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1  Introduction
The emerging of Machine Learning has enabled a technical evolution of transporta-
tion systems in recent years. Cognitive Internet of Vehicles (CIoV) incorporates rap-
idly evolving Deep Neural Networks, Deep Reinforcement Learning, and Graph Neural 
Networks to achieve intelligent cognition, resource optimization, traffic prediction, and 
decision-making on the traditional Internet of Vehicles (IoV). CIoV integrates machine 
learning techniques into Cognitive Signal Processing [1–8], Image Processing [9, 10], 
Autonomous Driving [11, 12], and Traffic Congestion Monitoring [13–15]. These appli-
cations offload machine learning workloads to the CIoV framework.
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We demonstrate the architecture of CIoV framework in Fig.  1. The CIoV architec-
ture consists of cognitive engines, cloud data centers, edge data centers, and vehicles. 
The cognitive engine is a set of software systems running in the cloud data center and 
edge data center, which provides software runtime environment, service management, 
and task scheduling for the above machine learning tasks. Cloud and edge data centers 
offer centralized and distributed hardware environments for cognitive engines, respec-
tively. Cloud data centers centrally host high-performance servers and accelerators for 
machine learning model training and inference. Edge data centers are deployed at the 
edge of networks and geographically distributed in the transportation system. Servers 
in cloud data centers are connected through the data center networks, and servers in 
edge data centers are connected to data centers via high-speed backhaul links. ❶ All 
data transmissions of cognitive services rely on the CIoV network system. The cogni-
tive service request generated by a vehicle is first received by an edge data center server. 
❷ For emerging and latency-sensitive service requests, edge data centers handle them 
in local virtual machines and forward other requests to cloud data centers. ❸ When 
a service request demands a larger amount of computation and storage resources, the 
service request needs to traverse through data center networks and acquire resources 
on other servers. Then, the request is forwarded to a server through the data center net-
work, which hosts the cognitive service in a virtual machine. After that, the cognitive 
service replies the request along the reverse path to the vehicle.

All cognitive service requests and responses are transmitted through the edge or cloud 
data center networks. The edge and cloud data center networks play an irreplaceable 
role in CIoV. Although high-performance ASIC-based switches and sophisticated net-
work scheduling algorithms are well equipped in these data center networks to handle 
dynamic and urgent requests. A critical missing component, the software-based vir-
tual switch, becomes a hindrance to system optimization. Servers in edge and cloud 
data centers typically host all machine learning services in virtual machines through a 
virtualized environment. In Fig. 2, we illustrate the architecture of a virtualized server 
in edge and cloud data centers. The virtualized server hosts multiple virtual machines 
(VMs), a hypervisor, and a vswitch from the application layer to the system layer. Cogni-
tive service providers rent edge and cloud data centers’ compute, storage, and bandwidth 
resources for deploying machine learning services in this architecture. And the cloud 
manager virtualizes the hardware resources and manages the virtual machines through 

Fig. 1  The framework of cognitive internet of vehicles
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the hypervisor. Furthermore, the cloud manager usually deploys a vswitch on each virtu-
alized server to provide numerous network services, such as Access-Control List (ACL), 
Quality of Service (QoS), and Virtual Private Cloud (VPC), etc. The vswitch is a system 
software that takes over the physical Network Interface Cards (NICs) plugged into the 
server and virtual (software) NICs created by virtual machines. According to the cloud 
manager’s configuration, the vswitch forwards packets between these NICs by forward-
ing rules. All cognitive service requests and replies are forwarded by virtual switches, 
which affects the quality of service of each cognitive service. The virtual machines, the 
hypervisor, and the vswitch share hardware resources on a server. The virtual machines 
occupy most of the CPU cores on the server and bring significant revenue for the cloud 
manager. The hypervisor occasionally takes up a small number of CPU cores to marinate 
the virtualization system. The vswitch takes up a considerable amount of CPU resource 
to provide line-rate packet forwarding for the VMs. In addition, with the evolution of 
data center networks, the number of NICs and NIC bandwidth are growing substan-
tially. Thus, the cloud manager has to allocate more CPU resource to the vswitch. How-
ever, allocating more CPU resource to the vswitch reduces the revenue of cloud services 
and increases operational expenses (OpEx).

To tackle this problem, we need to efficiently allocate resource to each vswitch in edge 
and cloud data centers. However, the rapid development of edge and data center net-
works in CIoV also creates enormous challenges in resource allocation for vswitches. 
On the one hand, the cloud manager can hardly predict the users’ requirements accu-
rately in real-time. Virtual machines deployed by cognitive service providers may receive 
and transmit data in an arbitrary time. For example, cognitive service requests may be 
generated at any time when vehicles pass through an edge network node, which makes 
requests unpredictable. Thus, it is difficult for the cloud manager to accurately predict 

Fig. 2  The architecture of a virtualized server
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when virtual machines receive requests and reply data. Although it is possible to sum-
marize traffic patterns statistically and allocate resource to vswitches based on prior 
knowledge, the prediction and resource allocation is coarse-grained and inaccurate, 
which leads to improper resource allocation in ICoV.

