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Abstract 

Melody harmonization, which involves generating a chord progression that complements a user-provided melody, 
continues to pose a significant challenge. A chord progression must not only be in harmony with the melody, 
but also interdependent on its rhythmic pattern. While previous neural network-based systems have been successful 
in producing chord progressions for given melodies, they have not adequately addressed controllable melody har-
monization, nor have they focused on generating harmonic rhythms with flexibility in the rates or patterns of chord 
changes. This paper presents AutoHarmonizer, a novel system for harmonic density-controllable melody harmo-
nization with such a flexible harmonic rhythm. AutoHarmonizer is equipped with an extensive vocabulary of 1462 
chord types and can generate chord progressions that vary in harmonic density for a given melody. Experimental 
results indicate that the AutoHarmonizer-generated chord progressions exhibit a diverse range of harmonic rhythms 
and that the system’s controllable harmonic density is effective.

Keywords  Melody harmonization, Controllable music generation, Harmonic rhythm, Harmonic density

1  Introduction
In recent years, there has been considerable research 
effort devoted to developing the practical applications 
of neural networks in the field of music. Neural net-
works have enabled the implementation of automatic 
transcription [1, 2], which involves converting audio 
signals into symbolic musical representations. Research-
ers also used neural networks to classify musical pieces 
by genre [3, 4] and even generate original music [5–7]. 
This paper focuses on the task of melody harmonization, 
which involves creating a neural network-based system 

that generates chord progressions to accompany a given 
melody, with the added ability to control the harmonic 
rhythm.

In music, a chord is a combination of multiple notes 
that produce a harmonious sound. The transition of 
chords within a musical composition is known as har-
monic rhythm or harmonic tempo. Melody harmoni-
zation systems, as studied in [8–10], are designed to 
automatically generate suitable chords that accompany a 
given melody, essentially harmonizing the melody.

The process of harmonizing a melody involves select-
ing the appropriate chords that complement the melody’s 
underlying tonality, structure, and rhythm. The harmoni-
zation system must analyze the melody’s pitch, duration, 
and rhythmic patterns to identify the most appropriate 
chords to use at each point in the melody. The system’s 
output should enhance the melody’s expressiveness, 
while also maintaining a sense of coherence and musical 
logic.
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Melody harmonization systems have a range of poten-
tial applications, including music composition, arranging, 
and production. These systems can be particularly useful 
for musicians who lack formal training in music theory 
or for those seeking inspiration for new musical com-
positions. Furthermore, these systems can facilitate the 
creation of harmonically complex and innovative musical 
arrangements by automating the process of writing chord 
progression.

Melody harmonization is a complex and subjective task 
that has received considerable attention from research-
ers in recent years. However, existing works in this area 
[11–14] have mainly focused on generating appropriate 
chords, while neglecting the equally important aspect of 
placing them within the proper musical context. Conse-
quently, the aforementioned works suffer from limited 
flexibility in chord progression generation, as they tend 
to produce only a single chord for each bar or half-bar, 
leading to rigid harmonic rhythms that do not capture 
the subtleties of musical expression.

To address these challenges, it is necessary to develop 
more sophisticated models that can capture the full com-
plexity of melody harmonization and generate musically 
satisfying and aesthetically pleasing results. Such mod-
els should take into account the wider musical context, 
including the relationships between different chords and 
their role in the overall harmonic structure. Furthermore, 
they should allow for greater flexibility in chord progres-
sion generation, allowing for variations in rhythmic and 
harmonic patterns that reflect the nuances of musical 
expression.

This study aims to develop a novel approach to 
achieve automatic melody harmonization with flexible 

harmonic rhythm, where chord progressions rhythmi-
cally match a given melody. To achieve this objective, 
the proposed approach, AutoHarmonizer,  as shown 
in Fig.  1, generates chords on a sixteenth note basis 
(referred to as a “frame” in this context) instead of 
bar-by-bar. This modeling strategy better represents 
the task at hand and allows for more accurate harmo-
nization. Additionally, time signatures are encoded 
to establish rhythmic relationships between melodies 
and chords. The controllable harmonic density, which 
refers to the degree of richness or sparsity in the gen-
erated chord progressions, based on the work of [15], 
has been implemented to enable customized harmoni-
zations according to user preferences.

Contributions of this paper are summarized as follows:

•	 The proposed model considers beat and key informa-
tion, enabling it to handle any number of time sig-
natures and key signatures in a piece, without being 
limited to specific notations such as C major and 4/4.

•	 The AutoHarmonizer predicts chords frame-by-
frame, which enables the generation of flexible har-
monic rhythms.

•	 The utilization of gamma sampling allows users to 
adjust the harmonic density of model-generated 
chord progressions.

