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Abstract

In the field of autonomous driving, obstacle avoidance is of great significance for safe
driving. At present, in addition to traditional obstacle avoidance algorithms including
VFH algorithm, artificial potential field method, a large number of related researches
are focused on algorithms based on vision and neural networks. Researches on these
algorithms have achieved some results, and some of which have completed real road
tests. However, most of algorithms consider only local environmental information
which may cause local optimum in complex driving environments. Therefore, it is
necessary to consider the environmental information beyond the sensor’s percep-
tual ability for autonomous driving in complex environment. In the network-assisted
automated driving system, networked vehicles can obtain road obstacles’and condi-
tion information through roadside sensors and mobile network, so as to gain extra
sensing ability. Therefore, network-assisted automated driving is of great significance in
obstacle avoidance. Under this background, this paper presents an automatic driving
obstacle avoidance strategy combining path planning and reinforcement learning.
At first, a global optimal path is planned through global information, then merge the
global optimal path and vehicle information into a vector. Use this vector as input of
reinforcement learning neural network and output vehicle control signals to follow
optimal path while avoiding obstacles.

Keywords: Network assisted, Automated driving, Path planning, Reinforcement

learning, Obstacle avoidance, Path following

1 Introduction

With the continuous development of science and technology, artificial intelligence has
gradually entered all aspects of human life, as well as in the field of transportation. In the
last decade, the development of automatic driving has advanced by leaps and bounds.
With the participation of many large companies and the continuous improvement of
automatic driving related standards, automatic driving technology is developing in
a better and better direction. For instance, the projects on automatic driving done by
Google and Tesla are single vehicle automatic driving [1]. This automatic driving mode
only relies on the sensor equipment carried by the vehicle to sense the surrounding envi-
ronment and drive according to the planned route. "Networking" and "intelligence" have
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become a new generation of development direction of China’s automobile industry. Spe-
cifically, the network connected automatic driving vehicle is equipped with advanced
on-board sensors, controllers and other devices. It is connected to the network through
the mobile network access point to obtain the automatic driving auxiliary information,
the other intelligent information, the vehicle status information and the road condition
information sent by the network in real time. The network connected automatic driv-
ing technology integrates modern communication and network technologies, realizes
the interaction of people, vehicles, roads, networks and other information, and provides
safe, comfortable, energy-saving and efficient driving capabilities. It is a new generation
of autonomous driving technology with great potential, and it is also the future develop-
ment trend of autonomous driving [2].

In automatic driving, the first thing to be considered is safety. Obstacle avoidance
should be the most basic function of automatic driving. At present, the sensing equip-
ment of the automatic driving car mainly includes camera, laser radar, millimeter wave
radar and ultrasonic radar. In terms of obstacle avoidance, the obstacle avoidance strate-
gies are also different according to the vehicle intelligence level. When the vehicle level is
L2 or L3, the vehicle has the function of collision warning and emergency braking when
the distance is too close. After the vehicle reaches L4 level, it has the functions of emer-
gency braking and bypassing obstacles. Obstacle avoidance is a complex comprehen-
sive decision-making task. At present, the obstacle avoidance methods using traditional
methods and reinforcement learning methods have been studied and practiced.

Although there has been a lot of research on obstacle avoidance algorithms for auto-
matic driving, there are still some problems and challenges:

+ The problems falling into local optimization in the process of avoiding obstacles

In the case of single vehicle automatic driving, because the vehicle can only obtain
the obstacle information around the vehicle through the on-board sensor, the vehicle
control has the characteristics of local optimization. The goal-driven obstacle avoidance
task includes two parts: moving to the target point and obstacle avoidance. In the vehi-
cle control, these two parts could be considered comprehensively. However, the system
with local optimal control characteristics would pay too much attention to the imme-
diate interests and could not understand the long-term interests. Specifically, if there
are obstacles near the vehicle, the vehicle will think more about the obstacles around it.
Only when there are no obstacles around, more consideration will be given to move to
the target point [3]. In order to avoid vehicles falling into local optimization, it is very
significant to obtain comprehensive information and carry out path planning.

« Vehicle model needs to be considered in vehicle control

In the simulation environment or the real environment, the vehicle model needs to
be considered. According to the finite integral form of whether the position coordinates
could be obtained, the vehicle model could be divided into complete constraint model
and non-complete constraint model [4]. Compared with nonholonomic constraint
model, the solution of holonomic constraint model is relatively simple. In the automatic
control theory, when there are the paths to be followed and the surrounding obstacle
information, this task [5] could be handled by a variety of vehicle control algorithms,
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but this involves a lot of automatic control theory knowledge, which is difficult to deploy
the algorithms. In order to solve the problem that the automatic control algorithm is too
complex, reinforcement learning could be adopted for vehicle control.

