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Abstract

Automatic diagnosis and monitoring of Alzheimer’s disease can have a significant impact on society as well as the
well-being of patients. The part of the brain cortex that processes language abilities is one of the earliest parts to be
affected by the disease. Therefore, detection of Alzheimer’s disease using speech-based features is gaining increasing
attention. Here, we investigated an extensive set of features based on speech prosody as well as linguistic features
derived from transcriptions of Turkish conversations with subjects with and without Alzheimer’s disease. Unlike most
standardized tests that focus on memory recall or structured conversations, spontaneous unstructured conversations
are conducted with the subjects in informal settings. Age-, education-, and gender-controlled experiments are
performed to eliminate the effects of those three variables. Experimental results show that the proposed features
extracted from the speech signal can be used to discriminate between the control group and the patients with
Alzheimer’s disease. Prosodic features performed significantly better than the linguistic features. Classification
accuracy over 80% was obtained with three of the prosodic features, but experiments with feature fusion did not
further improve the classification performance.
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1 Introduction
As the worldwide elderly population increases, the
incidence of Alzheimer’s disease is becoming more
widespread. It is estimated that 7% of the world’s pop-
ulation over 65 years old has Alzheimer’s or a related
dementia [1]. Moreover, only one in four patients has been
diagnosed [1]. Because there is no treatment to cure the
disease, years of healthcare costs are becoming a signifi-
cant economic burden on governments as well as patients
and their families. The global cost of Alzheimer’s and
dementia is estimated to be $605 billion, which is equiva-
lent to 1% of the entire world’s gross domestic product [2].
The problem intensifies each year with the aging world
population. Thus, simplifying healthcare processes and
reducing costs through the use of automated systems can
make a significant socio-economic impact.
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Diagnosis of the disease is costly and difficult. Moreover,
even if the disease is diagnosed correctly, monitoring the
progression of the disease by a clinician over time further
increases the cost. Thus, patients cannot visit clinicians
frequently and what happens between the visits is largely
unknown to clinicians.
Typically, clinicians use tests such as Mini-Mental State

Examination (MMSE) and linguistic memory tests [3].
Linguistic memory tests are based on the recall rates of
word lists and narratives, and they are typically more
effective than the MMSE. Moreover, individual’s medi-
cal and family histories are used, along with MRI scans
to test for other brain-related conditions, such as stroke.
Biomarkers showing the level of beta-amyloid accumula-
tion in the brain or the neurons that are injured or actually
degenerating can also be used in combination with the
other tests [4].
None of those typical practices consider the speech sig-

nal in diagnosing the disease even though the part of the
brain cortex that processes language abilities is one of the
earliest parts to be affected by the disease [5]. For example,
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narrative retelling ability is found to be strongly correlated
with the disease [6]. Similarly, linguistic features derived
from the transcription of a narrative retelling task were
found to be significantly correlated with primary progres-
sive aphasia, which is a type of dementia [7]. Similarly,
analysis of the speech signal has been shown to be use-
ful for Alzheimer’s detection in [8,9]. However, in those
works, the speech signal is recorded during the adminis-
tration of standard clinical tests. Moreover, most of the
focus is on the high-level structural processing of spoken
language for a specific language. For example, in [10], fea-
tures such as moderate word finding difficulty, reduced
phrase length, and reduced comprehension are manu-
ally tagged by humans and shown to contain information
complementary to standardized tests. Correlation of lin-
guistic capability with Alzheimer’s disease was also shown
in [11]. Speech-based features are investigated in [5] to
detect fronto-temporal lobar degeneration with promis-
ing results. Speech is recorded in a semi-structured inter-
view setting in [5]. The frequency and ratio of syntactic
categories such as pronouns and adverbs are found to be
markers of the disease.
In addition to natural language processing (NLP) fea-

tures, speech acoustics have also been studied and
reported in the literature. A limited study with one patient
with a focus on the prosodic features of speech such
as stress, intonation, and emotion is reported in [12].
Problems of speech production that are related to cen-
tral nervous system problems are also noted in [13]. In
[14], dysfluency cycles in speech are measured using the
length and frequency of hesitations in speech. Subjects
with dementia were found to have patterns different from
those of control subjects.
Here, we focus on extracting an extensive set of

acoustic and linguistic features from spoken language
to detect Alzheimer’s disease. Because the patients with
Alzheimer’s are usually not able to take automated tests
or to carry on a structured conversation, data collection is
done during unstructured conversational speech. In this
way, a subject’s speech can be recorded in the most natu-
ral and effortless way by a person with minimal technical
or clinical skills. Semi-structured conversational data has
been investigated in [15,16], but only linguistic features
are analyzed, and speech features are not considered. Sim-
ilarly, conversational data has been investigated for limited
sets of linguistic and speech dysfluency features by [5,17],
who measured the correlation of those features with the
disease and attempt to use the features for diagnosis.
In our work, we focused on evaluating the effective-

ness of a large set of features for detecting Alzheimer’s
disease in unstructured conversations. The data was col-
lected in Turkish, which has not been studied to the extent
of languages such as English. We propose 20 prosodic
features extracted automatically from the recordings and

18 linguistic features derived from the transcriptions of
patients and control subjects. We have investigated the
predictive power of each feature as well as combination
of features using support vector machines (SVM), near-
est neighbor (NN) classifiers, naive Bayesian classifiers,
and classification trees (CTree). Our results indicate that
some of the investigated features are strong predictors of
the disease with high statistical significance independent
of the age, education, and gender of the subjects. Prosodic
features were more successful than the linguistic features.
In fact, only two of the linguistic features were found to
be significant. Accuracy of greater than 80% was obtained
with three of the prosodic features. Silence ratio, which is
defined as the rate of silences in speech regardless of their
durations, was found to be themost useful feature. Feature
fusion did not improve the performance, which indicates
that the features are not complementary to one another.

2 Linguistic features
A list of the linguistic features that are extracted from
the transcriptions of the recorded conversations with the
test subjects is shown in Table 1. The features are geared
towards detecting problems with the flow of the conversa-
tion and measuring how well the subject can understand
the question or carry on the conversation without get-
ting confused. Recordings are manually transcribed. Each
recording is first split into conversation turns. Then, the
turns where the subjects speak are further split into utter-
ances that are segments where the subjects talk without
interruption by the interviewer and without long silences.
The splitting mechanism is shown in Figure 1 where a
voice activity detector is used for detecting silences. Only
the turns of subjects are used in feature extraction.

2.1 Hesitation and confusion features
During recording, we found that patients tend to hesi-
tate more, forget what they were talking about, and have
a harder time finding the right words or remembering
details about their pasts. They also sometimes get con-
fused about why they cannot remember the details or
forget the context of the conversation. Those observations
led us to propose features that will be able to capture those
patterns in transcriptions.

