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Abstract 

The task of bandwidth extension addresses the generation of missing high frequencies of audio signals based 
on knowledge of the low-frequency part of the sound. This task applies to various problems, such as audio cod‑
ing or audio restoration. In this article, we focus on efficient bandwidth extension of monophonic and polyphonic 
musical signals using a differentiable digital signal processing (DDSP) model. Such a model is composed of a neural 
network part with relatively few parameters trained to infer the parameters of a differentiable digital signal processing 
model, which efficiently generates the output full-band audio signal. 

We first address bandwidth extension of monophonic signals, and then propose two methods to explicitly handle 
polyphonic signals. The benefits of the proposed models are first demonstrated on monophonic and polyphonic syn‑
thetic data against a baseline and a deep-learning-based ResNet model. The models are next evaluated on recorded 
monophonic and polyphonic data, for a wide variety of instruments and musical genres. We show that all proposed 
models surpass a higher complexity deep learning model for an objective metric computed in the frequency domain. 
A MUSHRA listening test confirms the superiority of the proposed approach in terms of perceptual quality.
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1  Introduction
Audio bandwidth extension (BWE) is a subtask of audio 
enhancement [1] whose goal is to extrapolate the audio 
spectrum to higher frequencies, in contrast with audio 
inpainting whose goal is to interpolate missing parts [2]. 
BWE has been considered early in telecommunication 
systems to overcome bandwidth limitations, especially in 
telephony for which the typical sampling rate is 16 kHz, 
i.e., leading to the highest frequency in the processed 
signal be 8 kHz. In the case of human conversations, the 

quality of speech can be greatly improved if the sampling 
rate is increased to 44.1 or 48 kHz [3]. In the same vein, 
another application of BWE is to improve the quality of 
old music recordings, possibly in addition to the removal 
of clicks and noise [4] or declipping [5]. In both applica-
tions, the signal enhancement is handled without access 
to the original signal with better quality. Informed BWE 
algorithms can also be useful in audio coding [6] where 
signals of smaller sampling rates are more effectively 
compressed, requiring the use of a BWE to restore the 
full sampling rate of the decoded signal. In most cases, 
low bitrate side information is transmitted along the 
compressed low-frequency signal to improve the perfor-
mance of the BWE module.

Finally, BWE is also meaningful for interoperability of 
audio processing tools as many audio signal processing 
methods, such as source separation [1], speech synthe-
sis [7], or voice conversion [8], focus on 16-kHz signals, 
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hence the need for a BWE system beforehand if the 
acquired signal is not at the desired sampling rate.

Even though many deep learning-based systems have 
been proposed to tackle BWE, most of them do not con-
sider runtime efficiency as critical, leading to high-quality 
systems that can be very costly at inference. High-quality 
generators based on autoregressive signal models such as 
Wavenet [9] or on diffusion [10] have intrinsic high com-
plexity and sequentiality which limit their use for time or 
delay critical applications.

In this paper, we propose to consider differentiable 
digital signal processing (DDSP) models derived from the 
seminal work of [11] in order to tackle BWE in an effi-
cient manner. Controlling a harmonic plus noise sound 
model with a deep learning architecture allows us to con-
siderably reduce inference time. Experiments described 
in this paper demonstrate a large  speed increase  com-
pared to a reference ResNet implementation [12], this 
with better resulting perceptual quality. This is due to 
several factors, including the reduction of learnable 
parameters. Using the DDSP approach, the sound is 
generated using deterministic synthesizers that are con-
trolled by several deep-learning modules of relatively 
small sizes. For comparison, the ResNet architecture has 
more than 55k learnable parameters, while the tested 
DDSP approach has around 4k parameters.

The remaining of this article is organized as follows. In 
Section 2, we present a general overview of works related 
to BWE. In Section  3, we explain the proposed models 
designed to address BWE. The experimental protocol 
whose code is available online1, and which rely on pub-
licly avaible datasets, is detailed in Section 4. In Section 5, 
we show how the proposed models are well designed 
when considering synthetic data, and in Section  6 they 
are evaluated on real data. Finally, we conclude this arti-
cle in Section 7.

2 � Related work
Most approaches considered speech signals with applica-
tion to telephony. The literature that consider music or 
general audio is more scarce. When available, we here put 
the focus on literature related to musical audio.

2.1 � Signal processing approaches
Early works employed pure signal processing methods 
for BWE. In the area of audio coders, some non-blind 
systems rely on spectral band replication (SBR) [6] using 
side information extracted during compression. The SBR 
algorithm is based on the replication of the low-band 
spectrum to the high-band region, possibly with the 

benefits of side information about the high frequencies 
to improve the overall performance. It has been extended 
in several works [13, 14], e.g., by replacing the replication 
by a stretching of the low-band content towards the high-
band part, thus preserving the intrinsic harmonic rela-
tionships. Source-filter models have been also employed 
to extend the bandwidth using line spectral frequencies 
in [15]. Systems based on dictionary learning to map 
low-frequency patterns to high-frequency components 
have been proposed in [16, 17]. Classic machine learn-
ing methods have also been explored for BWE, such as 
Gaussian mixture models (GMMs) [18], hidden Markov 
models (HMM) [19, 20], or non-negative matrix factori-
zation (NMF) [21, 22].