2 � Related work
2.1 � Melody harmonization
Melody harmonization is a branch of algorithmic com-
position [8], which aims to generate a chord progres-
sion automatically for a given melody [12, 13, 16]. Some 

Fig. 1  The architecture of AutoHarmonizer, which predicts chord symbols frame-by-frame (sixteenth note)
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of these studies have also focused on generating a four-
part chorale to accompany a given melody [17–19]. 
The present paper specifically addresses the former 
approach.

Tsushima et  al. [10] proposed a method for chord 
hierarchy representation based on a Probabilistic Con-
text-Free Grammar (PCFG) of chords. They developed 
a metrical Markov model for controllable chord genera-
tion using this hierarchical representation. However, this 
approach relies on statistical learning, which tends to 
generate simpler and more basic chord sequences, result-
ing in fewer generated chords than bars.

Lim et  al. [16] designed a model based on a Bi-direc-
tional Long and Short-Term Memory (Bi-LSTM) net-
work that can generate a chord from 24 triads for each 
bar. However, this model has limitations such as dis-
regarding note order, rhythm, and octave information 
within bars. It generates results with overuse of common 
chords and inappropriate cadences.

To address these limitations, Yeh et  al. [13] extended 
Lim’s model, called MTHarmonizer, to predict a chord 
from 48 triads for each half-bar. They also included some 
extra information such as tonic and dominant to improve 
the model’s performance.

In [12], Sun et al. applied orderless sampling and class 
weighting to the Bi-LSTM model. They expanded the 
types of chords to 96, and subjective experiments dem-
onstrated that the generated results were comparable to 
those produced by human composers.

Chen et al. [14] proposed SurpriseNet, a model based 
on a Conditional Variational Auto-Encoder (CVAE) and 
Bi-LSTM. This model enables user-controllable melody 
harmonization.

Yang et al. [20] utilized two LSTM models. One model 
focused on the relationship between notes in the melody 
and their corresponding chords, while the other model 
focused on the rules of chord transfer.

Majidi et  al. [21] combined genetic algorithms with 
LSTMs to generate and optimize melodies and chords.

A recent deep learning approach [22] by Rhyu et al. lev-
erages a Transformer architecture, combined with a VAE 
framework, to generate structured chord sequences from 
melodies.

It should be noted that all of the models mentioned 
above, except for Tsushima et al. [10], cannot generate 
flexible harmonic rhythms.

2.2 � Controllable music generation
Controllable music generation systems refer to com-
puter programs or algorithms that can generate 
music based on specific requirements set by the user. 
These systems rely on the representation of various 

properties of music, which may be subjective, such as 
emotion and style, or objective, such as tonality and 
beat. The generation of music by these systems can be 
customized to meet the specific needs of the user and 
can be tailored to a particular application.

Controllable music generation has been an active 
research area, and several models have been proposed 
to achieve this goal. Roberts et  al. proposed a model 
based on recurrent Variational Auto-Encoders (VAEs) 
[23]. This model enables controllable generation through 
hierarchical decoders, allowing for control over various 
musical features such as harmony, melody, and rhythm.

Luo et al. proposed a model based on VAEs with Gauss-
ian mixture latent distributions [24]. This model enables 
the learning of decoupled representations of timbres and 
pitches, facilitating the control of these two musical fea-
tures separately. Zhang et  al. proposed BUTTER [25], a 
representation learning model based on VAE, which can 
learn latent representations and cross-modal representa-
tions of music. This model allows for searching or generat-
ing corresponding music by inputting text, providing users 
with more convenient control over the generation process.

Chen et  al. proposed Music SketchNet [26], which 
uses VAE to decouple rhythmic and pitch contours, 
allowing for guided generation based on user-specified 
rhythms and pitches. Wang et al. proposed PianoTree 
VAE [27], which uses a Gated Recurrent Unit (GRU) to 
encode notes played simultaneously and map them to 
a latent space. This model achieves controllable gen-
eration of polyphonic music based on a tree structure.

Finally, Di et  al. proposed the Controllable Music 
Transformer [28], which achieves rhythmic consist-
ency between video and background music. This 
model allows for the local control of rhythm while 
globally controlling the music genre and instruments.

It should be noted that these aforementioned mod-
els are designed for controllable music generation, and 
integrating their techniques into models without this 
capability might be challenging.

3 � Methodology
3.1 � Data representation
Our research has yielded a novel data representation that 
includes crucial meta-information obtained from sheet 
music, namely the time signature and key signature. The 
data representation is illustrated in Fig. 2, and it involves 
encoding each lead sheet into four sequences, with equal 
lengths. This approach enables us to accurately cap-
ture the temporal and harmonic structure of the music. 
By including both time signature and key signature in 
the data representation, we can capture the rhythmic 
and harmonic patterns of the music comprehensively. 
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Consequently, this enhances the accuracy and complete-
ness of our music representation.