+ When the vehicle follows the global path, it will be affected by dynamic obstacles

The global path is obtained by considering static obstacles. If there are dynamic obsta-
cles in the environment, the vehicle must try to avoid static and dynamic obstacles when
following the global path. If the traditional algorithm is used, the size, distribution and
moving speed of obstacles and the relative position of targets will have a great impact
on vehicle control [6-8], and the control mode is more complex. If the reinforcement
learning method is used, the reinforcement learning model needs to be considered for
the two tasks of "path following" and "obstacle avoidance." Compared with single-task
reinforcement learning, this multi-task reinforcement learning training is more difficult
and the weight of each task needs to be comprehensively considered [9].

2 Related work
In this section, several related issues, including studies on path planning algorithm,
obstacle avoidance algorithm, are reviewed, respectively.

(A)  Issues on Path Planning Algorithm

The path planning algorithm is divided into graph-based path planning algorithm [10]
and sampling-based path planning algorithm [11]. Graph-based path planning algorithm
is a complete algorithm. Namely, if there is a feasible path from the starting point to the
target point, the solution must be obtained. If there is no solution, there must be no path
from the starting point to the target point. This kind of algorithm is usually planned on
a grid network map. At present, the commonly used algorithms are depth-first prime
search algorithm, breadth-first search algorithm, Dijkstra algorithm and A* algorithm.
Being different from map-based path planning algorithm, this type of algorithm does
not require rasterization of the map, but randomly sets some sampling points in the
map and uses these sampling points to abstract the actual map to perform path plan-
ning. Compared with the graph-based path planning algorithm, the sampling-based
path planning algorithm has a faster calculation speed, but the cost of the generated path
may be higher, and it would cause a situation of "no solution." Such algorithm is gener-
ally widely used in high-dimensional planning problems. At present, the commonly used
sampling-based path planning algorithms include PRM algorithm, RRT algorithm and
their improved algorithm.

The literature [12] shows comparing the time complexity, the graph-based path
planning algorithm is more efficient than the sampling-based path planning algo-
rithm, when the number of nodes is the same. However, when the granularity of ras-
terization is considered, the node number of the graph-based path planning algorithm
is much larger than that of the sampling-based path planning algorithm. Therefore,
the actual situation is that the sampling-based path planning algorithm has higher
calculation efficiency. The literature [13] shows when the graph-based path plan-
ning algorithm is considered and the map in the form of a two-dimensional matrix
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is rasterized, the vehicle model constraints are not considered during path planning.
Therefore, the obstacle avoidance effect is affected by the rasterization granularity
and the adopted vehicle model. It is difficult to clearly analyze the obstacle avoidance
effect.

(B)  Obstacle Avoidance Algorithm

The Vector Field Histogram algorithm [14, 15] is a real-time motion planning algo-
rithm that uses sensors on the intelligent agent to detect the surrounding environment,
generate obstacle distance histograms, and use the histogram to perform target-driven
obstacle avoidance. In practice, the VFH algorithm has been proven to be fast and reli-
able, especially when traversing densely populated obstacle routes. However, the VFH
algorithm only considers local obstacle information and belongs to a local path planning
algorithm. The artificial potential field method [16] is an algorithm for avoiding obsta-
cles in analogy to the phenomenon of "homogeneous phase exclusion and specific phase
absorption” in an analogous electric field. At present, there are many obstacle avoidance
algorithms based on reinforcement learning, which can be roughly divided into the fol-
lowing four categories: obstacle avoidance in a static environment, obstacle avoidance
in a dynamic environment, target-driven obstacle avoidance in a static environment [17,
18] and target-driven obstacle avoidance in the dynamic environment [9]. The first two
do not have the task of "reaching the goal." When setting the reward function, the closer
is to the obstacle, the greater the penalty is. The farther is from the obstacle, the smaller
the penalty is. The latter two include the task of "reaching the goal." When setting the
reward function, it is necessary to weight the distance from the target and the distance
from the obstacle. In most papers, goal-driven obstacle avoidance in a dynamic environ-
ment involves the problem of multi-agent obstacle avoidance.