2.2 � Convolutional deep learning approaches
Recently, deep learning (DL) methods have shown great 
performance to synthesize the upper band spectrum. The 
first works that apply DL technique in BWE literature 
used deep neural networks (DNNs) with dense layers to 
infer the high frequencies up to 8 kHz [23–25]. In [23], 
the log short-time Fourier transform is fed into several 
dense layers with the last one inferring the high-band 
spectrum magnitude. The waveform is reconstructed by 
using the flipped phase from the low-band to estimate 
the high-band phase information. While this flipped 
method avoids having phase discontinuities at the low/
high frontier, [24] proposes to cope with this potential 
issue by extended the mean-squared error (MSE) loss 
function with a regularization term. Gaussian-Bernoulli 
restricted Boltzmann machines (GBRBM) has been 
employed alongside dense layers in [25] in order to esti-
mate the higher spectral envelope. Other systems make 
use of convolutional neural networks (CNNs) to infer 
the high frequencies from the low-band input features, 
using 1D convolutions in the time domain [12, 26–28] 
or 2D convolutions in the spectro/temporal domain 
[29, 30]. In [26], the authors show that using a network 
architecture of 1D dilated convolutions and residual con-
nections outperforms a state-of-the-art based on a long 
short-term memory (LSTM) system on speech signals. 
The authors of [27] make use of 1D convolutional layers 
in an encoder-decoder scheme to extend the bandwidth 
of speech and musical signals in three upscaling ratios: 
2, 4, and 6. They show the effectiveness of their system 
compared to [24] for objective and perceptive metrics. 
In the same vein, an encoder-decoder architecture in the 
time domain is also used in [28], but the authors propose 
to opt for subpixel layers instead of classical transposed 
convolutional layers because it was shown that fewer 
artifacts are created by considering those layers. Another 
encoder-decoder system can be found in [12] where 
the architecture also contains residual connections in a 1  https://​github.​com/​mathi​eulag​range/​ddspM​usicB​andwi​dthEx​tensi​on.

https://github.com/mathieulagrange/ddspMusicBandwidthExtension
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U-Net scheme. The authors show (1) that using a ResNet 
architecture outperforms the U-Net, probably because of 
the loss of information in the bottleneck layer of the for-
mer and (2) that the employed DNNs overfit on the filter 
shapes present in the training data. This latter problem 
can fortunately be alleviated with a data augmentation 
strategy which utilizes a wide variety of low-pass filters 
during training.

As the paper describes thoroughly the architecture pro-
posed as well as its learning procedure, we choose to use 
this latter system as a reference “high complexity” system.

2.3 � Generative adversarial networks
Generative adversarial networks (GAN) have been 
explored in several works for BWE. In [31], the authors 
show that relying on GANs can improve the gener-
ated speech quality by using a simple DNN. In [32], the 
generator is based on a U-Net-like architecture and the 
discriminator is trained to distinguish between gener-
ated and true wide-band signals, with the addition of a 
perceptual loss expressing the distance between features 
learned by a pre-trained automatic speech recognition 
(ASR) network. A combination of two discriminators, 
one based on spectral features and the other based on 
temporal features, have been proposed in [33] to extend 
the bandwidth from 8  kHz to 48  kHz. In [34], the gen-
erator is also based on a U-Net architecture yet it is pro-
posed to employ CNNs for the three discriminators, each 
one being applied on a downsampled version of gener-
ated or true waveform (downsampling factors = 1, 2, 4). 
The generator is then trained to generate piano signals.

While GAN do not impose strong constraints in terms 
of inference complexity, GANs are known to be noto-
riously difficult to train, as they require very specific 
choices in optimization and architectures in order to sta-
bilize training and could fail to cover modes of the data 
distribution [35].

At the time of the design of this study, we found no pre-
trained general audio BWE model learnt with an adver-
sarial procedure. We thus do not consider a GAN trained 
generator as another reference method.

2.4 � Diffusion models
In terms of quality of generation, diffusion models now 
provides very convincing performance for a wide variety 
of data, including audio [10, 36]. As for autoregressive 
architecture like Wavenet [9], this important increase of 
quality comes at a strong computational cost at inference. 
The network has to be called sequentially a large number 
of times (usually from 100 to 1000 times) in order to per-
form the inference. One can reduce the size of the net-
work or reduce the number of steps in order to accelerate 

sampling [35], but those approaches are detrimental to 
the quality of the generated audio and the inference time 
remains high.

In this paper, we find that the inference of a standard 
ResNet architecture is already about 1000 times real time 
on a standard central processing unit (CPU) and our 
study focuses on efficient BWE, we choose not to con-
sider diffusion models as a reference.

3 � Differentiable sound models
In this article, we address BWE using DDSP models 
derived from the seminal work of [11] that focuses on the 
generation of audio signals with a combination of neu-
ral networks and digital signal processing models. This 
approach allows one to train the neural network param-
eters in an end-to-end fashion with backpropagation, 
if the rest of the model is differentiable. Besides several 
sound synthesis models [37, 38], DDSP has also been 
successfully applied to other tasks, such as neural audio 
effect [39], style transfer [40], sound matching [41], or 
virtual analog [42].

In this section, we describe the DDSP models we pro-
pose for monophonic and polyphonic BWE.

3.1 � Monophonic BWE system
To address BWE for monophonic musical signal, we 
adapt the model proposed in [11], which is monophonic 
by design. The main difference with the original DDSP 
model is that, in order to reconstruct the higher frequen-
cies, the model takes as input the low-band (LB) audio 
signal of bandwidth fN

α
 , with fN the Nyquist frequency, 

and is trained to output the wide-band (WB) signal of 
bandwidth fN . The overall architecture, illustrated on 
Fig.  1 is the same as in [11], and consists in two parts: 
an trainable encoder-decoder neural network, and a 
harmonic-plus-noise synthesizer. The neural network is 
illustrated in blue, the extracted features are shown in 
yellow, and the differentiable synthesizer is colored in 
red. This monophonic model is labeled DDSP-mono-dec, 
referring to the design of the decoder to generate mono-
phonic parameters.