•	 Melody Sequence: we adopt a 128-dimensional one-
hot vector encoding scheme to represent musical 
frames. Specifically, each frame is represented as a 
one-hot vector with 128 dimensions, where the time 
resolution is set at the level of sixteenth notes. The 
first dimension of the vector is reserved for repre-
senting rests, while the remaining 127 dimensions 
correspond to the unique pitches in the MIDI stand-
ard (excluding pitch 0).

•	 Beat Sequence: a sequence of 4-dimensional vec-
tors based on time signatures. It represents the beat 
strength of each frame in the melody sequence. Its 
values range from 0 to 3, corresponding to non-
beat, weak, medium-weight, and strong beats. This 
sequence provides important information on the 
rhythmic structure of the melody.

•	 Key Sequence: the encoding of keys is based on the 
number of sharps or flats associated with each key. 
Specifically, flats are assigned a numerical value 
ranging from − 7 to − 1, while sharps are assigned a 
numerical value ranging from 1 to 7. Keys with no 
sharps or flats are assigned a value of 0. In total, there 
are 15 possible types of key encoding based on this 
system.

•	 Chord Sequence: there are 1461 unique chord sym-
bols were identified in our dataset. The first dimen-
sion is reserved for rests, leading to a one-hot vector 
representation of 1462 dimensions for each chord.

3.2 � Network architecture
In musical composition, a crucial aspect is the consid-
eration of individual notes that comprise a given melody 
segment to effectively match it with a suitable chord 

progression. Generally, chords that incorporate notes 
already present in the melody, namely chord tones, are 
preferred. Nevertheless, there may be situations where 
several chords align with the current set of notes, neces-
sitating the selection of the subsequent chord based on 
the upcoming notes of the melody. Thus, the selection 
of chords in musical composition involves a balance 
between the notes that are currently being played and 
those that are yet to come. This process is essential in cre-
ating a harmonious and coherent musical composition.

AutoHarmonizer is a model developed to capture 
music information bidirectionally. It employs a Bi-LSTM 
backbone network and an encoder-decoder architecture, 
as shown in Fig. 1. The model consists of two encoders, 
the melody encoder, and the meta-info encoder. The 
melody encoder takes a melody sequence as input, while 
the meta-info encoder takes a concatenated sequence of 
beat and key sequences. Both encoders have two stacked 
blocks, each comprising a Bi-LSTM layer with 256 units 
and a time-distributed layer with 128 units. The last hid-
den states of the encoders are concatenated, and the 
resulting vector is used as input to the decoder. The 
decoder is made up of three stacked layers, and its output 
layer has 1462 units, which represent chord types. The 
chord symbols are generated autoregressively, frame-by-
frame (sixteenth note) in the decoder. During training, 
the model used a dropout rate of 0.2, a batch size of 512, 
and early stopping with a patience of 20 epochs, as deter-
mined by empirical evaluation.

3.3 � Controllable harmonic density
In [15], Wu et al. proposed the use of gamma sampling 
to control the language models based on the assump-
tion that certain attributes of the generated text have 
a close correlation with the number of occurrences of 
specific tokens. Gamma sampling provides a means to 
generate controllable text by scaling the probability of 

Fig. 2  A two-bar sample of a melody, beat, key, and chord representation (at a time resolution of eighth notes)
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the token associated with the attribute during the gen-
eration process:

where Ŵ ∈ [0, 1] is the user-controllable control strength, 
A is the set of attribute-related tokens ( \A is its com-
plement), pain/out is the input/out probability of an 
attribute-related token a, and the same goes for every 
non-attribute-related token n. When Ŵ = 0.5 , there is 
no change in the probability distribution, while when 
Ŵ < 0.5 , the probabilities of the attribute-related tokens 
increase and vice versa.

AutoHarmonizer uses a strategy to achieve control-
lable harmonic density whereby the previously gener-
ated chord token ct−1 is selected as the attribute-related 
token for generating the chord ct at time step t. Specifi-
cally, when the value of a parameter called Ŵ exceeds 0.5, 
the model is more inclined to generate chords that dif-
fer from ct−1 , resulting in a greater frequency of chord 
switching and an increase in harmonic density. Con-
versely, when Ŵ is less than 0.5, the likelihood of generat-
ing denser chord progressions is reduced. This approach 
enables AutoHarmonizer to produce musical pieces with 
controllable harmonic complexity, allowing for flexibility 
in the generation of diverse music styles.

Musical composition typically involves the frequent 
usage of essential chords, notably the tonic, dominant, 
and subdominant chords. While it is true that a model 
can loop between these chords, our model, with the 
introduction of high values of Ŵ , tends to diversify its 
chord choices, resulting in a more even distribution of 
chord types. As demonstrated in Fig. 4, a higher Ŵ leads 
to a more balanced distribution of scale degrees in the 
generated chord progressions, indicating the inclusion 
of less common chords. Thus, by adjusting Ŵ , compos-
ers can influence the harmonic density and the dis-
tribution between essential and non-essential chords, 
offering them more control over the musical texture and 
composition.