2.1.1 Question ratio
Patients are more likely to forget details in the middle of
conversation, to not understand the questions, or to for-
get the context of the question. In those cases, they tend to
ask the interviewer to repeat the question or they get con-
fused, talk to themselves, and ask further questions about
the details. The question words such as ‘which,’ ‘what,’ etc.
are tagged automatically in each conversation. The full list
of question tags that were used here is shown in Table 2.
The question ratio of a subject is computed by dividing
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Table 1 Lists of linguistic and prosodic features and their
IDs

Category ID Features

Linguistic features Hesitation and 1.1 Question ratio
puzzlement features

1.2 Filler ratio

1.3 Incomplete sentence
ratio

POS-based features 2.1 Verb freq.

2.2 Noun freq.

2.3 Pronoun freq.

2.4 Adverb freq.

2.5 Adjective freq.

2.6 Particle freq.

2.7 Conjunction freq.

2.8 Pronoun-to-noun
ratio

Intelligibility 3 Unintelligible word ratio

Complexity features 4.1 Standardized word
entropy

4.2 Suffix ratio

4.3 Number ratio

4.4 Brunet’s index

4.5 Honore’s statistic

4.6 Type-token ratio

Prosodic features Voice activity-related 5.1 Response time
features

5.2 Response length

5.3 Silence ratio

5.4 Silence to utt. ratio

5.5 Long silence ratio

5.6 Avg. silence count

5.7 Silence rate

5.8 Cont. speech rate

5.9 Avg. cont. word count

Articulation-related 6.1 Avg. abs. delta energy
features

6.2 Dev. of abs. delta energy

6.3 Avg. abs. delta pitch

6.4 Dev. of abs. delta pitch

6.5.1 Avg. abs. delta formant 1

6.5.2 Avg. abs. delta formant 2

6.5.3 Avg. abs. delta formant 3

6.5.4 Avg. abs. delta formant 4

6.6 Voicing ratio

Rate of speech-related 7.1 Phoneme rate
features

7.2 Word rate

the total number of question words by the number of
utterances spoken by the subject.

2.1.2 Filler ratio
Filler sounds such as ‘ahm’ and ‘ehm’ are used by people in
spoken language when they think about what to say next.
We hypothesize that they may be used more frequently by
the patients because of slow thinking and memory recall
processes. Patients tend to forget what they are talking
about and to use fillers more often than the control sub-
jects. The filler ratio is computed by dividing the total
number of filler words by the total number of utterances
spoken by the subject.

2.1.3 Incomplete sentence ratio
One of our observations of the patients is their inability to
complete sentences. They seem to either forget what they
were going to say or to completely change the context and
start talking about a different topic. Incomplete sentences
are manually labeled for each conversation. To compute
this feature, the ratio of incomplete sentences to the total
number of the sentences is calculated.

2.2 POS-based features
Part of speech (POS) tags can be used to extract markers
for detecting the disease. For example, frequent adjec-
tives can indicate more colorful and descriptive use of
language, while frequent adverbs can indicate the ability
to relate different utterances to each other. The frequency
of each POS tag can also be a useful identifier of patients
with Alzheimer’s disease.
POS tags are added automatically to each word using

a Turkish stemmer [18]. In cases where a word can have
multiple alternative POS tags, equal weights are given to
all possibilities. For instance, if a word can be either a
noun or an adverb, depending on the sentence, that word
is counted as half adverb and half noun in computation.
The following POS tag frequencies are used as features:

• Verb frequency
• Noun frequency
• Pronoun frequency
• Adverb frequency
• Adjective frequency
• Particle frequency
• Conjunction frequency
• Pronoun-to-noun ratio

Frequency of a POS tag is computed by dividing the
total number of words with that tag by the total number
of words spoken by the subject in the recording. Pronoun-
to-noun ratio is the ratio of the total number of pronouns
to the total number of nouns.
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Figure 1 Conversation turns between a patient and the interviewer are shown. Each conversation turn contains one or more utterances.
Voice activity detector (VAD) is used to detect the long and short silences.

2.3 Unintelligible word ratio
During the conversations, some of the words spoken by
the patients were unintelligible. These are mostly because
patients could not produce the words correctly, they
mumbled, or they were thinking while talking, which
reduced intelligibility. Unintelligible word ratio is the
ratio of unintelligible words to all words spoken by the
subject.
Annotation of unintelligible words was done manu-

ally by three listeners for each conversation. A word was
marked as unintelligible only when at least two of the
three listeners could not understand it.

2.4 Complexity features
2.4.1 Standardized word entropy
One of the earliest parts of the brain to be damaged by
Alzheimer’s disease is the part of the brain that deals with

Table 2 Question tags that were used in computing the
question ratio

Word Translation

Efendim Excuse me

Hangi[si] Which [one]

Hani So where’s/Why ... not .../You remember

Kaç[ı] How many/much [of]

Kim[in] Who[se]

M[i|ı|u|ü] Question suffix

Nasıl How

Ne[suffix+] What

Nere[suffix+] Where

Niye Why

Some of the question tags occur with one or more additional suffixes. Those are
indicated with [.] symbol.

language ability [5]. We hypothesize that this may cause
a degradation in the variety of words and word combina-
tions that a patient uses. Standardized word entropy, i.e.,
word entropy divided by the log of the total word count,
is used to model this phenomenon. Because the aim is to
compute the variety of word choice, stemming is done,
and only the stems of the words are considered.

2.4.2 Suffix ratio
The standardized word entropy feature focuses on the
variety of the stem words while ignoring the suffixes.
However, suffixes can also be strong indicators of the com-
plexity of a sentence. Turkish, in particular, has a rich and
complex morphological structure [19]. Hundreds of dif-
ferent words can be generated from the same stem word
by appending suffixes to it. Thus, we investigated whether
the patients tend to construct simpler words than the con-
trol subjects by analyzing the suffixes they used. The suffix
ratio of a subject is calculated by dividing the total num-
ber of suffixes by the total number of words spoken by the
subject.

2.4.3 Number ratio
During conversations, subjects give details about their
birth dates, how many kids they have, and other numeri-
cal information. Such use of numbers in a sentence can be
a measure of recall ability. The number ratio feature is cal-
culated by dividing the total count of numbers by the total
count of words the subject used in the conversation.

2.4.4 Brunet’s index
Brunet’s index (W ) quantifies lexical richness [20]. It is
calculated as W = NV−0.165 , where N is the total text
length and V is the total vocabulary. Lower values of W
correspond to richer texts. As with standardized word
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entropy, stemming is done on words and only the stems
are considered.

2.4.5 Honore’s statistic
Honore’s statistic [21] is based on the notion that the
larger the number of words used by a speaker that occur
only once, the richer his overall lexicon is. Words spoken
only once (V1) and the total vocabulary used (V ) have
been shown to be linearly associated. Honore’s statistic
generates a lexical richness measure according to R =
100× log(N/(1−V1/V )), whereN is the total text length.
Higher values correspond to a richer vocabulary. As with
standardized word entropy, stemming is done on words
and only the stems are considered.