3.1.1 � Extracted features
The input LB signal is first analyzed to extract the fun-
damental frequency f0(n) and loudness l(n) over time. In 
the monophonic setting, we use CREPE [43], a state-of-
the-art monophonic pitch estimator based on a convo-
lutional neural network, to estimate f0 . The loudness l is 
obtained with a A-weighting of the power spectrum [44].
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3.1.2 � Neural network
The input LB signal waveform is processed by an encoder 
which creates a latent vector z. In the encoder, the first 
30 mel frequency cepstrum coefficients (MFCC) are 
extracted from the audio input (fast Fourier transform 
(FFT) size of 1024, overlap of 75 % and 128 mels between 
20 and 8000 Hz) and then passed into a trainable normal-
ization layer. After that, the MFCCs go into a gated recur-
rent unit (GRU) with 512 units, and finally, a 512-neuron 
linear layer outputs the latent vector z(n).

The three vectors z(n), f0(n) and l(n) are then fed into 
the decoder. Each of them first goes into a separate multi-
layer perceptron (MLP) with three layers, and the outputs 
are concatenated. The obtained vector is processed by a 
512-unit GRU and then another 3-layer MLP. Finally, two 
separate dense layers are used: the first one outputs the 
harmonic amplitudes Ah(n) (see Section  3.1.3) using a 
softmax activation, and the second one gives the noise fil-
ter coefficients N(k). Note that, as in [11], we use a modi-
fied sigmoid function σ(x) at the output of these two last 
dense layers : σ(x) = 2 · sigmoid(x)log(10) + 10−7 . This 
architecture has around 3k learnable parameters.

3.1.3 � Harmonic‑plus‑noise synthesizer
Both outputs from the neural network are used separately 
in the additive synthesizer and noise modules. The additive 
synthesizer takes the estimated f0(n) and the inferred har-
monic amplitudes Ah(n) to generate the audio signal y(n):

where φh is the instantaneous phase of the hth sinusoidal 
component. It is computed by integrating the instantane-
ous frequency fh(n) = hf0(n) :

(1)y(n) =

H

h=1

Ah(n)sin(φh(n)),

(2)φh(n) = 2π

n
∑

m=0

fh(m)+ φ0,h,

where φ0,h is a random initial phase. In the filtered noise 
module, we obtain a time-domain finite impulse response 
(FIR) filter as the inverse discrete Fourier transform of 
the noise filter coefficients N(k) from the neural network 
output. The filtered noise signal is synthesized by con-
volving a white noise with the FIR filter. The harmonic 
signal and filtered noise are finally summed to obtain the 
wide-band output signal.

Even if the full-band output signal is generated, only 
the missing high frequency content is kept, and added to 
the input low-band signal.

3.1.4 � Noise‑only synthesizer
We also consider a noise only synthesizer in which the 
output of the autoencoder only contains the noise filter 
coefficients N(k). We label this model DDSP-noise. This 
will allow us in the experimental part to evaluate the 
respective value of the harmonic and noise parts of the 
synthesizer.

3.1.5 � Loss function
We use the multi-scale spectral (MSS) loss function to 
train our models computed on the missing high-frequency 
region. It is defined as L(y, ỹ) =

∑

s Ls(Ys, Ỹs) , where Ys 
and Ỹs are the high-frequency magnitude spectrograms of 
the ground-truth signal y and the reconstructed signal ỹ , 
respectively, computed using a FFT size s, and :

|| · || being the common L1 norm. Indeed, experiments 
demonstrated that it is preferable to compute each loss 
only on the high-frequency region for solving the BWE 
task. We use the same set of FFT sizes as in [11], that is 
[2048, 1024, 512, 256, 128, 64] samples.

3.2 � Polyphonic BWE methods
By the use of a single harmonic synthesizer, the DDSP 
architecture can only generate high frequency content 

(3)Ls(Ys, Ỹs) = ||Ys − Ỹs||1 + ||logYs − logỸs||1,

Fig. 1  DDSP architecture for monophonic bandwidth extension (model DDSP-mono-dec)
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harmonically from a single f0 . To address BWE for poly-
phonic musical signals, we propose two systems: a cyclic 
use of a monophonic BWE system detailed above, and a 
BWE system based on a polyphonic DDSP architecture.

3.2.1 � Cyclic monophonic decoder
In the monophonic BWE system, the DDSP model gen-
erates a harmonic signal based on a single f0 estimated 
from a monophonic pitch estimator [43]. Now that we are 
in a polyphonic context, we use a state-of-the-art multi-
pitch estimator [45] which outputs a maximum of I dif-
ferent fundamental frequencies f i0 . Considering that this 
multi-pitch estimator has a rather good performance, we 
propose to iteratively use the monophonic DDSP model 
DDSP-mono-dec in a cyclic manner, as illustrated in Fig. 2. 
We label this model DDSP-mono-dec-cyclic. Pseudocode 
of the overall algorithm is detailed in Algorithm 1.

Algorithm 1 Pseudocode algorithm of cyclic use of the monophonic 
DDSP model

The monophonic DDSP model is applied for I itera-
tions on a low-band signal xiLB which correspond to 

the original low-band signal minus the i − 1 estimated 
sources. At each iteration i, a loudness contour li is 
extracted from what we label a residual low-band input 
signal xiLB and passed, along with the ith estimated pitch 
f i0 (obtained on x at the beginning of the algorithm) and 
xiLB , into the DDSP model.