(C)  Wireless communication technology in autonomous driving

In the auto-drive network, the literature [19] shows A novel market-based solu-
tion is proposed for interference management in MSS by introducing an elastic price
mechanism that it can be used in the networking access of automatic driving. The lit-
erature [20] shows the clustering algorithm and cluster head alternation are proposed
to improve transmission performance and ensure energy balance, respectively. The
literature [21] shows the power allocation and network selection for the integrated
IIoT are proposed to decrease the transmission cost. The above technology can pro-
vide reliable communication guarantee for automatic driving.

After comparing the completeness, computational efficiency, and obstacle avoid-
ance effects of several path planning algorithms, the RRT* algorithm is finally selected
as the path planning algorithm for this project, and then, the specific content of the
RRT* algorithm is described. Secondly, two traditional obstacle avoidance algorithms
and an obstacle avoidance algorithm based on reinforcement learning are intro-
duced. By comparing the advantages and limitations of the two types of algorithms,
the obstacle avoidance algorithm based on reinforcement learning is selected as the

obstacle avoidance algorithm for this project.
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3 Target-driven obstacle avoidance algorithm based on DDPG

3.1 The establishment of scenarios and models

3.1.1 Vehicle model

In this project, a fully constrained vehicle kinematics model is adopted. The description
of the vehicle in the scene includes coordinates, speed magnitude and speed direction.
The symbols are shown in Fig. 1.

It is assumed that the simulation time interval of each step is AT. The vehicle moves
in a straight line at a constant speed in each time. The control variables of the vehicle
are the longitudinal acceleration and the angular acceleration in the velocity direction.
Therefore, within the simulation time interval of one step, the following equation is
satisfied:

Vt-‘,—l = Vt + AT
Orr1 =0 + BAT
xCarey1 = xCary + Veg1 AT cos(Bry1)

1)
yCarsiy1 = yCary + Vi1 AT sin(6r41)

The contour of the equivalent vehicle is approximated according to the encircling cir-
cle method. The 11 laser rangefinders are installed at equal angular intervals in front of
the vehicle to measure the distances of obstacles in 11 different directions. The vehicle

equivalent model is shown in Fig. 2.

3.1.2 Training scenario

The tasks to be completed by reinforcement learning are: reaching the target point and
avoiding obstacles. The training scene can include dynamic obstacles and static obsta-
cles. However, because the reinforcement learning algorithm has Markov characteris-
tics, it is impossible to judge the movement direction and speed of the currently detected
obstacles from the state information of the vehicle. If dynamic obstacles are contained,
the obstacle avoidance behavior of the vehicle will be affected by the movement state of

yCar

0 xCar X
Fig. 1 Vehicle status information
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Fig. 2 Vehicle equivalent model
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Fig. 3 Training scene

the currently detected obstacle, resulting in different evaluations when the vehicle per-
forms the same action in the same state. Namely, the Q function is unstable.

Therefore, in this project, the training scene could be the scene with only static obsta-
cles and use the encircling circle method to approximate the contour of the obstacle, as
shown in Fig. 3.

3.2 Neural network design based on DDPG

3.2.1 Overview of DDPG algorithm

DDPG (Deep Deterministic Policy Gradient) algorithm [18] is a model free, off-policy
reinforcement learning algorithm that can be used to solve continuous state space and
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continuous action space problems. DDPG is based on actor-critic, which includes both
value function network (critic) and policy network (actor).

The DDPG algorithm has many advantages to adopt a deterministic strategy net-
work and update the strategy network using strategy gradients. This enables the net-
work to handle high-dimensional continuous actions. The introduction of experience
playback arrays increases the utilization of data to; adopt dual network updates of the
target network and the current network. This makes the algorithm easier to converge.
The target network adopts the soft update method, which increases the stability of the
algorithm.

3.2.2 DDPG algorithm principle
DDPG uses a neural network to approximate the value function. This value function net-
work is also called a critic network. Its input is action and state value [4, s], and its output
is Q(s, a). There is also a neural network to approximate the strategy function. This strat-
egy network is also called an actor network. Namely, its input is a state s, and its output
is an action a.

The critic network uses the gradient descent method to minimize the loss function
and update the network parameters. The specific method is as follows. N in the formula
is the size of the mini-batch:

yi = i+ Y Q(siy1, (54116109
1 (2)
Loss = - Z (i — Q(siail0)?