2.4.6 Type-token ratio
A pattern that we noticed in the recordings of the
Alzheimer’s patients is the frequency of repetitions in con-
versation. Patients tend to forget what they have said and
to repeat it elsewhere in the conversation. The metric that
we used to measure this phenomenon is type-token ratio
[22]. Type-token ratio is defined as the ratio of the number
of unique words to the total number of words. In order to
better assess the repetitions, only the stems of the words
are considered in calculations.

3 Prosodic features
A total of 20 prosodic features were extracted and eval-
uated for detecting Alzheimer’s disease. A list of all
prosodic features used here is shown in Table 1. Descrip-
tions of the prosodic features are given below. All prosodic
feature computations are performed over the locution of
the subject. Locution is the total response period of the
subject which is the sum of all of the subject’s speech
turns. Each speech turn includes utterances, long silences,
and short silences, as shown in Figure 1.

3.1 Voice activity-related features
Silence and speech segments are automatically labeled in
each conversation with a voice activity detector (VAD).
The VAD used here is based on the distribution of the
short-time frame energy of the speech signal. Because
there is both silence and speech in the recordings, the
energy distribution has two modes, both of which can
be modeled with a Gaussian distribution. The bimodal
distribution of silence and speech is trained using the
expectation-maximization (EM) algorithm. The mode
that has a lower mean is used to represent silence, and the
mode that has a higher mean is used to represent speech.
Energy of each short-time speech frame in the recording

is classified as either speech or silence using the likelihood
ratio test (LRT). Because the test treats each frame inde-
pendently, a second processing step is used where silence
and speech segments that were shorter than four frames
are removed.

The transcriptions of recordings were available and
could be used for VAD through forced alignment using an
automatic speech recognition system. However, the VAD
described above worked well andmore sophisticated VAD
techniques were not required.

3.1.1 Response time
When the interviewer asks a question, it often takes some
time before the subject gives a response. It is hypothesized
that this time can be an indicator of the disease since it
is expected to be related to cognitive processes such as
attention and memory. The time it takes the subject to
answer a question is calculated in each segment as the
response time measure.

3.1.2 Response length
Response length is the average length of a subject’s
response in seconds to the interviewer’s question. Begin-
ning and trailing silences are removed.

3.1.3 Silence ratio
The plan-and-execute cycle in speech production was
found to be distinctly different in patients compared to
control subjects as noted in [14]. In our data, we also
observed that patients tend to stop more in the middle
of sentences to think about what to say next. The silence
ratio is computed by dividing the total number of silences
in the whole locution by the total number of words in the
locution. Dividing by the number of words, we reduce the
variability that arises from different speaking rates.

3.1.4 Silence-to-utterance ratio
Silence-to-utterance ratio is the ratio of the total number
of silences to the total number of utterances. Similar to
silence ratio, it is a measure of the hesitation rate of the
subject.

3.1.5 Long silence ratio
Patients sometimes pause for a long time while answer-
ing a question. They do not use fillers during these long
periods, and the interviewers did not interrupt these
periods of silence. We hypothesized that these pauses
may correspond to moments when the subject is retriev-
ing information which is expected to be longer for the
Alzheimer’s patients. Similarly, confusion may also lead
to long silences. The rate of such long hesitation events,
defined as silences longer than approximately one second,
is used to detect the disease. This feature is computed as
the ratio of the total count of long silences to the total
number of words.

3.1.6 Average silence count
This feature specifies the average number of silences pro-
duced by a speaker in one second of speech. It is calculated
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by dividing the total number of silences by the duration of
the locution.

3.1.7 Silence rate
The silence rate measures the silence as a proportion of
the whole locution. It is computed by dividing the total
duration of all silence segments by the duration of the
locution.

3.1.8 Continuous speech rate
This feature measures how long the subject speaks until
the next long silence, which is considered to be a thinking
or recalling state. It is defined as the average duration of
continuous speech segments over the whole locution.

3.1.9 Average continuous word count
As mentioned above, the thinking process longer for
patients than for the control subjects. The silence rate
features discussed above try to exploit this long thinking
process. Another way tomeasure it is to compute the aver-
age number of consecutive words that are spoken without
intervening silences. First, the number of words for each
continuous segment is computed. Then, the mean of these
counts is used as the feature.

3.2 Articulation-related features
The voice activity-related features discussed above are
related to cognitive thought processes. However, it is also
important to measure how the subject uses his or her
voice articulations during speech. For example, if the sub-
ject becomes emotional, significant changes in the fun-
damental frequency (pitch) can be expected. Similarly,
changes in the resonant frequencies (formants) of speech
can be a strong indicator of the subject’s health. If the
formants do not change fast enough or are not distinct
enough, sounds may become harder for listeners to iden-
tify, leading to the perception of mumbling. In order to
see the impact of these effects on classification of the dis-
ease, pitch and formant trajectories are extracted, and the
following features are derived over the whole locution.

3.2.1 Average absolute delta energy
Energy variations can convey information about the
mood of the subject. Changing energy significantly dur-
ing speech may indicate a conscious effort to stress words
that are semantically important or a change in mood
related to the content of the speech. The absolute value
of each frame-to-frame energy change is measured, and
the average of these changes over the whole locution is
computed.

3.2.2 Deviation of absolute delta energy
In addition to changes in energy, changes in the delta
energy, which is the acceleration of energy, can be used.
The standard deviation of the average absolute delta

energy is used to further investigate the possible impacts
of the disease on the energy change rate.

3.2.3 Average absolute delta pitch
The average of the absolute delta pitch shows the rate of
variations in pitch. This feature is highly correlated with
the emotions carried through the speech signal.

3.2.4 Deviation of absolute delta pitch
The standard deviation of the absolute delta pitch is also
used as a feature to further analyze the possible impacts
of the disease on the pitch change rate. A monotonic
increase or decrease in the pitch may simply be related
to routine changes in sentence structure. However, accel-
eration of pitch, measured with the standard deviation of
absolute delta pitch, can capture unusual pitch events in
speech.

3.2.5 Average absolute delta formants
The average of the absolute delta formant frequencies
indicates the rate of change in the formant features. For-
mants are related to the positions of the vocal organs
such as the tongue and lips. Reduction of control over
these organs related to damage in the brain caused by
Alzheimer’s disease can create speech impairments such
as mumbling. In this case, formants do not change quickly
and speech becomes less intelligible [23]. Changes in the
first four formants are used as features in this research.

3.2.6 Voicing ratio
Another speech impairment is the loss of voicing in
speech. In this case, the subject loses the ability to con-
trol the vibrations of the vocal cords, which results in
breathy and noisy speech. The ratio of the total duration
of voiced speech to the total duration of speech in the
locution is used to detect any potential impairment in the
vocal cords.

3.3 Rate of speech-related features
3.3.1 Phoneme rate
A basic identifier of rate of speech is the average number
of phonemes spoken per second. The phoneme rate of a
subject is computed by dividing the number of phonemes
by the duration of the locution.

