 25.

7.2.3 � LOS estimation history length

Finally, in Fig. 10 the MSE is plotted for different history lengths of the LOS estimator N. 
Similar to the history length of the Wiener filter M, high values of N are beneficial for the 
performance of the predictor. Again, the steepness of the curves decreases with rising 
N, thus, after a certain value the increase in N does not lead to a significant performance 
increase anymore. Due to complexity minimization, N should be kept as low as possible 
as the calculation of the FFT is required in (25). For numerical evaluation of the Rician 
fading case, we settled for N = 128.
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Fig. 10  Influence of the LOS estimation history length N on the MSE of the prediction. F = 10 dB , 
�tfm = 0.05 and M = 25
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7.3 � Numerical evaluation

With the scenario from Sect. 7.1 and the predictor parameters from Sect. 7.2, the predic-
tion schemes can be evaluated numerically. In the following, we conduct the evaluation 
for the Rayleigh fading outage predictor and the Rician fading outage predictor sepa-
rately as they have different feature sets.

7.3.1 � Rayleigh fading prediction

We first investigate the performance of the outage prediction, which is one of the two 
predictor outputs. The shown values originate from Monte-Carlo simulations. In our 
simulations, 2 · 108 I/Q channel coefficients were fed into the outage predictor for each 
prediction horizon and compared with the true future fading state. To put this into per-
spective, at a sampling period of 5ms , which is used in the AGV scenario, this equals 
11.6  days of consecutive fading. Two examples for classical metrics to investigate our 
binary classification problem were introduced in Sect. 5 and are plotted in Fig. 11 for 
different prediction horizons. In Fig. 11a the accuracy of the outage predictor is plotted 
against different threshold values for the prediction h′min . One can see that an optimal 
accuracy arises for small prediction horizons tp when the threshold for prediction h′min is 
chosen near the actual outage threshold hmin . This might appear appealing for the choice 
of h′min , however, the optimum and the metric as a whole have only little practical rele-
vance for the outage predictor. The metric combines both error types (false positives and 
false negatives) within a single number. However, false positives are considerably more 
critical for an URLLC scheduler as they are the defining parameter for the QoS. Even 
worse, as we tune the outage predictor to be more conservative by increasing h′min , the 
number of false positives is orders of magnitude smaller than the number of false nega-
tives. Therefore, the accuracy of the predictor almost only reflects false negatives, which 
is the dominating error type in this case. A more informative performance evaluation 
of the predictor can be done by studying the receiver operating characteristic (ROC) 
curves, which are shown in Fig. 11b. In this performance figure the probability of detec-
tion Pr(detection) is plotted against the probability for a false alarm Pr(false alarm) . The 
threshold value for the prediction |h′min| now shifts the operating point in the ROC. We 
can learn from the ROC curves that, when increasing |h′min| we get a more conservative 
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Fig. 11  Analysis of the outage prediction performance using common binary classification metrics. 20 dB 
SNR, F = 10 dB , �tfm = 0.05 and M = 25
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predictor so that outages are more likely to be detected at the cost of more false alarms. 
However, we are still not able to make qualitative statements about the expected sched-
uling performance since we are not able to evaluate which combination of Pr(detection) 
and Pr(false alarm) is acceptable in the context of URLLC radio resource scheduling.

Therefore, following our discussion in Sect.  5, we use Pr(effective outage) instead of 
Pr(false alarm) . This metric shows the effective outage probability of a perfect scheduler 
and thus can be used to qualitatively evaluate the risk of fatal failures due to predic-
tion errors. Instead of Pr(detection) we use Pr(predicted up) to evaluate the percentage 
of time the observed link can be utilized for URLLC traffic of a specific UE. The perfor-
mance curves with these metrics are plotted in Fig. 12. Similar to the ROC curves, each 
line spans different operating points, which can be adjusted by varying the threshold 
|h′min| . A prominent point in these curves is |h′min| = 0 , where the channel is predicted 
as up 100% of the time and the effective outage probability equals the average outage 
probability. The average outage probability for Rayleigh fading can be calculated using 
Pr(outage) = 1− exp(−1/F) [30]. In Fig. 12a the results for a mean channel estimation 
SNR of 20 dB are shown and discussed using the AGV scenario with fm = 10Hz . If, for 
instance, a prediction horizon of tp = 5ms is needed to overcome the delay τ between 
monitoring and payload and an effective outage probability Pr(effective outage) = 10−3 
is targeted, the link can be used approximately 82% of the time for URLLC traffic. If a 
higher prediction horizon of tp = 10ms is required and the same effective outage prob-
ability of Pr(effective outage) = 10−3 is targeted, the link can only be utilized approxi-
mately 76% of the time. In Fig. 12b, a lower mean channel estimation SNR of 10 dB is 
shown. The lower SNR leads to a worse overall performance, e.g., when using our pre-
vious example with tp = 5ms and Pr(effective outage) = 10−3 , the probability of having 
a predicted up link is only 62% instead of 82%. An increase in the maximum Doppler 
frequency, resulting for example from a higher carrier frequency fc or an increas-
ing movement speed v, will reduce the achievable prediction horizon tp for a set of 
Pr(effective outage) and Pr(predicted up) . As a result it can be concluded, that the pro-
posed prediction approach is of limited benefit for realizing URLLC services in future 
mmWave and terahertz communications systems.
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Fig. 12  Analysis of the outage prediction performance. F = 10 dB , �tfm = 0.05 and M = 25
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Additional to the prediction of outages, the Rayleigh fading outage predictor is able to 
calculate future outage probabilities under the assumptions discussed in Sect. 6.1. Basis 
for the calculation is (22), which states that the real and imaginary parts of the prediction 
error follow a zero mean Gaussian distribution. The variance of the zero mean Gauss-
ian distribution was calculated in (23). These findings are validated in Fig. 13, where an 
empirical estimate (a normalized histogram) of the probability density is compared with 
the analytical calculation for different prediction horizons. One can see that the empiri-
cal histograms fit very well beneath the calculated probability densities.