4 � Experiments
4.1 � Setups
4.1.1 � Dataset
In our study, we utilized Wikifonia.org’s lead sheet data-
set, consisting of 6675 compositions predominantly 
from Western genres such as rock, pop, country, jazz, 
folk, R&B, and children’s songs. In order to improve the 

(1)

pAout = p
tan πŴ

2

Ain
,

paout = pain ·
pAout

pAin

, ∀a ∈ A,

pnout = pnin · 1+
pAin − pAout

p\Ain

, ∀n /∈ A,

quality of the dataset, we removed lead sheets that lacked 
chord symbols or did not switch chords within 4 bars, 
ultimately resulting in a subset of 5204 lead sheets. Sub-
sequently, we divided the subset into a training set com-
prising 90% of the data and a validation set containing the 
remaining 10%.

4.1.2 � Baselines
In our research, we chose two previous melody harmo-
nization systems as our baselines. The first is a tradi-
tional melody harmonization system proposed by Lim 
et  al. [16], known as Chord Generation from Symbolic 
Melody (CGSM). This system is based on a Bi-LSTM 
architecture and was trained and validated using the 
Wikifonia dataset. The other two baseline models are 
STHarm and VTHarm [22]. Both of these models were 
trained on the Chord Melody Dataset (CMD)1. STHarm 
directly translates melodies into chords by mapping indi-
vidual melody notes to chord progressions. On the other 
hand, VTHarm, featuring a key-aware variational Trans-
former architecture, not only generates chords from mel-
odies but also captures the broader musical context and 
structure.

It is important to note that the strategy adopted by 
STHarm and VTHarm, which generates two chords per 
bar, has its limitations; they are only applicable to pieces 
in 4/4 time. Specifically, out of the 515 valid pieces in the 
validation set, only 311 are in 4/4 time. This implies that 
their comparison with other models might not necessar-
ily be apple-to-apple.

We evaluated our system in various settings to deter-
mine the effectiveness of controllable harmonic density 
in melody harmonization. The proposed system, referred 
to as AH-Ŵ , consists of AutoHarmonizer set at differ-
ent Ŵ values ranging from 0.5 to 0.9. Through our anal-
ysis, we sought to establish a deeper understanding of 
the relationship between harmonic density and melody 
harmonization.

4.2 � Metrics
Our study evaluated the performance of AutoHarmo-
nizer using a variety of metrics. These metrics included 
Accuracy (ACC), which measured the proportion of 
matching frames between the generated and true chord 
progressions. We also utilized six metrics proposed in a 
previous study [13] that have become widely used in the 
literature [12, 22] for assessing chord progression and 
melody/chord harmonicity. By utilizing these metrics, 
we were able to thoroughly evaluate the performance of 
AutoHarmonizer.

1  https://​github.​com/​shiehn/​chord-​melody-​datas​et.

https://github.com/shiehn/chord-melody-dataset
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•	 Chord Coverage (CC): the number of chord types in 
a piece of music. This value serves as an indicator 
of the richness and variety of chord progressions 
in the music, with higher CC values indicating a 
greater number of distinct chord types being used.

•	 Chord Histogram Entropy (CHE): creates a his-
togram of chord occurrences based on a chord 
sequence: 

 where pk is the frequency of the kth chord occur-
rence. The higher the value of CHE, the greater the 
uncertainty and the variety of chords.

•	 Chord Tonal Distance (CTD): the average value of 
the tonal distance [29] computed between every 
pair of adjacent chords in a given chord sequence. 
It involves three steps: (1) the Pitch Class Pro-
file (PCP) features of both chords are computed; 
(2) these features are then projected onto a six-
dimensional tonal space; (3) the Euclidean distance 
between the two six-dimensional feature vectors is 
calculated, resulting in a tonal distance value. The 
lower the value of CTD, the smoother the chord 
progression.

•	 Chord Tone to non-Chord Tone Ratio (CTnCTR): cal-
culates the ratio of the number of the chord tones 
( nc ) and proper non-chord tones ( np ), to the number 
of the non-chord tones ( nn ): 

 The concept of chord tones refers to melody notes 
whose pitch class belongs to the current chord, spe-
cifically, one of the three pitch classes that constitute 
a triad for the corresponding half bar. Melody notes 
that do not fall into this category are considered non-
chord tones. Among the non-chord tones, a subset 
of notes that are two semitones away from the notes 
immediately following them is referred to as proper 
non-chord tones. CTnCTR equals one when there 
are no non-chord tones at all, or all non-chord tones 
are proper.