On the other hand, the emerging hardware architecture of virtualized servers in 
data centers also complicates the dynamic resource allocation problem for vswitches. 
In recent years, the cloud manager will plug multiple physical NICs on each server to 
increase physical network bandwidth, achieve load balance, and improve server access 
reliability. These physical NICs are connected to Top-of-Rack (ToR) switches, and the 
vswitch will take over the NICs in the same server. However, deploying multiple NICs on 
each server will further complicate the dynamic resource allocation of vswitches in data 
centers. First, the packet scheduling decisions of a vswitch should be made based on the 
amount CPU resource allocated to the vswitch. The vswitch executes packet schedul-
ing on CPU cores in runtime for classifying and forwarding each packet to NICs. The 
packet scheduling decision determines which NIC should a packet be forwarded to, and 
it impacts the incoming workload of a NIC and the number of allocated CPU cores on 
a NIC. For example, the vswitch could schedule more packets to a NIC allocated with 
more CPU cores to reduce CPU idling. Therefore, to achieve better packet delivery per-
formance, we need to jointly optimize the dynamic resource allocation problem and 
the packet scheduling problem. Second, to enhance the packet forwarding throughput 
for cognitive services with high QoS requirements, the resource allocation and packet 
scheduling strategies should be made in a very short time according to the dynamic traf-
fic pattern, which makes the joint optimization problem more difficult.

To address the above challenges, we jointly model the dynamic vswitch resource allo-
cation problem and the packet scheduling problem in CIoV. The model jointly optimizes 
the resource allocation strategy for each vswitch NIC and the packet scheduling strat-
egy for each packet in each time slot. To solve the joint optimization problem efficiently, 
we propose dynamic resource allocation and packet scheduling algorithms for vswitches 
based on Lyapunov optimization.

The main contributions of this paper can be summarized as follows.

•	 We model the problem into an optimization problem, which minimizes the time 
expenditure of resource allocation on vswitches under resource constraints and net-
work constraints.

•	 We apply the Lyapunov Optimization Framework [16–19] to transform the problem 
into a discrete-time queueing system, which converts the solution of the optimiza-
tion problem into a queue stability problem. Lyapunov optimization is an optimiza-
tion framework for dynamic systems, and it can make decisions using dynamic queue 
backlogs (lengths) to stabilize the entire system in real-time. It does not require prior 
knowledge about the input data and only acquires queue backlogs to optimize the 
system in real-time.

•	 We derive the performance tradeoff O(1/V) and O(V) between the time-average 
expectation of resource allocation and queue backlogs and design low-complex-
ity distributed scheduling algorithms to solve the problem. The factor V is a posi-
tive penalty factor, which indicates the relation between the system stability and the 
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object of the problem. Lyapunov optimization framework can also provide a per-
formance bound between the optimization object and queue backlogs, enabling us 
to balance the stability of the system and the optimization object. We also propose 
extended algorithms to improve queue backlogs without breaking the performance 
tradeoff.

•	 We evaluate our packet scheduling and resource allocation algorithms on virtualized 
servers and network-wide simulations. Experiment results show that our algorithms 
outperform other methods in real-world scenarios and workloads.

2 � Related works
Cognition IoV empowers Artificial Intelligence with IoV through integrating data min-
ing, reinforcement learning, and deep learning in its architecture. CIoV frameworks 
usually provide cognitive services by deploying services in edge and cloud data cent-
ers. Cloud data centers provide high-powered computation and deploy more accurate 
machine learning models. It also allows global resource optimization to provide more 
efficient and dynamic cognition services. On the other hand, edge data centers handle a 
part of lightweight computation and storage tasks, which reduce transmission latencies 
and network congestion. Chen et al.  [20] first introduce a Cognition Layer to enhance 
intelligence in IoV architecture. Cognition Layer handles vehicle tasks, including traf-
fic condition quality analysis, driver behavior modeling, etc. The Cognition Layer is 
deployed in edge and cloud data centers. The cognition layer processes latency-sensi-
tive tasks in edge data centers. Otherwise, it forwards nonlatency-sensitive tasks or 
computation-intensive tasks to cloud data centers. Qian et al. [21] present a three-layer 
CIoV design that deploys cognitive services in a Cognitive Engine Layer. The Cognitive 
Engine Layer handles cognition requests in data centers, which are generated from Road 
Side Units (RSU) and vehicles. Hasan et al. [22] propose a five-layer CIoV model, which 
includes an Edge Computing and Data Pre-Processing Layer and a Cognition and Con-
trol Layer. The Edge Computing and Data Pre-Processing Layer is deployed in edge data 
centers and collects data through intra-vehicular and inter-vehicular communications. It 
forwards the preprocessed data to the Cognition and Control Layer. The Cognition and 
Control Layer is deployed in cloud data centers and provides data storage, computing, 
and machine learning-based data processing of cognition services. Lu et al. [11] design a 
CIoV architecture for Autonomous Driving. It preprocesses real-time cognitive requests 
in Fog Layer and offloads others requests to Cloud Layers. Therefore, all above CIoV 
architectures rely on networks between edge and cloud data centers, and the optimiza-
tion of the network resource allocation is essential in CIoV.