3.3.2 Word rate
Similar to phoneme rate, word rate is used to measure the
rate of speech at the word level. Word rate is computed
by dividing the number of words by the duration of the
locution.

4 Experiments
Conversational speech recordings of 32 patients and 51
age and education-matched control subjects were col-
lected and manually transcribed. Recordings from four
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patients were neglected because they were either unintel-
ligible for the most part or they did not talk much. Thus,
recordings from a total of 28 patients were used in exper-
iments. The Alzheimer’s patients and the control subjects
were recruited from the same healthcare facility, but the
control subjects were receiving treatment for injuries or
illnesses other than Alzheimer’s disease. Gender, age, and
education details of the subjects are shown in Table 3. The
age range is between 60 and 90 in both control subjects
and patients.
Unstructured conversations were carried with the sub-

jects where questions were asked depending on the flow
of the conversation. Thus, different topics and different
questions were used tomake the subjects feel comfortable.
The transcriptions were produced by one person and then
reviewed by another person. The transcribers and the sub-
jects were native Turkish speakers. In order to annotate
unintelligible words, a third person also listened to the
recordings.
The data was collected at elderly healthcare facilities

in Istanbul. For each subject, approximately 10 min of
conversation was recorded using a high-quality micro-
phone. The recording was then manually segmented
into speech turns between the interviewer and subject.
In each speech turn, only the subject or the inter-
viewer speaks. Segments of speech where both the sub-
ject and the interviewer talk were not used in the
analysis.
After linguistic and prosodic features are extracted,

SVM, NN classifiers, naive Bayesian classifiers, and CTree
are used for classification. A linear Kernel is used for the
SVM. For the NN classifier, Euclidean distance is used.
For the CTree, nodes are split to minimize within-node
impurity. Impure nodes that contain samples both from
patients and control subjects are split only if they have
more than nine samples.
There is more data available for the control subjects

than for the Alzheimer’s patients because the number of
subjects that were in the healthcare facilities and willing
to provide data was larger. Even though equal amounts
of data from both groups could be used in the experi-
ments to have a balance, all of the available data was used
with special care while training the classifiers as discussed
below.

Table 3 Gender, age, and years of education for the
patient and control subjects

AD (n = 28) Control (n = 51)

Male/Female 18/10 31/20

Age 75 (6) 75.9 (6.4)

Education 11.6 (4.9) 11.4 (6)

Age and education data are presented in mean (standard deviation) format.

Data imbalance can become a problem for the SVM,
NN, and decision tree algorithms, where the data points
are used directly, as opposed to the naive Bayes approach,
where the distribution of the data is used. For the NN,
SVM, and decision tree classifiers, a random subsampling
approach is used, in which a subset of the control subjects
is randomly selected such that there is an equal number of
data points for the control subjects and the patients. For
each test case, the subsampling procedure is repeated ten
times, and the average performance is reported.
In the first phase of testing, each feature is tested sep-

arately to assess the classification power of individual
features. Then, in the second phase, combinations of fea-
tures are used to increase the classification power of the
algorithms. Features are normalized to have zero-mean
and unit variance.
Because there is a limited number of subjects in the data

set, a leave-one-out evaluation strategy is used, in which
one of the subjects is left out and the classifier is trained
with the rest of the subjects and tested on the left-out
subject.

5 Results and discussion
The age, education level, and gender of the subjects
can significantly affect performance in classification tests.
Therefore, initial testing is done to control for the effect of
age, education, and gender on the performance. Only fea-
tures that have significant performance in all three control
tests are reported as significant markers. Significance is
measured using the paired t-test. A given feature may not
have significant performance with all classifiers. In this
case, the feature is reported as significant if it can pass the
significance test with at least one of the classifiers.
Age-, education-, and gender-controlled experimental

results are discussed below. Analysis and discussion of the
features and combination of features with statistically sig-
nificant discriminative power are reported in Section 5.4.

5.1 Age-controlled experiments
The age-controlled linguistic features are shown in
Table 4. All features related to POS tags other than nouns
and pronouns were found to be insignificant with this
control variable. Incomplete sentences and unintelligible
word ratios were found to be age related and not disease
related. Similarly, all features that are related to the com-
plexity of the language also became insignificant when age
was used as a control variable.
The age-controlled prosodic features are shown in

Table 5. The significance of these features was found to
be less related to age compared to the linguistic features.
In particular, formant and voicing features that are related
to articulation were found to be age related and not dis-
ease related. Patients in the older age group had a harder
time controlling their vocal cords and other articulatory
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Table 4 Accuracy (%) of each classifier using the linguistic features in age-controlled experiments

Age between 60 and 75 Age between 76 and 90

(p = 15, c = 25) (p= 13, c = 26)
ID Features SVM Bayes CTree NN p value SVM Bayes CTree NN p value

1.1 Question ratio 70.0 67.5 70.0 60.0 0.011 66.7 35.0 38.5 43.6 0.037

1.2 Filler ratio 52.5 65.0 57.5 47.5 0.058 48.7 38.5 46.2 53.9 0.631

1.3 Incomplete sentence ratio 60.0 57.5 52.5 60.0 0.206 61.6 66.7 59.0 64.1 0.037

2.1 Verb freq. 37.5 62.5 47.5 50.0 0.114 69.2 61.5 53.9 59.0 0.016

2.2 Noun freq. 67.5 65.0 60.0 60.0 0.027 59.0 71.8 53.9 59.0 0.006

2.3 Pronoun freq. 72.5 72.5 65.0 47.5 0.004 69.2 66.7 56.4 59.0 0.016

2.4 Adverb freq. 52.5 62.5 52.5 52.5 0.114 59.0 41.0 38.5 43.6 0.262

2.5 Adjective freq. 57.5 47.5 45.0 42.5 0.343 51.3 43.6 51.3 51.3 0.873

2.6 Particle freq. 52.5 60.0 52.5 55.0 0.206 48.7 61.5 77.0 66.7 0.001

2.7 Conjunction freq. 62.5 62.5 65.0 52.5 0.058 53.9 56.4 56.4 46.2 0.423

2.8 Pronoun-to-noun ratio 70.0 70.0 67.5 62.5 0.011 71.8 66.7 61.5 46.2 0.006

3 Unintelligible word ratio 60.0 62.5 55.0 55.0 0.114 82.1 84.6 84.6 82.1 <0.001

4.1 Standardized word entropy 55.0 65.0 45.0 57.5 0.058 74.4 64.1 59.0 56.4 0.002

4.2 Suffix ratio 45.0 52.5 55.0 60.0 0.206 69.2 74.4 64.1 53.9 0.002

4.3 Number ratio 70.0 67.5 70.0 65.0 0.011 48.7 61.5 51.3 48.7 0.150

4.4 Brunet’s index 62.5 57.5 67.5 65.0 0.027 48.7 59.0 61.5 56.4 0.150

4.5 Honore’s statistic 40.0 45.0 65.0 47.5 0.058 43.6 61.5 61.5 71.8 0.006

4.6 Type-token ratio 47.5 45.0 42.5 45.0 1.000 79.5 79.5 64.1 76.9 <0.001

Number of patients (p) and control subjects (c) in each group is given in parenthesis. Classifiers with significant results are denoted in italics. Features with p values
less than 0.05 are considered significant and are shown in bold. p value of the best classifier is reported for each feature.