The output full-band monophonic signal ỹi , which con-
tains a harmonic content from the current f i0 , is then low-
pass filtered to keep only the low-frequency part ỹiLB . Finally, 
the magnitude spectrogram of ỹiLB is subtracted to the mag-
nitude spectrogram of the residual low-band input signal:

The low-band input signal is then obtained in the time-
domain using an inverse short-term Fourier transform 
(STFT) on Xi

LB (phase is kept in place).
In that way, at each iteration i, the harmonic content gen-

erated at the previous step is removed in the spectral domain 
from the residual low-band input signal, so that a different 
f i0 should be extracted. The residual low-band signal should 
contain less and less harmonics during this process.

At the beginning of the iteration, the loudness contour 
is then estimated on the full polyphonic signal, which will 
lead to estimations errors, that hopefully will decrease at 
each iteration.

The output of the noise synthesizer, which is part of the 
monophonic DDSP model at each iteration in order to 
have a more precise estimate of the amplitude of the har-
monic of the sinusoidal part. While the noise part is thus 
estimated at each iteration we only considered the noise 
part of the last iteration I in order not to overestimate the 
noise part.

Finally, the full-band monophonic output signals ỹi 
are summed and mixed with the noise part to obtain 
the estimated full-band polyphonic signal ỹ . As in the 

(4)|Xi
LB| =

{

|X | if i = 1

|Xi−1
LB | − |Ỹ i−1

LB | if i ∈ {2, ..., I}

Fig. 2  Cyclic use of thcel (DDSP-mono-dec-cyclic) for bandwidth extension of polyphonic signals
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monophonic BWE setting, the high frequency content 
from this full-band signal is mixed with the low-band 
input signal.

3.2.2 � Polyphonic decoder
To address BWE for polyphonic signals, we propose 
another model adapted from the original DDSP mod-
els, illustrated in Fig.  3, which we label DDSP-poly-dec 
because the decoder outputs the parameters intended to 
control a polyphonic synthesizer. As before, the model is 
trained on polyphonic data.

In this model, I additive harmonic synthesizers are 
used, where I is the estimated number of fundamental 
frequencies f i0 , i ∈ 1, ..., I present in the input low-band 
signal. To estimate the parameters for each separate addi-
tive synthesizer, we extend the decoder detailed in sec-
tion 3.1.2 by using I separate MLPs for each f i0 (instead 
of a single MLP for vector f0 in the monophonic DDSP 
model). The outputs of those I MLPs are then concate-
nated into one vector, which is itself concatenated to the 
outputs of the two other MLPs applied on z and l. Then, 
as in the monophonic model, the obtained vector goes 
through a GRU and another MLP. After that, I + 1 dense 
layers are used: one for estimating the noise filter coef-
ficients N(k), and I other layers to output the H harmonic 
amplitudes of the I additive synthesizers.

In this model, we employ the same multi-pitch estima-
tor [45] as in the cyclic model to estimate a maximum 
of I f i0 . If only I ′ < I fundamental frequencies are given 
by the estimator, we set f i0 = 0, i > I ′ , and all f i0 are fed 
in the decoder. To prevent any adverse impact on sound 
quality of those missing values, only the I ′ first sets of 
H harmonic amplitudes are extracted from the decoder 
output and used with the first I ′ additive synthesizers.

4 � Experimental protocol
In this section, we detail the datasets, metrics and base-
lines used to assess the performance of the proposed 
BWE models.

The task that we consider is bandwidth extension task 
where the input signal is sampled at 4 kHz, thus with 

frequencies up to 2 kHz and the output signal is sampled 
at 16 kHz, thus with frequencies up to 8 kHz.

As our approach is quite flexible in terms of extension 
scenario, we also performed experiments for the task going 
from a sampling frequency of 8kHz to 16kHz. We found 
that the ranking between models was the same as the one 
for upsampling from 2 to 8 kHz. We thus display and dis-
cuss results only for the latter, as the task is more chal-
lenging and lead to more salient perceptual differences, a 
required aspect for a successful perceptual evaluation.

4.1 � Datasets
To train and evaluate our models, we used both mono-
phonic and polyphonic datasets. Synthetic data has been 
also been considered in order to check expected behav-
iors of proposed systems. Those systems are then evalu-
ated on uncontrolled real-world data.

4.1.1 � Synthetic datasets
In order to analyze the inference capabilities of the 
trained models, we generated two synthetic datasets, 
respectively containing monophonic and polyphonic sig-
nals. These signals are generated using a harmonic-plus-
noise synthesizer, as for the DDSP models, allowing for 
precise analysis of the models generating capabilities.

Each monophonic signal is generated given a f0 cor-
responding to a certain MIDI pitch between C3 (e.g., 
130.82  Hz) and G#6 (e.g., 1661.22  Hz). A harmonic 
signal is generated from this f0 with H harmonics 
( H ∈ {10, 15, 20} ), where the amplitude of the hth har-
monic is 1

h2
 . A pink noise is added to this harmonic signal 

with a signal-to-noise ratio of 10 dB. Then, an attack, sus-
tain, decay (ASD) envelope is generated and multiplied to 
the harmonic-plus-noise signal. The durations of attack 
and decay and the sustain level are randomly picked 
in the interval [0,  0.3], [0.5,  1], and [0,  2] (in seconds), 
respectively. Finally, a random gain in interval [0.75,  1] 
scales the final monophonic harmonic-plus-noise signal. 
The final monophonic synthetic dataset is obtained by 
generating all combinations of f0 with the three H values, 
giving three signals.