The actor network follows the chain rule and updates the network parameters by anal-
ogy with the strategy gradient algorithm. The specific methods are as follows:

Vou] ~ Eqpep | Vor Q5 816Dl o=, amptoton) |

3

= Byt | Va QU @l imsyiamutsn Vo 116" o=, ¥

DDPG requires samples to be independently and identically distributed, so it is neces-

sary to use experience playback arrays for mini-batch learning. In addition, for reference

to DQN’s dual network technology, DDPG divides both the critic network and the actor

network into the target network and the current network. And the soft update method is
used to greatly increase the stability of the network.

3.2.3 DDPG algorithm steps
See Algorithm 4.
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Algorithm 4: DDPG algorithm steps

1. Randomly initialize the weights @2 and 8« of the critic network and the actor network,
2. Initialize the weights 62 < @2and O« « 6« of the target networks Q' and #',

3. Initialize the experience playback array R

4. for episode=1,M do
5 Initialize a random process N as an exploration
6 Initialization state s
7. for 1 =1,7 do
8 Select the current action @ = (s, | 0#)+N,
9 Perform action a, to getthereward 7 and the next state s.
10. Save (s/,a:,7,5:1) into the experience replay array R
11. Randomly sample N elements (si,@:,%,5:+1) from the experience playback array
12. Set yi =7 +yQ'(Siw, ' (Sin1 | O1)| 02)
1
13. Update the critic network to minimize the loss function Loss = NZ(y, —0(si,a; | 62))?
1
14. Update the actor network: V. J =~ v ZVaQ(S,a [62) |s=s.a=u(sry Vou a(s| 01) |s=,
15. Update the target network: zi :: ;gf I ((11 :;))gf

3.2.4 Design of neural network
(A)  Neural network structure

Figure 4 shows the actor network built in this article, including 3 hidden layers, which
are all fully connected networks. We set the fully connected layer Fcl to 300 neurons, set
the fully connected layer Fc2 to 400 neurons, and set Fc3 to 300 neurons. The number of
nodes in the output layer is the same as the action dimension. The activation function of
the hidden layer selects the relu function, and the activation function of the output layer
is tanh. The network input is the state s, and the output is the action a.

Figure 5 shows the critic network built in this article, including 2 hidden layers, which
are all fully connected networks. The activation functions are all relu. The fully con-
nected layer Fcl is connected to the input state s and contains 300 neurons. The fully
connected layer Fc2 is connected to the input action a and contains 300 neurons. The
Fcl output and the Fc2 output are added to the fully connected layer Fc3 and Fc3 con-
tains 100 Neuron. The output layer contains 1 neuron to represent Q(s,a) for linear
activation.

(B)  Network parameter setting

The size of the experience replay array is 10°. Generally speaking, the larger the
experience replay array is, the longer the training data could be used. The data uti-
lization rate would be improved. However, if the reinforcement learning network
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Fig. 4 Actor network structure
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Fig. 5 Critic network

generates more garbage data during the training process, an excessively large experi-
ence playback array will cause the garbage data to be learned multiple times, thereby
affecting the final effect. In this project, because the obstacles in the training environ-
ment are randomly generated, it is possible that the target point cannot be reached.
Such data are garbage data. In order to reduce the impact of garbage data, we set the

experience playback array size to be smaller.

Page 9 of 22
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The discount factor is set to 0.98. The empirical formula 1 / 1 — y represents the num-
ber of steps considered in the future. There are some special situations in this project.
There are obstacles near the target point, or the target point is reached through obsta-
cles. At this time, approaching obstacles is able to reach the target point in the future.
Therefore, during training, we need to consider the impact of the next few steps as much
as possible. However, if y is too large, it may make the algorithm difficult to converge.
Therefore, y is set to 0.98 to consider the impact of the next 50 steps.

The batch size is set to 32. The reason is similar to the setting of the experience play-
back array. If more garbage data will be generated during training, too large batch size
will increase the impact of garbage data on the result. So, the bath size should be small
he. However, too small batch size may cause the algorithm to converge to the local opti-
mum, so the batch size is set to 32 here.

We take Gaussian random process as the exploration noise. The actions must be nor-
malized. The standard deviation of the initial Gaussian noise is 1. After each iteration,
the standard deviation of the Gaussian noise becomes 0.99 times of the original. Gener-
ally speaking, continuous and inertial motions are all explored by adding Gaussian noise.
Here, we take the general method.