Table 5 Accuracy (%) of each classifier using the prosodic features in age-controlled experiments

Age between 60 and 75 Age between 76 and 90

(p = 15, c = 25) (p = 13, c = 26)
ID Features SVM Bayes CTree N p-value SVM Bayes CTree NN p-value

5.1 Response time 60.0 60.0 52.5 45.0 0.206 61.5 59.0 48.7 48.7 0.150

5.2 Response length 62.5 57.5 52.5 65.0 0.058 66.7 41.0 51.3 61.5 0.037

5.3 Silence tatio 70.0 70.0 62.5 72.5 0.004 94.9 94.9 94.9 84.6 <0.001

5.4 Silence to Utt. ratio 67.5 65.0 60.0 62.5 0.027 76.9 71.8 69.2 59.0 0.001

5.5 Long silence ratio 57.5 70.0 57.5 55.0 0.011 74.4 74.4 69.2 69.2 0.002

5.6 Avg. silence count 82.5 80.0 82.5 80.0 <0.001 74.4 74.4 64.1 59.0 0.002

5.7 Silence rate 67.5 75.0 62.5 72.5 0.002 74.4 79.5 74.4 59.0 <0.001

5.8 Cont. speech rate 80.0 80.0 75.0 75.0 <0.001 74.4 71.8 66.7 64.1 0.002

5.9 Avg. cont. word count 67.5 62.5 60.0 55.0 0.027 87.2 92.3 94.9 84.6 <0.001

6.1 Avg. abs. delta energy 67.5 75.0 67.5 57.5 0.002 71.8 71.8 79.5 64.1 <0.001

6.2 Dev. of abs. delta energy 75.0 72.5 62.5 55.0 0.002 69.2 71.8 41.0 51.3 0.006

6.3 Avg. abs. delta pitch 67.5 62.5 55.0 47.5 0.027 61.5 82.1 59.0 64.1 <0.001

6.4 Dev. of abs. delta pitch 45.0 55.0 55.0 72.5 0.004 59.0 69.2 56.4 56.4 0.016

6.5.1 Avg. abs. delta formant 1 62.5 57.5 55.0 62.5 0.114 74.4 71.8 69.2 61.5 0.002

6.5.2 Avg. abs. delta formant 2 55.0 62.5 52.5 52.5 0.114 69.2 66.7 66.7 71.8 0.006

6.5.3 Avg. abs. delta formant 3 52.5 47.5 62.5 55.0 0.114 66.7 66.7 76.9 59.0 0.001

6.5.4 Avg. abs. delta formant 4 45.0 65.0 55.0 57.5 0.002 74.4 76.9 66.7 69.2 0.001

6.6 Voicing ratio 75.0 75.0 62.5 75.0 0.002 59.0 59.0 53.9 43.6 0.262

7.1 Phoneme rate 67.5 75.0 77.5 60.0 0.001 82.1 82.1 76.9 58.0 <0.001

7.2 Word rate 72.5 72.5 67.5 60.0 0.004 56.4 61.6 66.7 48.7 0.037

The number of patients (p) and control subjects (c) in each group is given in parenthesis. Classifiers with significant results are denoted in italics. Features with p values
less than 0.05 are considered significant and are shown in bold. p value of the best classifier is reported for each feature.
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organs, but this was not a significant discriminative factor
for the younger group of subjects.

5.2 Education-controlled experiments
As in the age-controlled experiments, linguistic features
performed poorly in the education-controlled experi-
ments, shown in Table 6. Most notably, pronoun fre-
quency and pronoun-to-noun ratio were significant
indicators of the disease independent of the education
level. Patients use pronouns more often than nouns. This
is surprising since we hypothesized that patients would
use pronouns less often since they are used to refer to
nouns mentioned earlier in the conversation which we
assumed would require more cognitive effort. Analyz-
ing the transcripts in more detail, we have found that
patients use pronouns without necessarily referring to a
specific noun. Sometimes it is hard, even impossible, for
the interviewer to understand what a pronoun is refer-
ring to. Patients seem to prefer using pronouns instead
of actual nouns, which are not always specified in the
conversation.
Prosodic features were less dependent on the educa-

tion level compared to age, as shown in Table 7. Response

length was found to be insignificant in education-
controlled experiments. Some of the patients with higher
education either do not talk much or talk significantly
more than the control group. However, such speakers do
not exist in the lower education group. Hence, on average,
response length was not found to be significant.
The average absolute delta pitch and average absolute

delta formant-2 features were also found to be dependent
on the education level. These two features are particularly
interesting since they also have high correlation with the
display of mood and depression [23]. Patients in the high
education group sometimes displayed exaggerated emo-
tions which increased the pitch variability. Interestingly,
some of the subjects in the same group tend to have lower
second formant deviations, which can be a sign of depres-
sion. Those two patterns, however, were not observed in
the younger patients. Thus, they were not found to be
significant markers of the disease.

5.3 Gender-controlled Experiments
Gender-controlled experiments were performed to mea-
sure the performance of features for each gender sepa-
rately. Results are shown in Tables 8 and 9. There are three
features that performed well in the age-controlled and

Table 6 Accuracy (%) of each classifier using the linguistic features in education-controlled experiments

High school and below College and above
(p = 18, c = 24) (p = 10, c = 27)