Fig. 3  Polyphonic DDSP model (DDSP-poly-dec) for bandwidth extension
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The polyphonic synthetic dataset is generated by com-
posing chords on the diatonic scale simply by considering 
multiple notes from the monophonic synthetic dataset, 
as follows. To generate a I-note polyphonic chord signal, 
we randomly pick I monophonic signals by taking care 
that a particular pitch (regardless of the octave) does not 
appear more than once among these I signals. For each 
note, a gain is randomly picked in [0.5, 1], and all notes 
are mixed with corresponding gains. To build the full 
database, we generated polyphonic signals for all combi-
nations of f0 and I ∈ {2, 3, 4, 5}.

From the generated monophonic and polyphonic syn-
thetic datasets, 90% of the signals form the train set, and 
the remaining signals form the test set.

4.1.2 � Real‑world monophonic datasets
Two real-world datasets consisting of monophonic musi-
cal signals are used to evaluate our models. The Orchide-
aSOL dataset [46] includes signals of single notes from 
many different instruments (accordion, bassoon, tuba, 
horn, trombone, trumpet, guitar, harp, contrabass, viola, 
violin, violoncello, clarinet, flute, oboe, and saxophone). 
In the original dataset, many different playing styles are 
available for each instrument; however, we only keep the 
ordinario one, corresponding to a natural playing. The 
training set for our experiments contains 90% of the orig-
inal dataset, i.e., about 5.5 h of audio, while the test set 
contains 10% , i.e., about 42 min of audio.

Medley-solos-db [47] is another largely monophonic 
dataset which contains melodies of one of eight differ-
ent instruments (clarinet, distorted electric guitar, female 
singer, flute, piano, saxophone, trumpet, and violin), i.e. 
the f0 changes over time in those signals. In our experi-
ments, we considered the original provided test and 
train splits, which corresponds to about 2.4 and 5 h of 
audio, respectively. As some of the instruments are pol-
yphonic i.e. distorted electric guitar, piano, and violin, a 
small part of the dataset cannot strictly be considered as 
monophonic. In order to preserve the integrity of train/
test splits of the dataset, we chose not to discard those 
instruments.

4.1.3 � Real‑world polyphonic datasets
To assess the proposed model for polyphonic BWE, we 
employed two real-world datasets containing multiple 
multi-track mixes. Gtzan dataset [48] has been widely 
exploited in many audio signal processing tasks. It con-
tains 1000 30-s music tracks equally split into 10 genres 
(blues, classical, country, disco, hip-hop, jazz, metal, pop, 
reggae, and rock). The train and test splits contain 7.5 h 
and 50 min of audio, respectively.

We also used the mixed version of each track of the 
MedleyDB dataset [49], since most of the corresponding 

stems are already part of the training split of the previ-
ously mentionned Medley-solos-db dataset. The whole 
MedleyDB dataset is split into train and test sets in a 90%
/10% way, corresponding to approximately 6 h and 50 
min of audio data, respectively.

4.2 � Evaluation and metrics
To evaluate the performance of the proposed models, 
we first employ an objective metric computed in the 
frequency domain named log-spectral distance (LSD), 
defined as:

where Y(n, k) and Ỹ (n, k) are the STFT representation of 
the target full-band signal and the estimated full-band 
signal, respectively (see Section 4.4 for STFT parameter 
values).

Secondly, we ran a listening test based on a MUSHRA 
methodology [50] to assess the perceptive accuracy of the 
proposed models. We followed the classical MUSHRA 
specifications to build a listening test which was com-
pleted by 44 participants. More details are provided in 
Section 6.

4.3 � Reference methods
4.3.1 � Null baseline
The null baseline is simply the absence of addition of any 
content in the missing high frequency range. It provides 
a “ground floor” baseline to assess if the contribution of 
a given method is not actually worse than doing nothing.

4.3.2 � Spectral band replication
To compare the performance of our models with existing 
approaches in the literature, a simplified version of the 
SBR algorithm [13] has been evaluated on the considered 
datasets. This algorithm has a long history in audio codec 
technologies and comes in various designs that often 
consider the use of side information, transmitted in the 
bitstream for the decoder to perform BWE. In this work, 
we implemented a simplified version that is blind, i.e. 
does not require any information for performing BWE.

In this algorithm, the input signal x is treated in the 
frequency domain, frame by frame. The upper half 
frequencies are inferred by replicating the lower half 
frequencies, with the idea of transposing the lower 
harmonics upwards. As we aim to extend the band-
width of musical signal from 2 to 8 kHz, we extend this 
algorithm by replicating the lower band three times to 
reconstruct the full spectrum. In order to obtain a typi-
cal frequency amplitude decay, for each replication, the 

(5)LSD =
1

T

T
∑

t=1

√

√

√

√

1

K

K
∑

k=1

(

log |Y (n, k)|2 − log |Ỹ (n, k)|2
)

,
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amplitudes of the transposed frequencies are adjusted 
so that there is an energy continuity at the replication 
frontier, i.e., for the jth replication ( j ∈ {1, 2, 3} as it is a 
fourfold bandwidth extension), the energies of the same 
portion of frequencies on both sizes are equal:

where K is the number of frequency bins, and α ∈ [0, 1] 
the fraction of frequency bins considered for matching 
the energies of adjacent replicated bands. Experimentally, 
we found that α = 0.5 led to the best performance for the 
overall algorithm.