The soft update coefficients t of the actor network and the critic network are both
0.01. In the DDPG algorithm, in order to ensure the stability of the algorithm, the value
7 is generally small and its value is 0.1 or 0.01. In some cases, the value 7 of critic will be
slightly larger than the value t of actor. Here, the values 7 of the two networks are set to
be the same.

Both the actor network and the critic network are updated with the Adam optimizer.
The learning rate of the actor network is 0.0001, and the learning rate of the critic net-
work is 0.0002. The learning rate of the Adam optimizer is generally recommended to
be 0.0001. In this project, the actor network is set according to the recommended value.
The critic network needs to converge as soon as possible, so the learning rate can be set
slightly larger.

4 Methods and experimental

4.1 Simulation environment

There are only stationary obstacles in the environment of this experiment. It is assumed
that the equivalent circle radius of all obstacle contours is the same as the equivalent
circle radius of the vehicle rCar = rObstacle = 0.5 m. The test scene is a two-dimen-
sional plane of 25 m*25 m, with the abscissa x € [0,25] m and the vertical coordinate
y € [0,25] m[0, 25]m. The target area is a circle, and the radius is endR = 0.1 m. In the
initial state, the vehicle position and direction are randomly generated, and the speed is
0. The target area is randomly generated. The obstacles are randomly generated without
overlap. The simulation time interval is AT = 0.01 s. The number of training rounds is
300, and each round has a maximum of 1000 time steps. If done = true, then the round
is stopped.

1. Status. The description of the state in this project includes the data received by the
vehicle-mounted sensor, the positional relationship of the vehicle relative to the tar-
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get area, and the speed and direction information of the vehicle. It is composed of
these three parts. There are 11 vehicle-mounted laser rangefinders, which are evenly
distributed within 180° in front of the car. The maximum detection distance of each
rangefinder is maxSensorDis = 4 m. The 11 laser rangefinders form the sensor vec-
tor sensors = (sensory, sensory, . . .,sensory) in the order from the front left side of
the car to the front right side of the car. The position relationship of the vehicle rela-
tive to the target is expressed in the form of polar coordinates, with the center of the
vehicle as the pole and the x axis of the two-dimensional plane as the direction of the
polar axis, as shown in Fig. 6. Thereinto, the polar diameter of the vehicle is dg and
the polar angle is cgAngle € (—m, 7]. The speed of the vehicle is vCar € [0, 10], and
the speed direction is vthetaCar € (—m,w]. The above three parts are spliced into a
15-dimensional vector, and there into the values are normalized to obtain the state

vector:

S - . ’ ) ’ .
( maxSensorDis 4 vMax T maxSensorDis

dg cgAngle vCar vthetaCar sensors > @

2. Action a. According to the previous introduction to the vehicle model, the con-

trol quantity is a two-dimensional row vector composed of longitudinal accelera-

. 2 2 . . . .
tion o € [— 51\%;, é’i\f"c’;r] and angular acceleration f € [—1g, 7g] in the direction

of velocity. We use the two-dimensional normalized action vector outputted by the
neural network to generate the vehicle control quantity, namely:

2
vMax 0
bid

(,B)=a ( 6*rCar (5)

18

3. Training is terminated done. There are three types of training termination situa-
tions, which are reaching the target area, colliding with an obstacle, and exceeding
the boundary of the area. When training is terminated, set done = true, otherwise

done = false.

Target point

:><V

0

Fig. 6 The position of the vehicle relative to the target
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4. Reward r. The overall reward function consists of three parts, which is distance
reward from the target point, distance reward from obstacles, and training termina-
tion reward. The overall formula is shown in Eq. 5. reward; (s, a), rewardy (s, a) and
rewards (s, a) are shown in formulas 6, 7, and 8, respectively. Among them, dgOld is
the value dg before the action a.

r = rewardi (s, a) + rewardy (s, a) + rewards(s,a) — 1 (6)
_ | =3, dg = dgOld
reward, = { 0, dg < dgOld @)
11
10 10
dy(s,a) = — i — , 15
rewards(s, 4) ; i (sensori maxSensorDis ) ®)

500, Reachthe target area
rewards(s,a) = { —100, Collision with obstacles (9)
—100, Crossthe border

4.2 Performance analysis

The obstacle avoidance performance is tested under 10 obstacles, 20 obstacles and 30
obstacles. The test process starts from initializing vehicle, obstacles, and target loca-
tion until the vehicle reaches the target area. The position of the car is displayed at each
moment on the map, and the final vehicle obstacle avoidance effect is shown in Fig. 7.

