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Abstract

To meet the demands of massive connections in the Internet-of-vehicle communica-
tions, non-orthogonal multiple access (NOMA) is utilized in the local wireless net-
works. In NOMA technique, various optimization methods have been proposed to
provide optimal resource allocation, but they are limited by computational complexity.
Recently, the deep reinforcement learning network is utilized for resource optimiza-
tion in NOMA system, where a uniform sampled experience replay algorithm is used to
reduce the correlation between samples. However, the uniform sampling ignores the
importance of sample. To this point, this paper proposes a joint prioritized DON user
grouping and DDPG power allocation algorithm to maximize the system sum rate. At
the user grouping stage, a prioritized sampling method based on TD-error (temporal-
difference error) is proposed. At the power allocation stage, to deal with the problem
that DQN cannot process continuous tasks and needs to quantify power into discrete
form, a DDPG network is utilized. Simulation results show that the proposed algorithm
with prioritized sampling can increase the learning rate and perform a more stable
training process. Compared with the previous DQN algorithm, the proposed method
improves the sum rate of the system by 2% and reaches 94% and 93% of the exhaus-
tive search algorithm and optimal iterative power optimization algorithm, respectively.
Although the sum rate is improved by only 2%, the computational complexity is
reduced by 43% and 64% compared to the exhaustive search algorithm and the opti-
mal iterative power optimization algorithm, respectively.

Keywords: Prioritized deep Q network (Prioritized DQN), Sum tree, Importance
sampling, Deep deterministic policy gradient (DDPG), Non-orthogonal multiple access
(NOMA)

1 Introduction

Internet of Vehicles (IoV) is applied to support road safety, smart and green transporta-
tion and In-vehicle Internet access, which is a promising technique to improve auton-
omous driving system performance. 5G is the core wireless technology used for IoV
networks that provides ubiquitous connectivity and mass data transmission [1]. Among
various new technologies in 5G, Non-orthogonal multiple access (NOMA) is utilized
to support high capacity data transmissions by multiplexing the same time frequency
resources by power division or code division [2—4]. Sparse code multiple access (SCMA)
is a popular technology in code domain NOMA. The spreading sequences are sparse
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sequences, and SCMA can significantly improve system capacity through non-orthogo-
nal resource allocation [5]. The principle of power domain NOMA technology is to use
power multiplexing technology to allocate power to different users at the transmitter,
and then superimpose multiple users on the same time—frequency resource block by
superposition coding (SC) technology, and send them to the receiver by non-orthogonal
method. At the receiving end, successive interference cancellation (SIC) is used to elimi-
nate interferences from superimposed users [6].

Meanwhile, the connection ability of NOMA can make it applicable to future wire-
less communication systems (for example, cooperative communication, multiple-input
multiple-output (MIMO), beam forming and Internet of Things (IoT), etc.). Research-
ers combine NOMA and MIMO to give full play to their advantages, which can fur-
ther improve the efficiency of the system in terms of capacity and reliability [7, 8]. Liu
et al. [9] proposed a Ka-band multibeam satellite IIoT, which improved the transmission
rate of NOMA by optimizing the power allocation proportion of each node. The results
showed that the total transmission rate of NOMA is much larger than that of OMA. He
later [10] proposed a cluster-based cognitive industrial IoT (CIIoT), in which data were
transmitted through NOMA. The results showed that the NOMA for the cluster-based
ClIIoT could guarantee transmission performance and improve system throughput.

When the NOMA system was proposed, its resource allocation problem was mainly
studied by constructing the joint optimization of user grouping and power allocation,
and to find the optimal solution by using typical algorithms such as convex optimization
and Lagrange multiplication. Han S and others [5] used a Lagrangian dual decomposi-
tion method to solve the non-convex optimization problem of power allocation, and the
results showed that the optimized algorithm can significantly improve the system per-
formance. Islam et al. [11] proposed a random user pairing method, in which the base
station randomly selected users to form several user sets with the same number of users,
and then put the two users with large channel gain difference in the user set into one
group. Benjebbovu et al. [12] proposed an exhaustive user grouping algorithm. Zhang
et al. [13] proposed an algorithm for user grouping based on channel gain. These algo-
rithms could improve the system performance, but at the same time, the complexities
were too high to apply to practice. Salaiin et al. [14] proposed a joint subchannel and
power allocation algorithm, and the results showed that this algorithm had low com-
plexity. However, due to the dynamism and uncertainty of the wireless communication
system, it is difficult for these joint optimization algorithms of user grouping and power
allocation to model the system and derive the optimal scheme. Without an accurate sys-
tem model, the performance of the NOMA system may be limited.