The data networks of edge and cloud carry all cognitive service requests and 
responses, which plays a critical role in CIoV. However, as a key component in 
data center networks, software-based vswitches require a significant amount of 
computing resources on servers to provide high-performance packet process-
ing. Some works have studied the dynamic resource allocation of a single vswitch. 
Shenango [23] designs a congestion detection algorithm to track the duration time 
of each packet in the ingress queue of vswitch as an indicator of core allocation. It 
reduces the granularity of core allocation time intervals to microsecond timescales 
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with a polling kernel module. Arachne [24] provides a dynamic CPU core allocation 
algorithm for vswitch, which scales up the number of CPU core allocation by CPU 
load factor and scales down by hysteresis factor. Snap  [25] allocates CPU cores to 
vswitch through a centralized resource controller, which supports allocating CPU 
cores to reduce the tail latency of packet forwarding for vswitches. In contrast, 
our network model and algorithms can dynamically allocate CPU cores to virtual 
switches based on the analysis of Lyapunov optimization framework and provide 
performance bounds on queue length and resource allocation.

On the other hand, network-wide vswitch resource allocation also reduces the 
resource overhead of cognitive services and improves the performance of cognitive 
services from a global perspective. A lot of researches have investigated network-wide 
vswitch resource optimization on edge and cloud data centers. Yang et al. [26] joint opti-
mize the vswitch deployment and network routing to improve the network load balanc-
ing in Software Defined Networks (SDNs). It formulates the optimization problem as an 
Integer Linear Problem (ILP) and solves the problem with approximation algorithms. 
However, the algorithm only optimizes resource allocation on virtual switches based on 
statically, and all cognitive service requests are dynamic and hard to predict and col-
lect in real-time in CIoV networks, which prevents the deployment of these methods 
in real-world scenarios. Yang et al.  [27, 28] optimize the resource allocation of virtual 
switches and network embedding problems together in an online model and design a 
heuristic algorithm to solve the relaxed problem. The real-time resource allocation algo-
rithm requires solving the resource allocation problem for each vswitch in a centralized 
network controller. CIoV networks are large-scale and geographically distributed, which 
complex the solution of the problems and introduce significant transmission latency. 
Instead, our virtual switch resource allocation algorithm can dynamically allocate 
resources to virtual switches without prior knowledge. Moreover, we can decompose 
the network-wide virtual switch resource allocation into distributed algorithms through 
Lyapunov Optimization Framework. And each virtual switch only executes the algo-
rithm on its own server to adjust the local resource allocation, which does not require a 
centralized resource scheduling.

3 � Network model and performance analysis
In this section, we propose a mathematical model of the dynamic vswitch resource 
allocation problem and the packet scheduling problem in CIoV. It optimizes the time 
expenditure of resource allocation on vswitches and packet scheduling for each net-
work connection. Besides, we apply Lyapunov Optimization Framework [16–18] to 
transform the joint optimization problem into a discrete-time queuing system. It 
converts the model constraints to virtual queues and defines the Lyapunov Func-
tion to represent the stabilization of the system. To solve the optimization problem 
and to stabilize the queue system, we minimize the drift of the Lyapunov Function 
and derive the optimization policies from the function. In addition, we deduce the 
performance tradeoff of the policies from the theoretical analysis, and it shows that 
the time-average expectation of vswitch resource allocation and queue backlogs con-
form to [O(1/V), O(V)] tradeoff.
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3.1 � Network model