ID Features SVM Bayes CTree NN p value SVM Bayes CTree NN p value

1.1 Question ratio 54.8 38.1 59.5 45.2 0.217 73.0 75.7 70.3 62.2 0.002

1.2 Filler ratio 40.5 35.7 35.7 38.1 1.000 62.2 59.5 70.3 62.2 0.014

1.3 Incomplete sentence ratio 52.4 54.8 57.1 59.5 0.217 56.8 59.5 64.9 67.6 0.033

2.1 Verb freq. 61.9 61.9 61.9 47.6 0.123 64.9 54.1 64.9 73.0 0.005

2.2 Noun freq. 57.1 40.5 59.5 50.0 0.217 78.4 78.4 86.5 73.0 <0.001

2.3 Pronoun freq. 76.2 71.4 61.9 54.8 0.001 75.7 73.0 64.9 51.4 0.002

2.4 Adverb freq. 38.1 35.7 50.0 40.5 1.000 70.3 81.1 59.5 62.2 <0.001

2.5 Adjective freq. 52.4 45.2 54.8 57.1 0.355 54.1 51.4 56.8 56.8 0.411

2.6 Particle freq. 54.8 47.6 61.9 50.0 0.123 43.3 62.2 54.1 62.2 0.139

2.7 Conjunction freq. 42.9 35.7 35.7 42.9 1.000 73.0 73.0 75.7 64.9 0.002

2.8 Pronoun-to-noun ratio 73.8 71.4 57.1 59.5 0.002 78.4 73.0 51.4 62.2 0.001

3 Unintelligible word ratio 64.3 57.1 57.1 57.1 0.064 78.4 78.4 62.2 67.6 0.001

4.1 Standardized word entropy 64.3 69.1 57.1 57.1 0.014 70.3 56.8 59.5 56.8 0.014

4.2 Suffix ratio 57.1 57.1 59.5 57.1 0.217 62.2 37.8 54.1 62.2 0.139

4.3 Number ratio 57.1 50.0 50.0 35.7 0.355 59.5 56.8 56.8 43.3 0.250

4.4 Brunet’s index 40.5 61.9 54.8 52.4 0.123 67.6 54.1 48.7 62.2 0.033

4.5 Honore’s statistic 40.5 52.4 45.2 54.8 0.537 56.7 56.8 54.1 48.7 0.411

4.6 Type-token ratio 59.5 64.3 45.2 50.0 0.064 67.6 37.8 59.5 56.8 0.033

The number of patients (p) and control subjects (c) in each group is given in parenthesis. Classifiers with significant results are denoted in italics. Features with p values
less than 0.05 are considered significant and are shown in bold. p value of the best classifier is reported for each feature.
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Table 7 Accuracy (%) of each classifier using the prosodic features in education-controlled experiments

High school and below College and above
(p = 18, c = 24) (p = 10, c = 27)

ID Features SVM Bayes CTree NN p value SVM Bayes CTree NN p value

5.1 Response time 52.4 61.9 54.8 69.1 0.014 70.3 59.5 62.2 54.1 0.014

5.2 Response length 47.6 42.9 38.1 42.9 1.000 73.0 51.4 46.0 67.6 0.005

5.3 Silence ratio 73.8 71.4 64.3 73.8 0.002 91.9 97.3 94.6 91.9 <0.001

5.4 Silence to utt. ratio 69.1 69.0 57.1 59.5 0.014 83.8 81.1 73.0 75.7 <0.001

5.5 Long silence ratio 64.3 66.7 59.5 66.7 0.031 70.3 78.4 54.1 51.4 0.001

5.6 Avg. silence count 83.3 85.7 83.3 71.4 <0.001 75.7 70.3 73.0 67.6 0.002

5.7 Silence rate 66.7 73.8 83.3 76.2 <0.001 75.7 62.2 78.4 59.5 0.001

5.8 Cont. speech rate 83.3 83.3 78.6 73.8 <0.001 75.7 70.3 59.5 73.0 0.002

5.9 Avg. cont. word count 59.5 71.4 57.1 59.5 0.005 89.2 91.9 91.9 83.8 <0.001

6.1 Avg. abs. delta energy 69.1 57.1 64.3 61.9 0.014 78.4 78.4 75.7 48.7 0.001

6.2 Dev. of abs. delta energy 69.1 66.7 50.0 42.9 0.014 73.0 75.7 59.5 56.8 0.002

6.3 Avg. abs. delta pitch 45.2 45.2 38.1 40.5 1.000 64.9 83.8 73.0 56.8 <0.001

6.4 Dev. of abs. delta pitch 38.1 50.0 47.6 42.9 1.000 56.8 62.2 54.1 67.6 0.033

6.5.1 Avg. abs. delta formant 1 61.9 64.3 61.9 61.9 0.064 67.6 64.9 48.7 46.0 0.033

6.5.2 Avg. abs. delta formant 2 61.9 64.3 54.8 47.6 0.064 67.6 70.3 73.0 78.4 0.001

6.5.3 Avg. abs. delta formant 3 57.1 47.6 35.7 38.1 0.355 75.7 62.2 64.9 62.3 0.002

6.5.4 Avg. abs. delta formant 4 69.1 66.7 57.1 66.7 0.014 54.1 62.2 70.3 62.3 0.014

6.6 Voicing ratio 64.3 64.3 61.9 69.0 0.014 67.6 64.9 64.9 56.8 0.033

7.1 Phoneme rate 66.7 66.7 47.6 42.9 0.031 83.8 86.5 83.8 70.3 <0.001

7.2 Word rate 66.7 64.3 61.9 66.7 0.031 64.9 73.0 81.1 64.9 <0.001

The number of patients (p) and control subjects (c) in each group is given in parenthesis. Classifiers with significant results are denoted in italics. Features with p values
less than 0.05 are considered significant and are shown in bold. p value of the best classifier is reported for each feature.

Table 8 Accuracy (%) of each classifier using the linguistic features in gender-controlled experiments

Male Female
(p = 18, c = 31) (p = 10, c = 20)

ID Features SVM Bayes CTree NN p-value SVM Bayes CTree NN p-value

1.1 Question ratio 47.1 50.0 69.0 60.8 0.007 70.7 68.0 58.7 61.0 0.022

1.2 Filler ratio 43.7 40.2 37.1 39.4 1.000 66.7 51.0 63.7 69.0 0.031

1.3 Incomplete sentence ratio 46.1 43.9 54.5 52.9 0.295 53.7 47.7 47.7 52.0 0.379

2.1 Verb freq. 51.4 55.5 45.5 51.0 0.242 46.7 54.0 52.0 48.0 0.335

2.2 Noun freq. 48.6 46.7 55.3 64.7 0.031 80.7 70.7 76.0 69.7 0.001

2.3 Pronoun freq. 59.2 59.7 63.6 52.8 0.016 59.0 71.5 65.5 50.0 0.012

2.4 Adverb freq. 47.1 46.7 50.8 48.0 0.458 57.0 45.0 44.7 41.7 0.183

2.5 Adjective freq. 53.7 52.2 54.7 65.3 0.030 36.0 42.0 44.0 50.7 0.473

2.6 Particle freq. 65.3 66.9 66.7 59.2 0.010 39.0 38.0 41.7 41.0 1.000

2.7 Conjunction freq. 45.3 65.3 50.8 49.2 0.021 53.0 71.0 64.7 69.7 0.010

2.8 Pronoun-to-noun ratio 65.0 61.1 39.4 39.4 0.032 67.0 72.0 65.0 69.5 0.014

3 Unintelligible word ratio 66.7 66.1 58.0 62.2 0.022 59.7 58.0 57.0 72.0 0.009

4.1 Standardized word entropy 57.1 60.8 42.2 46.7 0.092 56.0 53.7 52.7 58.7 0.148

4.2 Suffix ratio 56.9 48.6 46.1 42.4 0.196 69.0 73.0 66.7 58.7 0.008

4.3 Number ratio 65.1 65.3 59.4 55.3 0.031 51.7 58.7 60.0 49.0 0.120

4.4 Brunet’s index 41.7 52.9 51.6 62.4 0.061 48.0 51.0 42.0 41.7 0.459

4.5 Honore’s statistic 47.1 53.3 55.1 52.9 0.249 39.7 40.7 39.0 41.0 1.000

4.6 Type-token ratio 64.1 62.0 59.0 51.6 0.041 51.7 46.7 54.0 51.7 0.308

The number of patients (p) and control subjects (c) in each group is given in parenthesis. Classifiers with significant results are denoted in italics. Features with p values
less than 0.05 are considered significant and are shown in bold. p value of the best classifier is reported for each feature.
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Table 9 Accuracy (%) of each classifier using the prosodic features in gender-controlled experiments