In our experiment, to consider the SBR at its best per-
formance, the ground-truth phase information is used 
to obtain the full-band signal in the temporal domain. 
We acknowledge that the phase is not known in prac-
tice and would have to be estimated in a realistic pro-
duction setting.

4.3.3 � ResNet architecture
We also compare our models to a higher complexity sys-
tem based on deep learning [12]. We chose this system 
because the ResNet architecture shows better results 
than the other proposed model based on a U-Net archi-
tecture. The ResNet architecture takes an input signal in 
the temporal domain and outputs a signal of the same 
size, with high-frequency components. It is composed 
of 15 residual blocks made of two 1D convolutional lay-
ers each, with 512 convolutional filters of size 7, with 
a rectified linear unit (ReLU) activation after the first 
layer. For each layer, the input is added back to the out-
put after being multiplied by a factor of 0.1 (for stabiliz-
ing the training) in a residual fashion. The input signal is 
added back to the output. Batch normalization and drop-
out with a factor of 0.5 are used after each convolutional 
layer. This model has around 55M learnable parameters.

To train this model, we use the same strategy as in [12], 
i.e., using a mean square error loss with a learning rate 
reducing schedule.

4.4 � Experimental parameters
In our work, all audio signals are sampled at fs = 16 kHz. 
To compute the STFT of these signals, we used an anal-
ysis window of 1024 samples with a hop length of 256 
samples. The input signals are of length 64,000 sam-
ples ( = 4  s) for the DDSP models and the SBR baseline, 
and 8192 samples ( ≈ 0.5  s) for the ResNet model. In 
the DDSP models, we considered H = 100  a number of 

(6)
j K
4

∑

k=(j−α) K
4

|X(k)|2 =

(j+α) K
4

∑

k=j K
4

|X(k)|2,

harmonics and a size of K = 65 for the noise transfer 
function N(k). In the cyclic DDSP system, we use a total 
number of I = 5 iterations.

DDSP models are trained for 25,000 steps with batches of 
size 32. We used the Adam optimizer with an initial learn-
ing rate of 0.001 for DDSP models, and the latter is halved if 
the loss has not been decreased during four plateaus of 2500 
steps. We used A100 GPUs for the training, which permit us 
to train DDSP models for around 1 h for DDSP-mono-dec, 2 
h for DDSP-poly-dec, while ResNet training took around 19 h.

5 � Validation on synthetic data
In this section, we first study the performance of the pro-
posed models against the baselines on the monophonic 
and polyphonic synthetic data. It allows for more detailed 
insights on the models’ ability to accurately generate the 
missing high frequency content.

5.1 � Monophonic dataset
We first trained and evaluated our monophonic DDSP 
model on the monophonic synthetic dataset against the 
SBR method [13] and the ResNet model [12]. Table  1 
summarizes the results.

The results show the benefit of the DDSP model over the 
two reference models. On Fig. 4, the generated upper band 
from the proposed monophonic DDSP model, SBR base-
line and ResNet models are illustrated for one frame of a 
particular synthetic signal with f0 ≈ 830  Hz. The DDSP 
model is robust enough to synthesize the wanted harmon-
ics with matching amplitudes, showing that it is capable 
to learn the chosen harmonic amplitude decay. The SBR 
baseline duplicates the low-band harmonic content with 
an offset because of the mismatch between the cutoff fre-
quency and f0 , and the ResNet model is apparently not 
capable of generating relevant high frequency harmonics, 
thus minimizing its loss by very few addition of energy.

5.2 � Polyphonic dataset
Table 2 shows the LSD metric for all models and base-
lines on the polyphonic synthetic dataset. We can see 
that all proposed models surpass the SBR baseline and 
the ResNet model, and that the BWE performance has 

Table 1  Evaluation results for monophonic BWE model and 
baselines on the monophonic synthetic dataset

Model LSD

Null 6.15

SBR [13] 4.19

ResNet [12] 4.34

DDSP-noise 5.04

DDSP-mono-dec 2.93
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been improved by the design of both the cyclic system 
and the polyphonic model. The polyphonic DDSP model 
is almost twice as good as SBR and Resnet, which is an 
important improvement. When looking at Fig. 5, which 
illustrated the upper band generation for one polyphonic 
example from all the considered models and baselines, 
we notice that both cyclic and polyphonic methods are 
capable of generating precise harmonics, with a relatively 

good amplitude match compare to the ground-truth. 
For the monophonic setting, the SBR baseline generates 
shifted harmonics. The ResNet model seems to be able 
to focus only on some harmonics, with relatively precise 
amplitudes, while also generating some noise in the low-
est generated frequencies.

The three DDSP-based models seems quite capable 
of estimating the low harmonic amplitudes, while the 
high harmonic content suffers from too high amplitudes, 
which may lead to non-natural artifacts. Possible reasons 
for this defect are given at the end of the next section.

6 � Evaluation on real‑world datasets
In this section, we present the performance results for 
each monophonic and polyphonic recorded datasets 
of the proposed models against the reference methods: 
namely SBR and ResNet model.