We provide an instance of the dynamic vswitch resource allocation problem and the 
packet scheduling problem in CIoV in Fig. 3. All cognitive services are deployed in vir-
tual machines with virtualized servers, and service requests and responses can be con-
sidered as network connections in this model. The data center operator manages the 
system in slotted time. ❶ The vswitch in the server s1 creates a vswitch virtual port u 
for the virtual machine VM1 and binds NICs as vswitch physical ports. The vswitch in 
server s2 also creates a vswitch virtual port v for the virtual machine VM2 and binds 
NICs as vswitch physical ports. ❷ Each vswitch port p enqueues received packets to 
a Receive Queue (Rx-Queue), and a packet classifier dequeues packets at the rate of 
f (rp(t)) . The vswitch resource allocation decision variable rp(t) represents that the cloud 
operator allocates resource rp(t) to vswitch port p on slot t. The performance function 
f (·) describes the relationship between resource allocation and packet processing rate, 
which can be measured on servers. The cache miss and the data bus bandwidth limit 
the forwarding performance of vswitch [29–31], which conduct f (·) to a nondecrease 
concave function [32]. The cloud operator allocates CPU resource to port u by setting 
the vswitch resource allocation variables ru(t) to port u for forwarding packets on the 
server s1.

In the time slot t, ❹ VM1 creates a connection m to VM2 that requires networks 
bandwidth Am(t) . The required bandwidth Am(t) is a stochastic variable and i.i.d over 
slots. The cloud operator should not only allocate the resource to vswitches but also 
decide packet scheduling decisions on this slot. For the packet scheduling decisions, the 
cloud operator needs to choose a forwarding path that connects s1 to s2 for the con-
nection m. In this example, the cloud operator selects the forwarding path yijm(t) , which 
connects the port i in s1 to port j in s2 . The connection occupies the bandwidth Am(t) 
on the forwarding path (i, j). The capacity of the forwarding path is βij . ❺ The vswitch 
in server s2 handles the connection m on port j and enqueues packets in the queue Qj(t) . 
❻ The cloud operator also needs to allocate the resource rj(t) to port j for forwarding 

Fig. 3  An example of packet forwarding in edge and cloud data centers
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packets. ❼ VM2 receives packets of the connection m from vswitch port v, and handles 
the cognition service request. The cognition service response also can be presented as a 
similar process. Without loss of generality, we model all bidirectional service requests 
and responses as two connections (Table 1).

The packets in connection m transverse through port u and are enqueued in Rx-Queue 
Qu(t) . The classifier dequeues packets in Rx-Queue Qu(t) and forwards packets to port 
i. The packets are forwarded through the path (i, j) in DCN. After being received by port 
j, the packets are enqueued in Rx-Queue Qj(t) and forwarded to port v. We define the 
vswitch virtual port backlog update Eq. (1) and the vswitch physical port backlog update 
Eq. (2), which describe the backlog of vswitch queues in each slot.

To optimize the dynamic vswitch resource allocation problem and the packet scheduling 
problem on time average, we define the optimization problem (3–12). The object of the 
optimization (3) is to minimize the time-average expectation of resource allocation on 
vswitches, when the resource capacity constraint (4), the network path capacity con-
straint (5), the flow conservation constraint (6), the single path constraint (7, 8) and the 
queue stable constraint (9) hold. The resource allocation constraint (4) restricts that the 

(1)Qu(t + 1) = max

(

Qu(t)− f (ru(t))+
∑

m∈M

Am(t)z
u
m(t), 0

)

, ∀u ∈ PVM

(2)

Qj(t + 1) = max



Qj(t)− f (rj(t))+
�

m∈M

�

i∈PNIC

�

u∈PVM

�

v∈PVM

Am(t)z
u
m(t)z

v
m(t)y

ij
m(t), 0





∀j ∈ PNIC

Table 1  Key notations

Symbol Description

M The set of all connections

Am(t) A stochastic variable, connection m requires bandwidth Am(t) on time slot t, which is i.i.d over slots

S The set of all virtualized servers

Ps
NIC

All vswitches physical ports in server s, s ∈ S

PsVM All vswitches virtual ports in server s, s ∈ S

Ps All vswitches ports PsVM
⋃

Ps
NIC

 in server s ∈ S

PVM All vswitches virtual ports 
⋃

s∈S P
s
VM

PNIC All vswitches physical ports 
⋃

s∈S P
s
NIC

P All vswitches ports PVM
⋃

PNIC

Qu(t),Qj(t) Queue backlogs of vswitch port u and port j

zum(t), z
v
m(t) Connection m transmits through vswitch port u, v ∈ P on time slot t

βij The bandwidth of network path (i, j), i, j ∈ PNIC

ru(t), rj(t) The vswitch resource allocation decision variables, which denotes the resource allocated to vswitch 
port u ∈ Ps

NIC
 , j ∈ PsVM on time slot t, s ∈ S

y
ij
m(t) The packet scheduling decision variable, which denotes the connection m transverses through the 

network path (i, j) on time slot t

f (·) A nondecrease, concave function f (·) describes the relationship between the resource allocation on 
a vswitch port and the forwarding rate of the port