The target points in the picture are red dots, the connected circles are the vehicle’s tra-
jectory, and the separated circles are stationary obstacles. The 11 lines in front of the car
are the distances detected by the laser rangefinder. When there is an obstacle blocking
the laser rangefinder, the detected distance becomes shorter.

From the test results in the above three scenarios, it can be seen that the number of
obstacles increases, and the obstacle avoidance behavior of the vehicle is more compli-
cated. However, in the end, it can reach the target area smoothly. The obstacle avoidance
effect based on reinforcement learning in a static environment is quite excellent, and
it can complete the two tasks of obstacle avoidance and reach the target at the same
time. However, the above obstacle avoidance method only takes for the local obstacle

D

Fig. 7 10,20.30 obstacles are contained
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information and yet does not take for the global obstacle information. In some special
scenarios, it will fall into the local optimal value and cannot reach the end point, as
shown in Fig. 8.

In order to solve the problem of falling into local optimum in the obstacle avoidance
algorithm of traditional reinforcement learning, this paper will propose a dynamic path-
following automatic driving scheme combined with path planning in the fourth chapter.
By the global obstacles and the target area information being considered, the vehicle is
prevented from falling into the local optimum, and the vehicle is guided to drive along
the global optimum path.

5 Design and implementation of automatic driving obstacle avoidance
scheme based on dynamic path following

5.1 Path planning realization

For the path planning algorithm in this paper, the RRT* algorithm is selected and has

been introduced in detail in Chapter 2. The extend function of the RRT* algorithm

includes the design of the cost function and the collision detection function. The specific

selection scheme of these two functions will be introduced below.

5.1.1 The choice of cost function

The meaning of the cost function is to represent the cost from one point to another
point. It is represented by symbol c in the extend algorithm. The choice of the cost func-
tion can directly affect the performance of the RRT* algorithm path planning. However,
setting a cost function is very appropriate to the actual problem. The difficulty is no less
than that of designing a path planning algorithm. In addition, the cost function will also
have a great impact on the convergence rate of the algorithm. Common cost functions
include the Euclidean distance between two points, the weighted sum of different terrain
lengths, and the cost function for energy consumption.

The simulation environment of this project is a fully constrained car model under the
same terrain. There is no need to consider energy consumption. Therefore, choosing
Euclidean distance as the cost function can accelerate the convergence of the algorithm
and is easy to understand, as shown in Eq. 10. The total cost from the starting point to a
certain point is derived as Eq. 11.

00000000000 e®)

Fig. 8 Falling into a local optimum
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c(Line(x1,%2)) = [l — %2l (10)

Cost(xParent) + c(Line(xParent, x)), x # root
o, X = root

Cost(x) = {

5.1.2 Vehicle and obstacle collision detection

In the RRT* algorithm, collision detection between cars and obstacles is required. A rea-
sonable collision detection algorithm is very important to ensure the safety of car driv-
ing. Common collision detection methods include AABB enclosing box method and
enclosing circle method [9]. This project uses the relatively simple calculation of the
enclosing circle method. The specific implementation steps are as follows:

If the irregular object is converted to a circle with a slightly larger area, the collision
detection of two objects will be converted to the collision detection of two circles. If the
distance between the centers of the two circles is less than or equal to the sum of the
radii of the two circles, the two circles collide. Otherwise, there will be no collision.

On this basis, an additional safety distance d is maintained between the car and the
obstacle. The boundary of the obstacle needs to be expanded. The radius of the obstacle
is added to the original basis, and the safety distance is added as the new radius of the
obstacle. Furthermore, the coverage of the car can also be expressed as a circular area. If
the radius of the car is also added to the radius of the obstacle, the car can be assumed to
be a point, as shown in Fig. 9.

The RRT * algorithm requires to detect whether the vehicle trajectory collides with the
surrounding obstacles. In the case of the encircling circle method being used for colli-
sion detection, the question is converted to whether the trajectory of the car at time At
and the circular range covered by the obstacles could intersect, as shown in Fig. 10.

To determine whether there is an intersection between a line segment of length AS
and a circle, the following methods are used:

If the line unit direction vector of the line segment is €, the unit normal vector is 7.
The vector from the center of an obstacle to the left end of the line segment is pj, and
the vector to the right end is py. The equivalent radius of the obstacle is r, as shown in
Fig. 11.