6.1 � Objective evaluation
The proposed models are first evaluated objectively using 
the LSD metrics on the real-world datasets. Monophonic 
models DDSP-mono-dec and DDSP-noise are evaluated 

Fig. 4  Generated upper-frequency band using the model DDSP-mono-dec, the baseline SBR, and the reference ResNet model, for a synthetic signal 
containing harmonics based on the MIDI note G#5 ( ≈ 830 Hz). The vertical line shows the limit between the low and high bands

Table 2  Evaluation results for the proposed BWE models, the 
baseline and the reference ResNet model on the polyphonic 
synthetic datasets

Model LSD

Null 11.03

SBR [13] 8.77

ResNet [12] 8.37

DDSP-mono-dec 7.86

DDSP-noise 9.18

DDSP-mono-dec-cyclic 5.59

DDSP-poly-dec 4.72
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on both monophonic and polyphonic datasets, while pol-
yphonic models DDSP-mono-dec-cyclic and DDSP-poly-
dec are evaluated only on polyphonic datasets (Gtzan 
and MedleyDB. Table 3 shows the results.

First, we can see that all proposed models surpass both 
SBR and ResNet model in terms of LSD, except for the 
cyclic model which is worse than SBR. On the Orchidea-
SOL, Gtzan, and MedleyDB datasets, the gain in perfor-
mance is substantial for the best model compared to the 
reference ones. For example, DDSP-mono-dec leads to a 

LSD of 5.68 where SBR and ResNet achieve 9.27 and 14.04, 
respectively. On polyphonic signals, the ResNet model 
seems to be quite bad at predicting high frequencies (LSD 
= 26.84 and 16.17 on Gtzan and MedleyDB, respectively), 
whereas our DDSP-based models give quite lower LSDs 
(less than 12 for all theses models on both datasets).

When looking at the performance of the proposed 
models, we first observe that the polyphonic mod-
els DDSP-mono-dec-cyclic and DDSP-poly-dec do not 
achieve a better performance than the monophonic one 

Fig. 5  Generated upper-frequency band using the proposed models and the baselines, for one frame of a synthetic signal containing four notes: 
C#5 ( ≈ 554 Hz), D#5 ( ≈ 587 Hz), D5 ( ≈ 622 Hz), and F#6 ( ≈ 1479 Hz). The vertical line shows the limit between the low and high bands

Table 3  LSD performance of the evaluated models for monophonic and polyphonic real-world datasets. Best models are shown 
in bold for each dataset. The last two columns show CPU inference time expressed as real-time percentage and the number of 
parameters of the models

Model Log-spectral distance Inference time # of parameters

Monophonic datasets Polyphonic datasets

OrchideaSOL Medley-solos-db MedleyDB Gtzan (% real-time)

Null 15.9 18.53 24.37 33.84 0 0

SBR [13] 9.27 8.78 11.15 12.96 2 0

ResNet [12] 14.04 15.65 16.17 26.84 48 55M

DDSP-noise 7.20 8.28 8.96 10.06 3 3.5M

DDSP-mono-dec 5.68 8.09 8.98 9.95 9 4.4M

DDSP-mono-dec-cyclic / / 11.57 11.60 44 4.4M

DDSP-poly-dec / / 9.53 10.31 9 7.5M
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DDSP-mono-dec, whereas the noise-only model DDSP-
noise is on par with its results. This observation is quite 
constrasted from what we obtained on the synthetic 
datasets. When having a look at Fig. 6, we can see that 
DDSP-poly-dec seems to generate the highest frequency 
with too low amplitudes, whereas DDSP-mono-dec is a 
bit more precise in the high frequencies.

By informal listening of some reconstructed signals, 
we managed to distinguish two types of unwanted arti-
facts. The first kind happens when the amplitudes of the 
reconstructed harmonics are too high, which leads to a 
very synthetic high frequency reconstruction. One of the 
reasons for these wrongly inferred harmonic amplitudes 
is that, in both DDSP-mono-dec-cyclic and DDSP-mono-dec, 
the loudness contour is estimated for a mixture made of 
several f0 , making it less trivial for the autoencoder to 
estimate each f0 harmonic amplitudes. The second type of 
artifacts can be heard when the synthesized noise handles 
much of the high frequency content, while the harmonic 
amplitudes are too low, or even non-existent. This hap-
pens when the multi-pitch estimator fails to correctly pre-
dict the set of f0 s, then the overall system do not generate 
high amplitude harmonics, and compensates with noise. 
Because of that, we conjecture that the proposed models 
should be more effective with a more robust multi-pitch 
estimation system.

6.2 � Perceptual evaluation
In order to assess the perceptive value of our models, we 
conducted a listening test based on the MUSHRA meth-
odology [50]. During the listening test, 42 subjects were 
asked to rate the quality of audio signals between 0 (poor 
quality) and 100 (perfect quality) against the reference 
(ground-truth full-band signal), which is expected to be 
rated 100. This behavior is expected by normal hearing 
and focused subjects, as the reference sound is provided 
for each trial. 10 stimuli are given in a random order. For 
each of them, 6 signals are to be rated : 

1	 Anchor 1: low-band input signal (model Null)
2	 Anchor 2: hidden reference (ground-truth full-band 

signal)
3	 SBR reconstruction
4	 ResNet output
5	 DDSP-mono-dec output
6	 DDSP-noise output

The signals are taken from the Gtzan dataset [48], one 
of each genre, and only 5 s are extracted in the middle 
of the original signal. Information about participants is 
asked at the end of the survey, including gender, age, and 
the number of years of musical practice. Given the poorer 
LSD performance of our proposed polyphonic schemes 

Fig. 6  Spectrograms showing the generated upper-frequency band using the proposed models and the baselines for a real-world signal 
from a pop music track. The horizontal white line shows the limit between the low and high bands at 1000 Hz
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compared to the monophonic one, also confirmed by 
informal listening by the authors, it has been decided not 
to consider them for subjective evaluation. This had the 
benefit of maintaining the duration of the listening test 
into a reasonable range of about 20 min.