V The tradeoff factor indicates the relation between the system stability and the object of the prob-
lem, V > 0
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resource allocation for all ports of a vswitch is not greater than the capacity of the server. 
The forwarding path capacity constraint (5) guarantees that the traffic on each forward-
ing path does not exceed the bandwidth of the path. The flow conservation constraint (6) 
ensures that the incoming traffic is equal to the outgoing network traffic for each for-
warding path. The single path constraint (7–8) indicates that the network does not sup-
port multi-path. The queue stable constraint (9) states that the queue backlog will not 
increase to infinite. Queue mean rate stable can be defined as lim

t→∞

E{|Q(t)|}
t = 0 . We 

assume the requirement of each connection and the resource allocation in each server 
are bounded (10–11). The binary variables zum(t), zvm(t) represent that the connection m 
traverses through the vswitch virtual ports u and v. The binary decision variable yijm(t) 
indicates that the connection m is scheduled to traverse through the forwarding path 

(i, j). Define the time average of a stochastic variable as x = lim
t→∞

1
t

t−1
∑

τ=0

x(τ ).

3.2 � Transformed problem

The constraints of the above optimization can also be transformed as queue backlog 
update equations, which have similar forms as the queue update equation of vswitch 
ports. We transform the constraints (4–7) to virtual queues (13–16). And if a virtual 

(3)min
∑

p∈PNIC∪PVM

rp

(4)s.t.
∑

u∈PsVM

ru +
∑

j∈Ps
NIC

rj ≤ Rs, ∀s ∈ S

(5)
∑

m∈M

∑

u∈PVM

∑

v∈PVM

Amzumz
v
my

ij
m ≤ βij , ∀i, j ∈ PNIC

(6)
∑

m∈M

∑

u∈PVM

Amzumy
ij
m =

∑

m∈M

∑

v∈PVM

Amzvmy
ij
m, ∀i, j ∈ PNIC

(7)
∑

i∈PNIC

∑

j∈PNIC

y
ij
m ≤ 1, ∀m ∈ M

(8)∀s ∈ S, if i, j ∈ Ps
NIC, y

ij
m(t) = 0

(9)QueueQp(t) is mean rate stable, ∀p ∈ PNIC ∪ PVM

(10)0 ≤ Am(t) ≤ Amax
m

(11)0 ≤ rp(t) ≤ Rs, p ∈ Ps
NIC ∪ Ps

VM

(12)zum(t), zvm(t), y
ij
m(t) ∈ {0, 1}
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queue is mean rate stable, it denotes that the corresponding constraint holds in the 
optimization problem.

We define a vector (17) which includes all vswitches queues and virtual queues. We can 
define the Lyapunov function (18) and the Lyapunov drift (19) from the vector. The Lya-
punov function is the sum of the squares of all vswitches queue backlogs and virtual 
queue backlogs, which are always nonnegative. If the Lyapunov function is a large num-
ber, it denotes that at least one queue in the vector �(t) is large. It represents that too 
many resources are allocated to the virtual switches, or some constraints are not satis-
fied in the optimization problem. We define the Lyapunov drift as the difference of the 
Lyapunov function with the previous time slot.

To reduce the expenditure of resource allocation and to stabilize the system, we apply 
Lyapunov Optimization Framework [16–19] which minimizes the drift-plus-penalty 
(20) on each slot. The drift-plus-penalty is defined as the weighted sum of the Lyapu-
nov drift and the object of the optimization problem. The factor V is a positive penalty 
factor, which indicates the relation between the system stability and the object of the 
problem. Applying the fact that if a = max(b, 0) , then a2 ≤ b2 to the definition of queues 
(1–2, 13–16), we obtain the inequation (21) which is the bound of the drift-plus-penalty. 

(13)Hs(t + 1) = max



Hs(t)+
�

u∈PsVM

ru(t)+
�

j∈Ps
NIC

rj(t)− Rs, 0



, ∀s ∈ S

(14)
Gij(t + 1) = max



Gij(t)+
�

m∈M

�

u∈PVM

�

v∈PVM

Am(t)z
u
m(t)z

v
m(t)y

ij
m(t)− βij , 0



,

∀i, j ∈ PNIC

(15)

Nij(t + 1) = Nij(t)+
∑

m∈M

∑

u∈PM

Am(t)z
u
m(t)y

ij
m(t)

−
∑

m∈M

∑

v∈PVM

Am(t)z
v
m(t)y

ij
m(t), ∀i, j ∈ PNIC

(16)Km(t + 1) = max



Km(t)+
�

i∈PNIC

�

j∈PNIC

y
ij
m(t)− 1, 0





(17)�(t) � [Qu(t),Qj(t),Hs(t),Gij(t),Nij(t),Km(t)]

(18)

L(�(t)) =
1

2





�

u∈PVM

Qu(t)
2 +

�

j∈PNIC

Qj(t)
2 +

�

s∈S

Hs(t)
2

+
�

i∈PNIC

�

j∈PNIC

Gij(t)
2 +

�

i∈PNIC

�

j∈PNIC

Nij(t)
2 +

�

m∈M

Km(t)
2




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Because these stochastic variables are bounded (10–11), B is a constant independent 
from the factor V, which contains the remaining square terms of the inequation (21).