Fig. 9 Equivalent radius of obstacle
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Fig. 10 Vehicle trajectory at time At
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Fig. 11 Determine whether trajectory collides with obstacles

- -
If ’ pren ’ <r, at this time, there is an intersection point between the line of the line

segment and the circle, but there may not be an intersection point between the line seg-
ment and the circle. If one end point of the line segment is inside the circle, the line seg-
ment must intersect with the circle. If both end points of the line segment are outside
the circle and if (;1 ° 2) X (;2 ° Z) > 0, it means that the line segment does not inter-

sect with the circle. Otherwise, the line segment intersects with the circle.

5.1.3 Setting of safety distance sum

The setting of the safety distance d: The safety distance is the additional distance
between the obstacle and the vehicle that needs to be maintained on the basis that the
vehicle and the obstacle do not collide. The setting of this distance needs to consider
the ability of the reinforcement learning algorithm to avoid static and moving obstacles.
If the reinforcement learning algorithm is more sensitive to the approach of obstacles,
the safe distance should be as large as possible. If the reinforcement learning algorithm
avoids closer obstacles with its strong ability, the safety distance can be appropriately
reduced. The setting of this distance also has a great influence on the vehicle’s optimal
path selection. If the value is too large, the path planning algorithm will choose a "safer"
path, rather than a shortest path. Here is the final choice d = 3 m based on the experi-

mental situation.



Chen et al. EURASIP Journal on Advances in Signal Processing ~ (2022) 2022:61 Page 16 of 22

n reflects the maximum distance between the new point generated each time and the
closest point on the random search tree. The larger the value 7 is, the faster the tree grows.
However, if the value 7 is too large, the search will end soon. The sampling points are sparse
and difficult to get the optimal path. This project uses reinforcement learning methods for
path following, and comprehensively considers the growth speed of the random search tree
and the optimality of the path to selectn = 1 m.

5.2 Automatic driving obstacle avoidance scheme based on dynamic path following
5.2.1 Program overview
The automatic driving obstacle avoidance scheme based on dynamic path following con-
sists of two parts, which are global path planning and obstacle avoidance algorithm of rein-
forcement learning. Global path planning has been introduced in 4.1 and 2.1.4. The obstacle
avoidance algorithm of reinforcement learning does not need to be retrained in a dynamic
environment, and the network trained in Chapter 3 can be directly used for vehicle obstacle
avoidance control.

The program firstly performs path planning based on the global static obstacles and then,
uses the strategy network trained by reinforcement learning to dynamically follow the
global path and avoid static and dynamic obstacles that may be encountered.

5.2.2 Dynamic following algorithm

The dynamic follow algorithm is used to dynamically update the target point that the vehi-
cle is currently following, so that the vehicle can roughly move along the global planned
path, thereby avoiding the problem of falling into the local optimum. There are many tra-
ditional paths following algorithms, including pure tracking method, Stanley method,
dynamic model tracking, optimal predictive control, etc. This project refers to the way to
determine the preview point in the pure tracking method to firstly judge the path point
closest to the vehicle. The path point is used as the center of the circle, and the preview
distance /,; is the radius to make a circle. The first point in front of the path point that is not
in the circle is taken as the next target point to follow. In this experiment, the value 7 of the
RRT* algorithm is 1 m. If[; = n = 1 m is set, select the next point on the path as the point
to follow. This preview distance is greater than the wheelbase of the car. There is a reason-
able preview distance. Meanwhile, this project does not require the vehicle trajectory to
strictly conform to the global path, so the setting here can be looser. The specific algorithm
steps are as follows:

1. Select the point p closest to the current vehicle position on the global path.
2. If pis not the end point, set the p next node as the target point to be followed by the
vehicle. If p is the end point, set p as the target point to be followed by the vehicle.

After executing this algorithm, the target points the vehicle will follow is the end point or
the second closest point on the path ahead, as shown in Fig. 12.
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Fig. 12 Dynamic path following

Fig. 13 Dynamic obstacle model

5.3 Simulation environment and performance analysis

The simulation environment of the final test is a dynamic environment, including
static and dynamic obstacles. The static obstacles are the same as those in the simula-
tion environment in Chapter 3. Dynamic obstacles are newly added here.