First, we conduct an analysis of variance (ANOVA) to 
check whether the factor of musical training is a signifi-
cant source of variation in the rating data. We consider an 
individual as being a musician if it has an experience of at 
least 1 year. Considering that, the ANOVA run on the rat-
ing distributions for musician and non-musician subjects 
gives a p-value of 1.61 · 10−8 , which tells us that being a 
musician or not has a significant effect on the test ratings.

Close inspection of the ratings showed that the rankings 
of the different methods are the same for both popula-
tions. The only difference a different bias, where musicians 
were on average more severe than non-musicians, as can 
be seen on Fig. 7, that show the distributions of ratings for 
musicians and non-musicians the over all models.

Next, conducting another ANOVA in which the ana-
lyzed factor is the model gives us a p-value of 2.18.10−88 , 
which is very small and shows that the choice of model 
is a significant source of variation in our collected data, 
thus the possibility of comparing the rating distributions 
of all models. With another ANOVAs on the models but 
for the data splits in musician or non-musician subsets, 
we obtain similar very low-valued p-values, which tells us 
that in both case the choice of models has an significant 
impact on the ratings among the participants.

The distributions of the participants’ ratings for all 
models and all stimuli are plotted as boxplots in Fig.  8. 
We can see that the outputs of model DDSP-mono-dec 
are in average rated to be of fair quality (almost good), 
whereas the outputs from ResNet, DDSP-noise, and no 
processing are typically rated as poor, and SBR outputs 
are quite often rated as being of bad quality. An impor-
tant outcome is that DDSP-mono-dec provides a large 
margin improvement compared to the Null baseline, 

Fig. 7  Stimuli ratings from subjects with (bottom) and without (top) musical training. Boxes correspond to the interquartile range (IQR) over all 
participants, with the mean indicated by an orange vertical line. Lower and upper whiskers are set to 1.5× IQR below and above Q1 and Q3 , 
respectively

Fig. 8  Stimuli ratings for, from top to bottom, the anchor Null corresponding to the input signal without any process, the SBR baseline, the proposed 
models DDSP-mono-dec and DDSP-noise, and the reference ResNet model. Boxes correspond to the interquartile range (IQR) over all participants, 
with the mean indicated by an orange vertical line. Lower and upper whiskers are set to 1.5× IQR below and above Q1 and Q3 , respectively
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meaning that this method is able to improve audio qual-
ity at a low computational cost.

By computing a t-test on rating distribution of DDSP-
mono-dec against the other models, we can verify that it 
is significantly better than the other ones. The p-values 
obtained for the t-test are well below the typical thresh-
old of 0.05, so the distributions are significantly different 
from each other. We can thus conclude that, from the 
data of the listening test, the DDSP-mono-dec gives per-
ceptively better high-frequency contents than the other 
evaluated models.

Monophonic and polyphonic examples are available 
online2. The latter have been considered as stimuli in the 
listening test.

6.3 � Inference time
One great advantage of the proposed DDSP approach is 
the important reduction of inference time compared to 
neural networks with a lot of training parameters such as 
Resnet. Figure 9 shows a scatter plot of the performance 
against the inference time of the different proposed mod-
els and the baselines SBR and Resnet, on the Gtzan data-
set. The inference was made on a laptop equipped with 
an Intel Core i7 CPU at a frequency of 2.8 GHz. We can 
clearly see that a neural network architecture such as 

ResNet takes a lot of computing time to process an input 
signal, well above a potential real-time behavior. While 
SBR is very fast, DDSP-based models such as DDSP-
mono-dec, DDSP-poly-dec, and DDSP-noise are quite 
efficient in terms of computation time. DDSP-mono-dec 
and DDSP-poly-dec take the same amount of comput-
ing time because their architecture is very similar, and 
DDSP-noise is a bit faster because of the smaller matri-
ces in the decoder. On the other hand, DDSP-mono-
dec-cyclic is less computationally efficient because of its 
iterative nature, as an inference from DDSP-mono-dec is 
computed at each iteration. These insights on the com-
putational power of the DDSP-based model show the 
advantage of such hybrid models compared to neural 
networks with a huge number of parameters such as the 
ResNet architecture.

7 � Conclusion
In this article, we explored differentiable digital signal pro-
cessing models for bandwidth extension of monophonic 
and polyphonic musical signals. We showed the benefit 
of using a monophonic DDSP model to generate high 
frequencies of monophonic signals against the two base-
lines, including a high-complexity deep-learning-based 
ResNet model. Then, we designed two systems to address 
polyphonic BWE: a cyclic use of a monophonic DDSP 
model, and an adapted DDSP model with polyphonic 

Fig. 9  Real-time CPU inference percentage vs. LSDs for the proposed models and the baselines over the dataset Gtzan

2  https://​mathi​eulag​range.​github.​io/​ddspM​usicB​andwi​dthEx​tensi​on

https://mathieulagrange.github.io/ddspMusicBandwidthExtension
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synthesis capacities. On polyphonic signals, the pro-
posed polyphonic systems showed to be more effective 
on polyphonic synthetic signals, but failed to surpass the 
monophonic DDSP model on real data. In addition, we 
conducted a listening test with the MUSHRA methodol-
ogy, which showed that the DDSP-mono-dec model was 
more pleasant to the ear for most participants, when 
compared to the baselines. For future work, we think that 
considering a more advanced multi-pitch estimator could 
enable the polyphonic models to generate less artifacts 
and that other artifacts could be avoided by researching 
further the loudness estimation procedure.
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