With the known error distribution, the probability for a future outage can be calcu-
lated over the area integral (24). An analysis of this integral reveals that the probability 
for a future outage only depends on the amplitude of the predicted fading | ˆh(t + tp|t)| . 
The resulting future outage probabilities are plotted in Fig. 14. Using the AGV scenario 
with fm = 10Hz , if a channel coefficient with an absolute value of 0.6 is predicted at a 
prediction horizon of tp = 5ms , the channel state would be in the outage region with 
a probability of 10−4 . If, instead, the distance of the predicted value from the origin is 
0.7, the probability is 2× 10−7 and therefore approximately three orders of magnitude 
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Fig. 13  Validation of the prediction error distribution
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Fig. 14  Future outage probability depending from the prediction amplitude. 20 dB SNR, F = 10 dB , 
�tfm = 0.05 and M = 25
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smaller. For higher prediction horizons tp , the predicted channel coefficient has to be 
farther away from the origin to achieve the same outage probabilities. This is due to the 
fact that the variance of the error distribution is higher.

7.3.2 � Rician fading prediction

The performance curves of the outage predictor described in Sect. 6.2 for the more 
general Rician fading case are shown as solid lines in Fig. 15 for a SNR of 20 dB and 
in Fig.  16 for a SNR of 10  dB. Each line is based on 2× 108 predicted I/Q channel 
coefficients. To investigate the influence of the LOS estimation, which is the novel 
component compared to the Rayleigh fading case, we also show the case of ideal LOS 
parameter estimation as dashed lines, where ideal estimates are used for subtraction 
and prediction of the LOS component and only the NLOS fading is realistically pre-
dicted using the Wiener filter. Therefore, the dashed lines for K = 0 correspond to the 
performance curves discussed in Fig. 12. The performance loss which can be observed 
between solid and dashed lines originates from the imperfections of the introduced 
LOS estimator. Overall, the performance loss is the smallest when tp is small and the 
SNR is high. For large prediction horizons and a small SNR the performance loss is 
more pronounced; however, the curves are still close to their ideal counterparts.
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Fig. 15  Analysis of the outage prediction performance. 20 dB SNR, F = 10 dB , �tfm = 0.05 , M = 25 and 
N = 128
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Fig. 16  Analysis of the outage prediction performance. 10 dB SNR, F = 10 dB , �tfm = 0.05 , M = 25 and 
N = 128
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When comparing the same prediction horizons for different K factors, one can 
observe that the outage predictor performs better at high K factors. For example, 
when in the AGV scenario a prediction horizon tp = 10ms is utilized in case of K = 0 
and the effective outage target probability is set to Pr(effective outage) = 10−5 , the 
observed link is only predicted as up with a 62% probability. However, for K = 5 the 
same prediction horizon and effective probability is achieved while the channel is 
predicted as up with a much higher probability of 92% and for K = 10 even 99% is 
reached. A reason for that is the decrease in randomness in the fading for increasing 
K factors. The randomness originates from the NLOS component, whose impact is 
reduced when a strong LOS component is present. Ultimately, the deterministic LOS 
component is easier to predict resulting in a better outage prediction performance.

In Fig. 16, an overall worse performance can be observed compared to Fig. 15 due to 
the lower SNR. While high K factors of K = {5, 10} still show a promising performance, 
for K = 0 a small prediction horizon of 5ms achieves Pr(effective outage) = 10−5 only 
with a predicted up probability of 39%. To alleviate this behavior to some extent, the 
number of pilot symbols P can be increased, although this leads to a reduced spectral 
efficiency. However, analyzing this trade-off is out of scope of this article and will be left 
for future work.

8 � Conclusion
In view of reducing radio resource consumption for ultra-reliable wireless commu-
nication links, monitoring the fast fading channel and taking measures based on the 
predicted fading state is a promising strategy. This article provided outage prediction 
schemes for Rayleigh and Rician fading and introduced suitable metrics that describe 
their performance.

For the Rayleigh fading case and especially for small prediction horizons, the presented 
predictor features a low missed outage probability while simultaneously not rigorously 
denying the current channel. For the Rician fading case, i.e., with a LOS component pre-
sent, a LOS estimator is utilized. Compared to the case where the LOS component is 
known, the LOS estimator only degrades prediction performance minorly. Generally in 
the presence of a LOS component, the outage prediction performance is improved to the 
Rayleigh fading case. Evidently, the LOS estimation comes at the cost of increased com-
plexity, mainly due to the calculation of the FFT as part of the LOS Doppler estimation.

The results showed that under realistic conditions, gaining multiple orders of mag-
nitude in transmission reliability is well within the scope of this channel prediction 
concept.

Further studies need to investigate the outage prediction performance under real 
world conditions to identify possible issues that are not covered by the Rayleigh and 
Rician fading models. To handle general fading assumptions in changing environments 
empirical covariance matrices and adaptive filtering algorithms to efficiently update the 
filter coefficients may be used. Ultimately, a scheduler needs to be developed that incor-
porates the channel prediction outcomes for every UE to an effective and highly reliable 
channel allocation.
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