To minimize the drift-plus-penalty, we minimize the right side of the inequation  (21) 
on each slot, which could deduce the vswitch resource allocation problem (22–23) and 
packet scheduling problem (24).

According to the above analysis, we can design distributed resource allocation policies 
for the dynamic vswitch resource allocation problem and the packet scheduling problem. 
On each slot, the vswitch on each server can solve the optimization problems (22–23) inde-
pendently to allocate resources for each vswitch virtual port and vswitch physical port. 
The cloud operator solves the optimization problem (24) to select the physical path for 
each connection. In addition, the resource allocation and packet scheduling only depend 
on vswitches queue backlogs and virtual queue backlogs on the current slots that will not 
require prior information about the distribution of the traffic.
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3.3 � Performance analysis

Based on the above transformation and optimization policies, we provide a theorem that 
reveals the tradeoff [O(1/V),  O(V)] between the time-average expectation of resource 
allocation and queue backlogs. We can evaluate the system’s stability with the optimiza-
tion object by tuning the factor V, which balances the vswitch resource allocation and 
the satisfaction of optimization constraints.

Theorem 1  Assume the optimization problem (3–8) is feasible, the bounded restraints hold 
(10–11), the initial queue backlogs are finite ( E[L(0)] ≤ ∞ ), and the Slater’s condition holds.

If a C-additive algorithm applies on every slot to minimize the right side of inequality (21) 
and gets the optimal solution 

∑

p∈P r
opt
p  , then(a) the time-average expectation of resource 

allocation satisfies (25) and (b) the time-average expectation of queue backlogs meets (26).

1 � Proof 1  We insert the Slater’s condition on the right side of (21) and apply the 
C-additive algorithm on each slot to get the optimal solution, which yields (27). We get 
(28) from taking expectation of (27) with the law of total expectation, and applying the 
law of telescoping sum from slot 0 to t − 1 . Then, we rearrange the inequation (28)–
(29), divide (29) by Vt and take limits t → ∞ to prove (25). Similarly, we rearrange the 
inequation (28)–(30), divide ηt into (30) and take limits t → ∞ to prove (26).
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4 � Algorithm design
In this section, we design the dynamic vswitch resource allocation and packet schedul-
ing algorithm (Algorithm 1) to solve the problem (3–12). The algorithm calls the vswitch 
resource allocation algorithm (Algorithm  2) on each vswitch and the packet scheduling 
algorithm (Algorithm 3) on the network controller. The dynamic vswitch resource alloca-
tion and packet scheduling algorithm follow the performance tradeoff [O(1/V), O(V)].

4.1 � Algorithm design

According to the performance analysis in Sect. 3.3, we can derive algorithms to optimize 
the problems (22–24). We first design Algorithm 1 to solve the dynamic vswitch resource 
allocation problem and the packet scheduling problem. The cloud operator initializes the 
vswitch queue backlogs (1–2), virtual queue backlogs (13–16), resource allocation deci-
sion variable rp(t) and packet scheduling decision variables yijm(t) . On each slot, vswitches 
execute Algorithm 2 to allocate the resource individually, and the cloud operator executes 
Algorithm 3 to schedule packets for each connection. Finally, the cloud operator updates 
vswitch queue backlogs (1–2) and virtual queue backlogs (13–16).
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Then, Algorithm 2 solves the vswitch resource allocation problem (22–23). On slot t, 
each vswitch s ∈ S calculates f ′(rp(t)) for each vswitch physical port and vswitch virtual 
port independently. The function f (·) is a nondecrease concave function. Therefore, we 
can set rp(t) to minimize the problem (22–23). The time complexity of Algorithm 2 is 
O(n) for each vswitch, and n is the number of vswitch physical ports and vswitch virtual 
ports on a vswitch.