•	 Pitch Consonance Score (PCS): based on the musi-
cal interval between the pitch of the melody note 
and the chord notes, assuming that the pitch of the 
melody notes is always higher, which is the case 
in our system. Specifically, it assigns a score of 1 
to consonant intervals, including unison, major/
minor 3rd, perfect 5th, and major/minor 6th. A 
perfect 4th receives a score of 0, while other inter-

(2)CHE = −

CC
∑

k=1

pk · logpk ,

(3)CTnCTR =
nc + np

nc + nn
,

vals are considered dissonant and receive a score 
of − 1. To compute PCS for a pair of melody and 
chord sequences, these consonance scores are 
averaged across 16th-note windows, excluding rest 
periods.

•	 Melody-Chord Tonal Distance (MCTD): represents 
a melody note using a PCP feature vector, which is 
essentially a one-hot vector. Next, it compares the 
PCP of this vector against the PCP of a chord label 
in a 6-D tonal space [29]. The resulting measure 
provides an estimate of the closeness between the 
melody note and the chord label. To obtain a com-
prehensive measure of the tonal distance between 
a melody sequence and its corresponding chord 
labels, it calculates the average of the tonal distance 
between every melody note and the correspond-
ing chord label across the melody sequence. It also 
weights each distance by the duration of the corre-
sponding melody note.

In light of the fact that the previously mentioned met-
rics do not consider the measurement of harmonic 
rhythm, we developed an additional set of three met-
rics, as outlined below.

•	 Harmonic Rhythm Coverage (HRC): similar to CC, 
but it is computed specifically for harmonic rhythm 
types. A higher HRC value indicates the use of a 
greater number of unique harmonic rhythm types.

•	 Harmonic Rhythm Histogram Entropy (HR-HE): 
same as CHE, but calculates the histogram of har-
monic rhythm: 

 where pu is the frequency of the uth harmonic 
rhythm. The HRHE value reflects the uncertainty and 
variety of harmonic rhythms in the music. A higher 
HRHE value indicates greater variation and uncer-
tainty in the harmonic rhythms.

•	 Chord Beat Strength (CBS): chord placements can 
be assessed by their average beat strength, which 
is scored on a scale ranging from 0 (non-beat) to 3 
(strong beat), based on the beat sequence. The beat 
sequence determines the recurring pulse of a musi-
cal composition and is used to evaluate the place-
ment of chords in relation to the underlying beat. 
A smaller value of the CBS metric indicates that 
more chords are positioned on non-strong beats, 
while a higher CBS value indicates the opposite. 
Therefore, CBS provides a quantitative measure 

(4)HRHE = −

HRC
∑

u=1

pu · logpu,
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of the degree to which chords are aligned with the 
underlying beat.

4.3 � Quantitative evaluations
Table  1 presents the findings of this study, which can 
serve as a foundation for further analysis. It is crucial to 
note, however, that the metrics employed in this study 
are not meant to provide an all-encompassing evalua-
tion of chord progression quality, as such assessments 
are inherently intricate and subjective [13]. Therefore, 
although the results presented in Table  1 can be used 
for comparison purposes, they should not be viewed as 
definitive indicators of chord progression quality. It is 
imperative to acknowledge these limitations when inter-
preting the findings of this study.

The results of ACC demonstrate that AutoHarmo-
nizer consistently surpassed CGSM, VTHarm, and 
STHarm across all values of Ŵ . One might initially con-
clude that without incorporating less frequent chords, an 
over-reliance on prevalent triads could fail to effectively 
encapsulate the subtleties of human-composed musical 
compositions. However, it’s crucial to note that the com-
paratively lower ACC of VTHarm and STHarm may stem 
from disparities in their training data compared to the 
other models. Furthermore, we found that an increase in 
Ŵ was associated with a decline in accuracy. This observa-
tion indicates that the increase in the frequency of chord 
transitions leads to a greater deviation from actual chord 
progressions. While our metrics are single-faceted and 
may not capture the entirety of what makes a composi-
tion human-like, they do emphasize the potential benefit 
of including a variety of chord progressions in generation.

The chord progression metrics, CC, CHE, and CTD, 
serve as essential tools for evaluating both ground truth 
and model-generated chord progressions. Ground truth 
show low CTD, high CC, and CHE, indicating inher-
ent smoothness and diversity. Among model-generated 

progressions, STHarm and VTHarm closely aligns with 
ground truth for CC and CHE. However, its considerably 
lower CTD is a result of frequently allocating identical 
chords within bars, leading to an “pseudo-smoothness.” 
Unlike VTHarm, the data representation of AH prevents 
consecutive identical chords, making AH-0.9’s CTD 
closely resemble the ground truth. Meanwhile, CGSM 
offers the smoothest progressions with the lowest CTD 
but sacrifices diversity, evidenced by its low CC and 
CHE. This highlights the trade-off between progression 
smoothness and diversity.