5.3.1 Dynamic obstacle model

The dynamic obstacle adopts the bicycle model [22]. The kinematic bicycle model
assumes that the description object is shaped like a bicycle, and its control can be
simplified as (acc, §). Thereinto, acc is acceleration, stepping on the accelerator pedal
means positive acceleration, and stepping on the brake pedal means negative accel-
eration. § is the steering wheel angle, because the front wheel angle is approximately
proportional to the steering wheel angle. So, it can be assumed that this steering
wheel angle is the current angle of the front tires. In this experiment, the speed of the
dynamic obstacle is constant at 2 m/s, so the control amount for the dynamic obstacle
is § only. The trajectory of the dynamic obstacle in each time is approximately an arc,
as shown in Fig. 13. Thereinto, R is the curvature radius of the trajectory point where
the rear wheel is located. L is the wheelbase, which is set to 0.8 m in this project.
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The collision of dynamic obstacles obeys the completely elastic collision without
rotation. The dynamic obstacle may collide with another moving obstacle, a stationary
obstacle or boundary during the movement. In this project, it is assumed that all colli-
sions obey the non-rotational fully elastic collision theorem.

6 Performance analysis and results
(A)  Global path planning with reference to stationary obstacles

The environment contains 15 static obstacles, which are filled with gray. By the RRT*
algorithm, the path planning is carried out in the case of considering the global station-
ary obstacles only. The result is shown in Fig. 14. Thereinto, the point in the lower left
corner of the path is a red point, which represents the target point. The point in the
upper right corner of the path is a yellow point, which represents the starting point. The
points on the path are cyan points. The path connects a route from the starting point to
the target point.

(B)  Dynamic path following and obstacle avoidance

Dynamic obstacles and vehicles could be added on the basis of static obstacles. 6
dynamic obstacles are taken as an example. In order to facilitate the distinction, dynamic
obstacles are marked with colored outlines, as shown in Fig. 15. After that, the neural
network is used to control the vehicle to complete dynamic path following and obsta-
cle avoidance tasks. The trajectory of the vehicle and the dynamic obstacle is shown in
Fig. 16.

As shown in Fig. 16, the vehicle successfully avoids the green and cyan obstacles and
successfully reached the target area. It could be seen that in the presence of dynamic
obstacles, the automatic driving obstacle avoidance scheme with dynamic path following
could accomplish the obstacle avoidance task excellently.

o)
0
o @
o
o
o OQO @)
o
o
o
o

Fig. 14 Global path planning
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Fig. 15 Initial obstacles and vehicle positions

Fig. 16 Trajectory diagram

(III) Method comparison without considering global path planning

In the third chapter, there is a situation of falling into the local optimum. The test is
carried out in the same scene, and the effect comparison is shown in Fig. 17 and Fig. 18.
It can be seen that the two use the same neural network to control the vehicle, but the
effect is completely different. The dynamic path following method takes into account the
global optimal path and could guide the vehicle away from the local optimal path.

7 Conclusion and discussion

This paper describes the design and implementation of automatic driving scheme based
on dynamic path following, including some implementation details of RRT * path plan-
ning algorithm, and the description of the final scheme based on road strength planning
and reinforcement learning design. At the end of this paper, through the actual test of
the algorithm proposed in this project, the effectiveness of completing the goal-driven
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Fig. 17 Traditional reinforcement learning method
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Fig. 18 Dynamic path following method

obstacle avoidance task in the dynamic environment is verified; Compared with the tra-
ditional reinforcement learning obstacle avoidance method, the scheme proposed in this
project can guide the vehicle away from the local optimal solution and has good target
arrival ability.

The obstacle avoidance scheme proposed in this paper still needs to be improved.

1. The vehicle model used is relatively simple. The vehicle model used in this paper is a
vehicle model with complete constraints, but the kinematics model of the real vehi-
cle belongs to the vehicle model with incomplete constraints. If you want to test the
algorithm performance in the real scene, you must use this vehicle model. However,
it is difficult to use reinforcement learning to control the vehicle with incomplete
constraint motion model, and how to solve it remains to be considered.

2. Multi-agent obstacle avoidance is not considered. In this paper, the dynamic obsta-
cle adopts the bicycle model and the random motion strategy, which leads to the
non-active collision problem that cannot be avoided by the vehicle in the process
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of training and testing, that is, the vehicle has completed the obstacle avoidance
behavior, but the moving obstacle actively collides with the vehicle. In the scenario of
networked automatic driving, vehicles in a certain area will adopt the same obstacle
avoidance strategy, which can solve the problem of non-active collision. Therefore,
based on the discussion in this paper, the problem of multi-agent obstacle avoidance
needs to be considered.

Abbreviations

VFH Vector field histogram
PRM Probabilistic roadmap
RRT Rapidly exploring random tree

DDPG Deep deterministic policy gradient
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