At last, we design Algorithm 3 to schedule packets (24) for each connection. For each 
connection, the cloud operator updates the factor (31) on each forwarding path. If the 
factor is positive, the cloud operator will not select the corresponding forwarding path 
for the connection and vice versa. The algorithm’s time complexity for each connection 
is O(l), and l is the number of possible forwarding paths for a connection.
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Besides, our dynamic vswitch resource allocation and packet scheduling algorithm 
is compatible with data center networks’ existing control plane protocol. For example, 
OpenFlow provides a standard network control plane abstraction. On the one hand, 
it supports per-flow meters to measure each flow size in a fine-grained granularity 
on each vswitch. Algorithm 2 can update the vswitch queue backlogs by utilizing the 
measured flow size. On the other hand, Algorithm  3 can configure the forwarding 
path of each flow by setting flow forwarding rules in the OpenFlow protocol. Thus, 
our algorithm is compatible with data center network control plane protocols and can 
be deployed in data center networks.

4.2 � Extended algorithm

In the real-world CIoV network, if the derivative of the optimization problem (22–23) 
is greater than 0 (32) for the specific vswitch port u, the vswitch will not allocate any 
CPU resource to the port u according to Algorithm 2. The packets in Qu(t) could not 
be dequeued until the vswitch allocates resource to port u, which delays packets for-
warding and increases the queue backlog of port u.

To decrease the queue backlog of port u, we deceive the vswitch by inserting the queue 
backlog place-holder [33] (33) to the derivation of the optimization problem (22–23). 
The queue backlog place-holder Pu(t) is a nonpositive parameter to decrease the deriva-
tion of (22–23) until the derivation is not greater than 0.

The queue backlog place-holder of port u will not break the performance tradeoff 
(25–26). A queue backlog place-holder can be considered as an invisible queue backlog 
(34) which decreases the resource capacity virtual queue (13) for the port u. The cloud 
operator will allocate more resources to port u. To stabilize the resource capacity virtual 
queue, Algorithm 2 will decrease the resource allocation for other ports on the vswitch.

(32)Hs(t)− Qu(t)
df (ru(t))

dru(t)
+ V > 0

(33)Hs(t)+ Pu(t)− Qu(t)
df (ru(t))

dru(t)
+ V ≤ 0
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The dynamic vswitch resource allocation and packet scheduling algorithm also can use 
the extended resource allocation algorithm to decrease queue backlogs violating the per-
formance tradeoff.

5 � Experiments and evaluation
In this section, we first measure the performance of vswitches on a virtualized server 
and evaluate the vswitch resource allocation algorithm on the testbed. Second, we evalu-
ate the dynamic vswitch resource allocation and the packet scheduling algorithm in the 
network-wide simulation on a real-world data center network topology. Finally, we ver-
ify the algorithm performance under various experiment settings and validate our per-
formance bounds.

5.1 � Single‑node evaluation

We first evaluate the performance of the virtual switch on a hardware testbed. The hard-
ware testbed consists of a packet generation server and an under-test server. Each server 
equips two CPUs (E5-2620v2, 12 cores) and connects to each other with 10 Gbps NICs 
(Intel 82599). We implement the vswitch resource allocation and packet scheduling 
algorithms on OpenvSwitch (OVS) [29] 2.5.1 and Data Plane Development Kit (DPDK) 
[34] 2.2.0 on the under-test server. We generate 10 Gbps network traffic at line rate with 
the traffic generator pktgen-DPDK [35]. The network traffic reaches 14.88 Mpps under 
64 bytes packet length, which is the upper bound throughput of 10 Gbps NICs.

We configure the flow table in the vswitch to forward all incoming packets and allocate 
different numbers of CPU cores to the vswitch for performance evaluation. We show the 
measurement results in Fig.  4a. First, we find that vswitch can process more network 
packets as the number of allocated CPUs increases. The allocation of CPU resources 
and the throughput rate of vswitch is a nondecrease concave function, which is consist-
ent with our assumptions in Sect. 3.1. Then, we find that the virtual switch requires at 
least five CPU cores to process line-rate network traffic with the current hardware set-
tings. The vswitch has already occupied 41.7% (5/12) of the total CPU cores. Data center 
providers would have to statically allocate a significant portion of CPU resources to vir-
tual switches to provide line-rate forwarding rates without dynamic resource allocation 
algorithms.

We also evaluate the vswitch resource allocation algorithm on the testbed for 30 time 
slots, and the interval of each time slot is 60 s. In each time slot, we generate a random 
packet flow with an uniform random distribution packet size and collect the averaged 
queue backlogs and the number of allocated CPU cores on the vswitch in Fig. 4b and c. 
The current implementation of OVS-DPDK only supports static resource allocation, and 
we statically allocate three cores and five cores in this experiment. On our testbed, the 
vswitch achieves line-rate forwarding with five CPU cores. When allocating three CPU 
cores to the vswitch, it cannot achieve peak performance and delay packet forward-
ing. Our dynamic allocation algorithm alters CPU allocation to the incoming packets, 
allowing the vswitch to handle peak and lower network traffic dynamically. Experiments 
show that our dynamic virtual switch resource allocation algorithm can reduce the CPU 

(34)Ĥs(t) = Hs(t)+ Pu(t)
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resource allocation compared to static allocation while providing sufficient forwarding 
throughput.