In recent years, deep learning has been applied to wireless communication. Many
scholars use neural networks to approximate optimization problems. Gui et al. [15,
16] used the neural network to allocate resources, and proposed a deep learning aided
NOMA system. Compared with traditional methods, this method had good perfor-
mance. Saetan and Thipchaksurat [17] proposed a power allocation scheme with max-
imum system sum rate. The optimal scheme was found by exhaustive search, and the
optimal power allocation scheme was learned by training a deep neural network. The
results showed that the scheme could approach the optimal sum rate and reduce the
computational complexity. Huang et al. [18] designed an effective deep neural network
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which implemented user grouping and power allocation through a training algorithm,
improved transmission rate and energy efficiency. However, deep learning itself cannot
generate the learning goal, but by using optimization algorithms. Deep neural networks
are trained based on the learning objectives provided by the optimization algorithm,
which has the advantage of increasing the computational speed and reducing the run-
ning time. Therefore, deep learning-based approaches require the use of traditional opti-
mization algorithms to generate optimal labels for training. In a complex system, it is
difficult to obtain good training data, and the training is also very time-consuming.

To solve these problems, deep reinforcement learning (DRL) is applied. Deep rein-
forcement learning is a combination of deep learning and machine learning. It uses the
powerful representation ability of the neural network to fit Q table or direct fitting strat-
egy to solve the problem of large state action space or continuous state action space [19].
Ahsan et al. [20] proposed an optimization algorithm based on DRL and SARSA algo-
rithms to maximize the sum rate. The results showed that it could achieve a high accu-
racy with low complexity. Mnih et al.[21] proposed a Deep Q-Network (DQN) which
was used as an approximator in many fields. He et al. [22] proposed a resource allocation
scheme based on DRL, which expressed the joint channel allocation and user group-
ing problem as an optimization problem. Compared with other methods, the proposed
framework could achieve better system performance.

When using the deep reinforcement learning network to allocate NOMA resources,
there are many problems that need to be further solved. Firstly, the experience replay
algorithm is used in DQN (the most commonly used deep reinforcement learning net-
work) to reduce the correlation between samples and ensure the independent and iden-
tically distributed characteristics between samples, but the current sampling method of
the sample pool is uniform sampling which ignores the importance of the sample. In the
sampling process, some valuable samples may not be learned, which reduces the learn-
ing rate. Prioritized DQN algorithm [23] can solve the sampling problem in experience
replay. It can improve the sampling efficiency and learning rate by using a sum tree and
importance sampling. In addition, since the output of DQN can only be discrete, but the
user power is continuous, although the power can be quantified, quantization will bring
quantization error. Deep deterministic policy gradient (DDPG) network [24] can solve
this problem, and use actor-critic structure to improve the stability of learning. Meng
et al. [25] performed multi-user power allocation based on the DDPG algorithm. The
results showed that the algorithm is superior to the existing models in terms of sum rate,
and had better generalization ability and faster processing speed.

Aiming at the above problems in current NOMA resource allocation methods, this
paper proposes a joint optimization method of user grouping and power allocation in
the NOMA system based on deep reinforcement learning network. Firstly, this paper
proposes a joint design of DQN-DDPG network, in which DQN executes discrete tasks
to perform user grouping, while DDPG network executes continuous tasks to allocate
power to each user. Secondly, this paper proposes one solution to the problems existing
in the random sampling methods, where temporal difference error (TD-error) is used
to calculate the sample priority, and the valuable samples are sampled according to the
priority. Besides, the sum tree is also utilized to speed up the search speed of priority
samples.



He et al. EURASIP Journal on Advances in Signal Processing ~ (2021) 2021:120 Page 4 of 17

The paper is organized as follows. Section 2 presents the system model of NOMA,
forms the optimization objective of this paper, describes the proposed NOMA system
resource allocation algorithm based on deep reinforcement learning. Section 3 shows

the numerical simulation results. Section 4 draws a conclusion.

2 Methods

2.1 System model
This paper researches on the resource allocation issue of an uplink multi-user NOMA
system, where the base station (BS) is located in the center of the cell, and the users
are randomly distributed near the base station. The total system bandwidth B is equally
divided among S subchannels, and the users in the same subchannel are non-orthogonal.
Assume there are U users and S subchannels in the system, and the maximum power
transmitted by the base station is P

max*

The signal transmitted on subchannel s is,

u
x5(2) = Z bs,u(t) \ ps,u(t)xs,u(t) (1)
u=1

where x,(¢) and p;,(t) represent the data signal and allocated power of user u on
subchannel s, respectively. b, (¢) = 1 indicates that subchannel s is allocated to user u,
and vice versa. The received signal can be expressed as,

u u
Vsu(t) = by (£) s (t) Z V Ps.u () %5, (E) + Z bs,q )/ Ps,g () %s,q () + Z5,u(£)
u=1 q=1,q#u
2)

where kg, (t) = gs,uPL_l(ds,u) denotes the channel gain between the base station and
user « on subchannel s. Assume that g; , is Rayleigh fading channel gain [26], PL~1(dy )
is the path loss, and d_ , is the distance between user u and base station on channel s.
zs,,(t) represents additive white Gaussian noise which follows the complex Gaussian dis-
tribution, i.e. z;, (t) ~ CN(0,02).