Male Female
(p = 18, c = 31) (p = 10, c = 20)

ID Features SVM Bayes CTree NN p value SVM Bayes CTree NN p value

5.1 Response time 68.6 58.4 69.0 64.5 0.005 50.7 50.0 44.7 42.7 0.468

5.2 Response length 50.0 46.1 63.9 64.1 0.033 51.0 50.7 59.0 50.0 0.114

5.3 Silence ratio 86.1 83.3 83.9 80.8 <0.001 66.0 68.0 73.7 72.7 0.001

5.4 Silence to utt. ratio 60.2 62.9 54.1 66.9 0.017 83.0 82.0 71.7 53.7 <0.001

5.5 Long silence ratio 63.9 63.3 55.9 48.0 0.048 51.7 63.0 47.0 53.7 0.077

5.6 Avg. silence count 79.0 79.4 73.9 72.9 <0.001 76.0 72.0 80.0 62.7 <0.001

5.7 Silence rate 63.7 66.3 70.0 63.1 0.003 59.0 60.7 58.0 78.7 <0.001

5.8 Cont. speech rate 82.9 79.0 83.9 69.2 <0.001 73.0 72.0 71.7 47.0 0.007

5.9 Avg. cont. word count 86.1 59.0 84.1 77.1 <0.001 68.7 62.7 68.0 50.7 0.014

6.1 Avg. abs. delta energy 69.4 70.0 81.0 84.1 <0.001 53.0 46.7 36.0 41.0 0.380

6.2 Dev. of abs. delta energy 69.4 69.8 49.2 51.0 0.008 55.7 57.0 42.7 38.7 0.176

6.3 Avg. abs. delta pitch 67.8 74.7 63.1 58.4 0.001 60.7 45.0 63.7 45.0 0.060

6.4 Dev. of abs. delta pitch 76.1 72.2 63.9 55.5 <0.001 48.0 38.7 70.7 67.7 0.007

6.5.1 Avg. abs. delta formant 1 59.4 66.3 64.5 53.9 0.016 53.0 52.0 46.7 48.0 0.374

6.5.2 Avg. abs. delta formant 2 55.9 60.2 57.8 52.0 0.108 39.0 38.7 42.7 55.7 0.259

6.5.3 Avg. abs. delta formant 3 66.1 65.9 60.2 50.8 0.022 52.7 42.7 69.7 48.0 0.007

6.5.4 Avg. abs. delta formant 4 69.2 67.1 64.1 58.6 0.009 42.7 53.7 56.7 52.7 0.209

6.6 Voicing ratio 75.3 75.1 70.2 69.8 0.001 57.7 41.0 58.7 50.7 0.111

7.1 Phoneme rate 63.9 71.0 65.1 67.8 0.004 71.7 68.0 48.0 46.0 0.017

7.2 Word rate 70.0 70.2 53.3 45.5 0.005 35.0 66.7 48.0 46.7 0.014

The number of patients (p) and control subjects (c) in each group is given in parenthesis. Classifiers with significant results are denoted in italics. Features with p values
less than 0.05 are considered significant and are shown in bold. p value of the best classifier is reported for each feature.

Table 10 Overall accuracy (%), missed detection (%), and false alarm (%) rates of features with statistically significant
performance

Accuracy Missed detection False alarm

ID Features SVM Bayes CTree NN SVM Bayes CTree NN SVM Bayes CTree NN

2.3 Pronoun freq. 73.4 72.2 59.5 54.4 39.3 39.3 46.4 57.1 19.6 21.6 37.3 39.2

2.8 Pronoun-to-noun ratio 72.2 70.9 65.8 58.2 39.3 39.3 50.0 60.7 21.6 23.5 25.5 31.4

5.3 Silence ratio 83.5 81.0 79.8 78.5 35.7 35.7 28.6 25.0 5.9 9.8 15.7 19.6

5.4 Silence to utt. ratio 73.4 69.6 62.0 69.6 35.7 42.9 42.9 39.3 21.6 23.5 35.3 25.5

5.6 Avg. silence count 81.0 78.5 69.6 68.4 21.4 17.9 32.1 39.3 17.7 23.5 29.4 27.5

5.7 Silence rate 73.4 72.2 72.1 68.4 64.3 67.9 35.7 39.3 5.9 5.9 23.5 27.5

5.8 Cont. speech rate 78.5 76.0 68.4 62.0 28.6 25.0 25.0 39.3 17.7 23.5 35.3 37.4

5.9 Avg. cont. word count 76.0 82.3 76.0 70.9 28.6 32.1 28.6 35.7 21.6 9.8 21.6 25.5

7.1 Phoneme rate 69.6 79.8 60.8 57.0 32.1 46.4 46.4 50.0 29.4 5.9 35.3 39.2

7.2 Word rate 62.0 65.8 55.7 50.6 25.0 32.1 50.0 53.6 45.1 35.3 41.2 47.1

Features with statistically significant performance in age-, education-, and gender-controlled experiments. Performance of the classifier with highest accuracy is
shown in italics for each feature. Note that because the number of patients and control subjects are not equal, sum of average error, which is (missed detection+false
alarm)/2, and accuracy is not 100%.



Khodabakhsh et al. EURASIP Journal on Audio, Speech, andMusic Processing  (2015) 2015:9 Page 12 of 15

Table 11 Correlation of features with statistically significant accuracies in age-, education-, and gender-controlled
experiments

ID Features 2.3 2.8 5.3 5.4 5.6 5.7 5.8 5.9 7.1 7.2

2.3 Pronoun freq. —

2.8 Pronoun-to-noun ratio 0.94 —

5.3 Silence ratio 0.12 0.21 —

5.4 Silence to utt. ratio 0.24 0.29 0.60 —

5.6 Avg. silence count −0.30 −0.36 −0.55 −0.38 —

5.7 Silence rate 0.17 0.22 0.54 0.39 −0.68 —

5.8 Cont. speech rate 0.33 0.34 0.38 0.31 −0.87 0.45 —

5.9 Avg. cont. word count 0.04 −0.01 −0.67 −0.45 0.41 −0.40 −0.27 —

7.1 Phoneme rate −0.01 −0.14 −0.70 −0.44 0.52 −0.61 −0.23 0.49 —

7.2 Word rate −0.00 −0.06 −0.59 −0.38 0.47 −0.56 −0.19 0.42 0.90 —

education-controlled experiments but not in the gender-
controlled experiments. Those features are: deviation of
absolute delta energy, average absolute delta energy, and
long silence ratio.
All three features performed well for males but not

for females. In the recordings, we have found that males
displayed less emotion which resulted in less expressive
speech compared to male subjects in the control group.
However, that pattern was not as strong with the female
speakers. Moreover, the number of males is significantly
larger than the number of females which makes it eas-
ier to get statistically significant results in classification
experiments for the male subjects.