The results of melody/chord harmonicity indicate that 
the actual musical compositions exhibit a greater preva-
lence of non-chord tones (the lowest CTnCTR), result-
ing in intervals that are more dissonant (the lowest PCS 
and highest MCTD) compared to those produced by the 
model. Notably, as the value of Ŵ increased, the Auto-
Harmonizer utilized more non-chord tones while also 
forming more consonant intervals with the melody notes, 
resulting in decreased MCTD and increased PCS, sug-
gesting a tendency towards consonance. In addition, both 
STHarm and VTHarm showed low CTnCTR and PCS 
values, with high MCTD, indicating a more pronounced 
deviation from the ground truth. These findings indicate 
that there may be significant differences in harmonic 
structures between human-composed and model-gen-
erated musical compositions (see Fig.  6 for examples of 
melody harmonization by various models).

The harmonic rhythm metrics demonstrate a clear 
contrast between chord progressions generated by the 
CGSM and those produced by AutoHarmonizer and 
ground truth. Specifically, chord progressions generated 
by the CGSM, STHarm, and VTHarm exhibit a fixed 
harmonic rhythm, which is a shared limitation among all 
melody harmonization neural network systems [12, 13]. 
The results suggest that an increase in the parameter Ŵ 
leads to greater rhythmic diversity of chords, although 
the distribution is more concentrated, resulting in 

Table 1  Quantitative evaluations on the validation set (515 tunes). The values closest to the ground truth are bolded

Methods Accuracy Chord progression Melody/chord harmonicity Harmonic rhythm

CC CHE CTD CTnCTR​ PCS MCTD HRC HRHE CBS

Ground truth 1.0000 12.0603 2.0582 1.0653 0.8476 0.4975 1.1525 5.7626 1.1877 2.6024

AH-0.5 0.3087 5.0914 1.3477 1.1864 0.9054 0.5590 1.1252 5.9027 1.3965 2.8904

AH-0.6 0.3142 5.7101 1.4353 1.1769 0.9030 0.5723 1.1076 5.9397 1.3494 2.8668

AH-0.7 0.3111 6.4163 1.5227 1.1584 0.8979 0.5775 1.1011 6.0233 1.2901 2.8310

AH-0.8 0.3088 7.3152 1.6267 1.1289 0.8916 0.5773 1.1016 6.1031 1.2451 2.7758

AH-0.9 0.2890 8.6420 1.7555 1.0911 0.8797 0.5712 1.1038 6.1770 1.1910 2.6572
CGSM 0.2822 5.9883 1.3619 0.7814 0.9077 0.6224 1.0901 1.2354 0.0459 2.9892

STHarm 0.0885 9.8051 1.5723 0.6331 0.6184 0.2604 1.3285 1.0000 0.0000 2.5000

VTHarm 0.0928 13.5588 2.2083 0.8367 0.6063 0.2686 1.3364 1.0000 0.0000 2.5000
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higher values of HRC and lower HRHE. Furthermore, an 
increase in Ŵ leads to the placement of more chords on 
non-strong beats, as demonstrated by the lower values of 
CBS. These findings indicate that the parameter Ŵ plays a 
critical role in generating varied and complex chord pro-
gressions with a non-fixed harmonic rhythm.

Figure  3 depicts the distribution of chord onsets on 
beat strengths. It is evident from the figure that most 
chord onsets occur on strong beats, while a lesser num-
ber of chord onsets occur on medium-weak beats, and 
a small number of chord onsets occur on weak beats. 
Non-beats are seldom used for chord placement. Nota-
bly, CGSM restricts chord progression variety by exclu-
sively positioning chords on strong beats. In a similar 
vein, both STHarm and VTHarm distribute their chords 
evenly between strong and medium-weak beats, indicat-
ing a potential monotony in their transitions. In contrast, 

by increasing the Ŵ parameter in AutoHarmonizer, there 
is a shift towards placing chord onsets on non-strong 
beats. Among these, the AH-0.9 model comes closest to 
mirroring the ground truth’s chord onset distribution.