In the NOMA system, due to the interference introduced by superimposed users, suc-
cessive interference cancellation (SIC) technique is required to eliminate interference at
the receiver. Firstly, the receiver decodes the users with high power levels, then subtracts
it from the mixed signal, repeats this process until the desired signal has the maximum
power in the superimposed signal, and regards the rest as interference signals. As a
result, the signal to interference plus noise ratio (SINR) can be described as,

bs,u @®)psu(®) |hs,u () |2

SINR(?) = 3
S <02 Do s O g OF + 07 ®
The data rate of user # on subcarrier s is defined as,
B
Reu(t) = Slogy(1 + SINR(1)) (4)

The user sum rate is,
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The optimization objectives and constraints of the joint user grouping and power allo-
cation problem are given as follows,

P1 : maxR
S
Cl:0<) poult) <Py, s€Suel
s=1
C2:bsy(t) €{0,1}, seS,uel
S (6)
C3:> byut)<l,seSuel

s=1

u
C4:Y bou(t)<C seSuel

u=1

In the above constraints, C1 indicates that the power allocated to each user should
be less than the maximum power transmitted by the base station. C3 and C4 indicate
that multiple users can be placed on one subchannel. Because this objective function is
a Non-Convex optimization problem, it is difficult to find the global optimal solution.
Although the global search method can find the optimal solution by searching all the
grouping possibilities, the computational complexity is too high to apply in practice.
Therefore, a DRL-based method is proposed for user grouping and power allocation in
the NOMA system.

2.2 NOMA resource allocation based on DRL network
In this section, a NOMA resource allocation network based on DRL network is pro-
posed. The description of the system structure is given in the following subsections.

2.2.1 System structure

The system structure is shown in Fig. 1. Figure la is a general reinforcement learning
network structure. The general reinforcement learning is mainly divided into the follow-
ing five parts: agent, environment, state s, action a,, and immediate reward 7, The learn-
ing process of reinforcement learning can be described as follows: the agent obtains the
state s, from the environment, and then selects an action a, from the action space and

Page 5 of 17
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feeds it back to the environment. At this time, the environment generates a reward r,,
which is generated by choosing this action a, in the current state s, and also generates
state s, ; of the next time slot. Then the environment gives them back to the agent. The
agent stores learning experience in the experience replay pool to facilitate learning in the
next time slot.

According to the structure of reinforcement learning, the system model designed
in this paper is shown in Fig. 1b. Specifically, the NOMA system represents the envi-
ronment of reinforcement learning. There are two agents, the Prioritized DQN user
grouping network represents agent 1, and the DDPG power allocation network repre-
sents agent 2. We use channel gain as a characterization of the environment. Accord-
ingly, the state space can be expressed as S = {/1,1(t), /2,1(t), ..., ks, (1)}, the user group
space can be expressed as Al = {b1,1(t),b21(t),...,bs,(t)}, power allocation space
are A2 = {p1,1(t), p2,1(t),...,psu(t)}. Besides, the immediate reward is denoted as
r: = R, where R is the system sum rate defined in (5). Our goal is to maximize long-term
rewards, which is expressed as,

o0
Ry =ri+yreo + e+ =Z)’i”t+i’ y €10,1] 7)
i=0

where y is the fading factor. When =0, it means that the agent only pays attention to
the reward generated in the current state; when y # 0, it means that the agent also pays
attention to future reward, and future rewards take more weight as y increases.

The expected value of cumulative return R, (obtained by (7)) of general reinforcement
learning is defined as the Q value, which is determined by state s,, and the selection of

action a, under a certain strategy m. It is expressed as,
Qx (st;ar) = Elry + y max Qr (s¢+1, ar+1) 8¢, arl (8)

In summary, in each time slot (TS), the agent obtains the channel gain from the
NOMA system, selects user combination and power in the action space according to
current channel gain, and gives the action (optimal user groups and power) result back
to the NOMA system. According to the received action, the NOMA system generates
immediate reward and the channel gain of the next time slot, and then passes them to
the agent. Based on the reward, the agent updates the decision function of selecting this
action under the current channel gain, which completes an interaction. Repeat this pro-
cess until the agent can generate an optimal decision under any channel gain. The spe-
cific design of the Prioritized DQN and DDPG network in Fig. 1b is illustrated in Fig. 2,
and the detail description of them will be given in the following subsections.