5.4 Analysis of significant features
Features that have significant performance in education-,
age-, and gender-controlled tests are shown in Table 10,
along with missed detection and false alarm rates. SVM
and naive Bayes classifiers always outperform the CTree
and NN classifiers. SVM has the best accuracy among all
classifiers. In particular, SVM classifier with the silence
ratio feature has the highest accuracy among all features
and classifiers.
Missed detection rates are significantly higher than the

false alarm rates in the best performing classifiers, as
shown in Table 10. Even though more data from the con-
trol group is available, the subsampling method is used to

Table 12 Accuracy, missed detection, and false alarm rates of the best performing features

ID Accuracy Missed detection False alarm

1 feature

5.3 SVM 83.5% 35.7% 5.9%

(73.5 to 90.9) (18.6 to 55.9) (1.2 to 16.2)

7.1 Bayes 79.8% 46.4% 5.9%

(69.2 to 88.0) (27.5 to 66.1) (1.2 to 16.2)

2.3 SVM 73.4% 39.3% 19.6%

(62.3 to 82.7) (21.5 to 59.4) (9.8 to 33.1)

2 features

5.3 and 7.1 SVM 83.5% 35.7% 5.9%

(73.5 to 91.0) (18.6 to 55.9) (1.2 to 16.2)

2.3 and 5.3 Bayes 82.3% 32.1% 9.8 %

(72.1 to 90.0) (15.9 to 52.4) (3.3 to 21.4)

2.3 and 7.1 Bayes 78.5% 39.3% 11.8%

(67.8 to 87.0) (21.5 to 59.4) (4.4 to 23.9)

Performance of best performing single feature in each feature category, as well as performance of combinations of these features. Results are reported only for the
best classifier. Note that because the number of patients and control subjects are not equal, sum of average error, which is (missed detection + false alarm)/2, and
accuracy is not 100%. Confidence intervals are shown in parenthesis.
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ensure an equal number of patient and control subjects
in the training datasets, as discussed in Section 4. Thus,
the results show that significantly more patients were clas-
sified as healthy compared to control subjects classified
as patients. It also indicates that features extracted from
some patients are significantly different from some of the
other patients and most of the control subjects, which
helps in classification.
Voice activity-related features are particularly good at

identifying the disease as shown in Table 10. Interest-
ingly, features 5.3 and 5.6, which are related to the rate of
silences, independent of the silence duration, were found
to be more powerful discriminators than 5.4 and 5.7,
which are related to long silences and duration of silences.
Thus, frequency of silences during speech was found to be
more important than the duration of silences. Features 5.8
and 5.9 indicate how long the subject can talk without a
long silence. These two features are also highly correlated
with the silence rate features, as shown in Table 11, and
they had good performance in the classification exper-
iments. Similarly, phoneme rate was strongly correlated
with the rate of silences, and it performed well in experi-
ments. Even though word rate is strongly correlated with
the phoneme rate, it is not as strongly correlated with
the silence rate as the phoneme rate, and it was not as
successful in prediction of the disease.
Linguistic features did not perform as well as the

prosodic features, as discussed in the previous section.
Only pronoun rate and pronoun-to-noun ratio were
strong indicators of the disease, but their prediction pow-
ers are not as strong as the prosodic features. However,
their missed detection and false alarm rates are more
balanced compared to prosodic features.
Features within each feature category are strongly corre-

lated with each other, as shown in Table 11. Performances
of the features with highest accuracy from each category
are compared with confidence intervals in Table 12.
Feature fusion is used in an attempt to further boost

the performance. In that approach, classifiers were trained
with two features instead of a single feature. Because of
high within-category correlations, feature fusion experi-
ments were done by using the best performing feature in
each category. Results are shown in Table 12. Not only
statistically significant improvement over the best sin-
gle feature could not be achieved but also performance
slightly degraded with feature fusion.
Scatter diagrams of the features and decision bound-

aries for classification are shown in Figure 2. Silence ratio
had better discrimination power than the other features.
Unfortunately, the information in the other features failed
to correct the errors made with silence ratio. Similarly,
phoneme rate was found to be a powerful feature, but
the pronoun frequency could not correct the errors it
generates, as shown in the Figure 2C.

Figure 2 Scatter diagram of features in Table 12. Decision
boundary of the best performing classifier is shown in each figure.
Note that even though the features were normalized before
classification, they are not normalized in these figures to make
interpretation easier. (A) Scatter diagram for silence ratio vs.
phoneme rate features. (B) Scatter diagram for pronoun frequency vs.
silence ratio features. (C) Scatter diagram for pronoun frequency vs.
phoneme rate features.
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Note that increasing the size of feature vectors can
in fact degrade the performance of classifiers due to
the curse of dimensionality that occurs when there is
not enough training data and the classifier cannot gen-
eralize and perform well on test data. That effect may
be partly responsible for not observing an improvement
with the feature fusion approach. For the same reason,
feature fusion with larger number of features was not
investigated.

6 Conclusions
We have investigated an extensive set of features derived
from the speech signal and transcriptions of Alzheimer’s
patients and control subjects. It is already known that the
part of the brain cortex that deals with linguistic abili-
ties is one of the first to deteriorate with the onset of
the disease. Our work explored how that deterioration
is reflected in the patient’s speech prosody and spoken
language, and whether there are markers that can be effec-
tively detected using machine learning techniques. Our
results indicate that a prediction accuracy higher than 80%
can be obtained with high confidence using the proposed
features, independent of the age, education level, and gen-
der of the subjects. Prosodic features were substantially
better than the linguistic features. In fact, only two of the
linguistic features were found to be strong markers of the
disease.
Classification experiments were also done with combi-

nations of features. However, using more than one feature
did not outperform the best single feature. This may be
a result of limited amounts of data used in training the
classifiers which causes generalization problems when the
number of features increases.
Our experiments are with late-stage patients, and the

effectiveness of the markers that we have found should be
measured with early-stage patients, where the signals are
more subtle and more subjects may be needed to reach
statistically significant results. However, our experimental
results andmanual observations from the data are encour-
aging, and we will start collecting data from early-stage
patients in the near future.
Another topic that we will investigate in the future work

is a cross-lingual study of the proposed features. Features
that are independent of language can provide important
clues about the neural degeneration process during the
disease or perhaps can enable deeper understanding of
neural networks in the brain that are responsible from
cognition of language and speech production.
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