The distribution of scale degrees in chord progressions 
generated by AutoHarmonizer and baselines is depicted 
in Fig. 4. The results highlight a consistent pattern across 
all models, with the majority of chords being tonic, fol-
lowed by subdominant and dominant chords. However, 
it is essential to note that some models, such as CGSM, 
tend to overuse tonic chords compared to the ground 
truth. In contrast, STHarm and VTHarm exhibit a dis-
tribution remarkably close to the ground truth. Notably, 
STHarm’s utilization of scale degrees is even more evenly 
spread than that of the ground truth, indicating a diverse 
array of generated chord progressions. Interestingly, 
when we increase the parameter Ŵ , there is a noticeable 

Fig. 3  Distribution of chord onsets on beat strengths, showing the proportion of chord onsets occurring on strong, medium-weak, and weak beats, 
and non-beats

Fig. 4  Distribution of scale degrees in chord progressions generated by AutoHarmonizer and baselines, compared to chord progressions 
from ground truth
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decrease in the usage of tonic chords, accompanied by a 
shift towards a more prominent presence of supertonic 
and submediant chords. This adjustment results in chord 
progressions that closely resemble the ground truth. By 
tuning the value of Ŵ , AutoHarmonizer can achieve a 
more balanced distribution across all chord degrees, 
thereby enhancing the diversity and richness of the gen-
erated chord progressions.

4.4 � Discrimination test
This study recruited 83 participants with varying cultural 
and demographic backgrounds to engage in a discrimina-
tion task that aimed to differentiate between musical chords 
generated by humans and those created by machines.

The study categorized the subjects into three groups 
based on their level of music knowledge: (A) music fac-
ulty and students consisting of 33 subjects; (B) non-music 
majors with an understanding of harmony comprising 25 
subjects; and (C) individuals with no knowledge of har-
mony but who listen to music often or occasionally, con-
sisting of 25 subjects. The study selected a total of 20 tunes 
randomly from the validation set. Each tune had seven dif-
ferent versions, which included AH-0.5, AH-0.7, AH-0.9, 
CGSM, STHarm, VTHarm, and the ground truth.

It is important to note that the 20 tunes used for the 
listening test were randomly selected from the validation 
set. This choice was made because our dataset does not 
explicitly has a dedicated test set. We believe that this 
selection does not compromise the fairness of our experi-
ments. Our primary focus is on comparing the perfor-
mance of different models, rather than tuning the models.

Participants were presented with both melody-only 
versions and the ones with chords, and their task was to 
determine whether the chords were produced by humans 
or machines. The test consisted of questions that had an 
equal chance of containing chords generated by either 
humans (i.e., the ground truth) or machines. The primary 
objective of this study was to assess the capacity of the 
machine-generated chords to deceive human listeners into 

believing they were created by humans, thereby determin-
ing the model’s overall trustworthiness. The study design 
was also intended to provide insight into the ability of indi-
viduals from different backgrounds to distinguish between 
human and machine-generated musical content.

The results of the discrimination test, depicted in Fig.  5, 
demonstrate that AutoHarmonizer surpassed CGSM and 
STHarm in all evaluated configurations. Professional sub-
jects possessing musical backgrounds A and B consistently 
identified the chord progressions generated by CGSM as 
machine-generated and nearly all those by STHarm in the 
same manner. This observation aligns with the limitations of 
CGSM, which are characterized by a restricted vocabulary 
size (24 types of chords only) and a fixed harmonic rhythm. 
The fixed harmonic rhythm often leads to repetitive chord 
progressions, which, in turn, can be perceived as less con-
vincing by listeners. Similarly, STHarm utilizes a constant 
harmonic rhythm, echoing these shortcomings. VTHarm 
preserved this harmonic rhythm setup, but incorporated a 
key-aware context encoder, enhancing its output. Conversely, 
chord progressions produced by AH-0.5 were viewed as most 
akin to human-composed ones, based on subject feedback. 
Intriguingly, half the subjects mistook the authentic human 
compositions as machine-generated, highlighting a deep-
rooted skepticism towards human-composed chord progres-
sions. Furthermore, we noted that, in contrast to professionals 
(i.e., subjects in group A and B), individuals in group C were 
more inclined to classify progressions with fixed harmonic 
rhythms (i.e., CGSM, VTHarm, and STHarm) as human-
composed. We speculate that they might deem progressions 
with a constant harmonic rhythm as more familiar or accept-
able, especially since many popular music pieces employ 
recurrent and predictable chord patterns.

5 � Melody harmonization examples
Figure 6 showcases several instances of melody harmoni-
zation, which aims to exhibit the effectiveness of diverse 
techniques utilized in harmonizing an identical 8-bar 

Fig. 5  Results of the discrimination test for each model and expertise level. Group A: Music faculty and students; Group B: Non-music majors 
with harmony knowledge; Group C: Individuals without harmony knowledge but frequent music listeners. The term “vote” refers to the participants’ 
tendency to categorize a given set of chords as either human-generated or machine-generated
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melody that features a 4/4 time signature and is based in 
the key of F.