5.2 � Network‑wide evaluation

To evaluate our dynamic vswitch resource allocation and the packet scheduling algo-
rithm, we build up an event-driven simulation environment. The network-wide simula-
tion environment includes an edge data center architecture [36, 37] and the cloud data 
center architecture [38, 39]. We equip each server in the edge data center with 20 CPU 
cores and a 25 Gbps NIC, and each server in the cloud data center with 40 CPU cores 
and a 40 Gbps NIC. We generate cognition service workloads from real-world edge data 

Fig. 4  The vswitch resource allocation evaluation on the single-node testbed
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center network distribution [40] and cloud data center network traces [38]. The tradeoff 
factor V is set to 1.5× 107.

We implement three resource allocation algorithms as baselines for the experiment. 
(1) Static resource allocation. It allocates resources to virtual switches according to the 
mean value of the input data. (2) Shenango-like [23] resource allocation. It directly allo-
cates resources according to vswitch queue backlogs. When the queue backlogs increase, 
it increases CPU allocation and vice versa. (3) Snap-like [25] resource allocation. It also 
allocates resources according to queue backlogs. Besides, it employs a more aggressive 
allocation strategy that always over-allocates CPUs to reduce tail latency.

We show the performance evaluation of these four algorithms in Fig. 5 for edge and 
cloud data centers, respectively. We collect the number of allocated CPUs, the average 
queue length, and the throughput of virtual switches. Since the static resource allocation 
is based on the prior knowledge of the input data, it can achieve higher throughput and 
lower queue backlogs with less CPU resources. However, it is difficult to obtain the pre-
cise data distribution in real-world CIoV scenarios, making this algorithm hard to apply 
in practice. Both Shenango-like and Snap-like algorithms allocate resources according to 
the queue backlogs of virtual switches. Shenango-like algorithm occupies less resources 
and achieves lower throughput compared with the Snap-like algorithm. Snap-like algo-
rithm achieves the shortest queue backlogs and the highest throughput through aggres-
sive resource allocation. However, it clearly consumes a large number of CPU resources. 
Compared with these algorithms, our resource allocation algorithm not only utilizes 
vswitch queue backlogs, but also considers virtual queue backlogs, which are trans-
formed from the optimization constraints by the Lyapunov Optimization Framework. 
It balances resource allocation and queue backlogs in the network-wide scenario and 
achieves better performance.

5.3 � Theoretical performance tradeoff evaluation

To validate the [O(1/V), O(V)] performance tradeoff, we execute the Algorithm 1 for 103 
time slots and tunes the tradeoff factor V from 1.2 to 1.3× 107 under the same experi-
ment configurations in Sect.  5.2. We collect the time-average expectation of queue 
backlogs and resource allocation for each V in Fig. 6a and b. In Fig. 6a, the time-aver-
age expectation of resource allocation reduces and closes to the optimal solution with 

Fig. 5  Network-wide evaluation
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V increasing. And in Fig. 6a, the time-average expectation of queue backlogs increases 
to infinity as V increasing. These results both confirm that our algorithm follows the 
[O(1/V), O(V)] performance tradeoff.

We also evaluate the extended Algorithm 1 which inserts queue backlog place-hold-
ers to virtual queues. We execute the extended algorithm under the same configuration 
and collect the time-average expectation of resource allocation and the time-average 
expectation of queue backlogs in Fig. 6a and b. Figure 6a and b reveals that the extended 
algorithm reduces queue backlogs and enlarges a little bit of the resource allocation 
on vswitches due to the additional backlog place-holders. The results validate that the 
extended algorithm also satisfies the [O(1/V), O(V)] tradeoff.

6 � Conclusions
In this paper, we study the dynamic vswitch resource allocation problem and the packet 
scheduling problem in CIoV. We first formulate the joint optimization problem to opti-
mize resource allocation on vswitches and analysis it through Lyapunov Optimization 
Framework. Then, we transform the optimization problem into a discrete-time queue-
ing system and decompose the problem into a queue stability problem. Next, we prove 
the performance tradeoff [O(1/V), O(V)] of the policies between the time-average expec-
tation of resource allocation and queue backlog. We design low-complexity vswitch 
resource allocation and packet scheduling algorithms from the analysis. Finally, we 
design experiments to evaluate the performance of our algorithms on a real-world test-
bed and a network-wide simulation. Results show that our algorithms satisfy the perfor-
mance tradeoff and outperform other allocation algorithms.

Fig. 6  Theoretical performance tradeoff evaluation
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