The progression that is manually created by humans 
shows a distinct periodicity, wherein each cycle is com-
prised of four chords, namely Dm-Bb-C-Dm7, with Dm 
functioning as the tonic chord. The progression conforms 
to a particular tonal structure, emphasizing the signifi-
cant role played by the tonic chord in shaping the overall 
musical structure. The periodicity of the chord progres-
sion, with its repetition of chord progressions, provides 
a sense of predictability and familiarity that contributes 
to its aesthetic appeal. Furthermore, the use of the tonic 
chord creates a sense of resolution and stability, which is 
a common characteristic of tonal music. Thus, the chord 
progression crafted by humans showcases the creative 
potential of human composers in shaping musical struc-
tures through the careful selection and arrangement of 
chords.

The chord progression produced by AH-0.5 exhib-
ited in this output is characterized by a significantly 
sparse harmonic rhythm, which is composed of only five 
chords in total. This chord progression follows a consist-
ent pattern of F-C7-F in each cycle. The tonic chord is 
represented by F, indicating that the key of this chord 
progression is in F-major, which is the relative key of the 
ground truth. It is worth noting that for this melody, both 

D-minor and F-major chord progressions are considered 
acceptable according to principles in music theory.

In music theory, chord progressions are often evaluated 
based on their harmonic function and tonal relationships 
within a key. While the ground truth chord progression 
is in D minor, which is the relative minor key of F major, 
the use of the F major chord progression generated by 
AH-0.5 is considered acceptable because it represents 
the relative major key of D minor. The relative major 
and minor keys share many harmonically related chords, 
making both progressions suitable for harmonizing the 
same melody.

It can be observed that increasing the parameter Ŵ to 
0.9 resulted in an increase in both the density and variety 
of chord progressions generated by AutoHarmonizer. The 
generated chord progressions demonstrated two distinct 
types of cycles: F-C7-F, which consists of a tonic chord 
followed by a dominant chord and was also observed in 
the one generated by AH-0.5, and F-Dm-Bb-F, which 
includes a subdominant and supertonic chord, adding 
further movement to the progression. The increase in 
density and variety of chord progressions suggests that 
adjusting the Ŵ parameter has a significant impact on the 
output of AutoHarmonizer and can be a valuable tool for 
musicians and composers seeking to explore different 
chord progressions.

Fig. 6  Examples of melody harmonization. They are generated by various models from the same melody
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The chord progression generated by CGSM differs 
from the others, as it employs only triads, given that this 
system’s vocabulary does not include other chord types. 
Notably, the first bar is a pick-up bar (the bar before the 
first full bar), yet CGSM inserts a Gm chord in this posi-
tion. This choice is unconventional since Gm does not 
correspond to a tonic, dominant, or subdominant chord. 
This is followed by C-F repeatedly, suggesting a simple 
alternation between dominant and tonic. The absence of 
other chord variations limits the progression’s expressive-
ness and dynamic movement.

On the other hand, chord progressions generated by 
STHarm display a more diverse set of chord choices, 
extending beyond basic triads. The presence of F, Bb, and 
C chords indicate a familiarity with the key of F major 
and its respective harmonic nuances. Furthermore, the 
progression’s inclusion of the Am chord adds an interest-
ing color to the harmony, introducing a bit more diversity 
to the harmonic landscape. However, while its choices 
are more varied than those of CGSM, STHarm’s pro-
gression sometimes lacks the structural cohesion and 
clarity seen in the human-composed and AH-generated 
harmonizations.

VTHarm, compared to STHarm, presents more transi-
tions, specifically with the shift from F to C, then intro-
ducing Bb and then progressing to Dm7, eventually 
transitioning through G7 before resolving to F. These tran-
sitions indicate a more complex harmonic understanding 
than STHarm and certainly CGSM. However, its outputs 
occasionally diverge from traditional harmonic conven-
tions, resulting in progressions that might be viewed as 
less cohesive by those familiar with music theory.

By showcasing these examples, we emphasize the nuances 
of each method, providing a comprehensive understanding 
of the strengths and weaknesses of different harmonization 
techniques. Additionally, we suggest that those interested 
can access and evaluate more generations of machine-gen-
erated chord progressions on GitHub2.

6 � Conclusions
AutoHarmonizer is a novel system for melody harmoni-
zation that aims to provide greater control over harmonic 
density and the flexibility of harmonic rhythm. The sys-
tem has the ability to generate chord progressions with 
varying harmonic densities, thereby enabling users to 
create desirable chord progressions.

In order to evaluate the performance of AutoHar-
monizer, a series of experiments were conducted. The 
results of these experiments demonstrate the effective-
ness of the system in producing chord progressions 

with varying harmonic rhythms. The system also ena-
bles users to control the harmonic rhythm, thereby 
providing greater flexibility in creating unique chord 
progressions.

Despite the promising results, the evaluation of Auto-
Harmonizer using both quantitative metrics and a dis-
crimination test suggests that there is still room for 
improvement in the quality of chord progressions gener-
ated by the system. Further work is required to address 
these limitations and enhance the overall performance of 
the system.
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