2.2.2 User grouping based on prioritized DQN

In this article, we use the Prioritized DQN to perform user grouping, which is an
improved network of DQN. The DQN includes two networks, the Q network generates
the estimated Q value, and the target Q network generates the target Q values used to
train the Q network parameters. The two networks are identical in structure but differ-
ent in parameters. The Q network is trained with the latest parameters, while the param-
eters of the target Q network are copied from the Q network at intervals. The main idea
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Fig. 2 DRL-based NOMA resource allocation system model

of the DQN algorithm is to continuously adjust the network weight by optimizing the
loss function produced by the estimated Q value and the target Q value. Moreover, expe-
rience replay is used in the DQN to reduce the correlation between samples. In DQN, all
the samples are uniformly sampled from the experience replay pool. In this case, some
important samples may be neglected, which will reduce the learning efficiency. In order
to make up for the shortcomings of the random sampling from experience pool, a rein-
forcement learning method based on prioritized experience replay is proposed, which
mainly solves the sampling problem in experience replay [27]. The main idea is to set pri-
orities for different samples to increase the sampling probability of valuable samples. In
this paper, we use Prioritized DQN to perform user grouping. In order to better under-

stand the algorithm, we first introduce the prioritized experience replay knowledge.
1. Prioritized experience replay

Temporal-difference error (TD-error) indicates the difference between the output action
value and the estimated value. TD-errors produced by different samples are different,
and their effects on backpropagation are also different. A sample with large TD error
indicates that there is a big gap between the current value and the target value, which
means that the sample needs to be learned and trained. Therefore, in order to meas-
ure the importance of the sample, we use TD-error to represent the priority of sample,
which can be expressed as,

8 = |yi — Qsi, a4 w)|+Y 9)

where J; is the TD-error of sample i, ¥ is a very small constant to ensure that samples
with a priority of 0 can be selected, y; is the target value defined in (14).

By setting priorities for samples, samples with large TD-errors may be sampled with
high probabilities, and they will join the learning process more frequently. In contrast,
samples with small TD-errors may not be replayed at all, because the TD-errors of them
cannot be updated every time and are always small. In this case, the diversity of samples
will be lost and result in over-fitting. It is necessary to ensure that the sample with low

Page 7 of 17
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(a) Sum tree before storing priority. (b) Sum tree after storing priority.

Fig.3 Sum tree

Table 1 Array T

T (sa,r5s) (sa,rs) (sa,rs) (sars)

idx 0 1 2 3

priority can be sampled with a certain probability. Therefore, a probability of occurrence
is defined as [23],

a

&¢
P ) = L
I 1

where a determines the degree of priority. The range of « is [0,1], #=0 means uniform
sampling. « =1 means greedy strategy sampling. It does not change the monotonicity of
priority, but is used to increase or decrease the priority of TD-error experience.

A. Sum tree

Prioritized DQN uses a sum tree to solve the problem of sorting samples before sam-
pling. The sum tree is a binary tree, and the structure is shown in Fig. 3a. The top of the
sum tree is the root node, each tree node has only two child nodes, the bottom layer is
the leaf node, and the rest of the nodes are internal nodes. The numbers in the figure are
the indexes of the nodes, starting from the root node 0. We also use an array 7 to store
the corresponding sample tuples, as shown in Table 1, where idx represents the index of
the sample tuple in the array 7.

B. Storing data

Assuming that the number of layers is denoted as /, and the number of layers of the binary
tree is L, the number of nodes at each layer can be denoted as 2l-1 (l=12,...1L),and
the total number of nodes in the binary tree is 25-1. It can be found in Fig. 3a that the
number of the leftmost leaf node can be expressed as 2/~1 —1 (I = 1,2, ..., L). The
index of array T corresponding to the number of the leftmost leaf node is 0, which is
denoted as idx=0. When storing a priority, the number of the leaf node and idx is
increased by 1. The sum tree only stores the priorities of samples at the leaf node, i.e., the
nodes at the L layer, and the priority of a leaf node is matched to a sample tuple in array
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T. In addition, the priority of an intermediate layer node is the sum of the priorities of its
child nodes, and the priority of the root node is the sum of the priorities of all the nodes.
The higher the value of the leaf node, the higher the priority of the sample. The priority
of the sample is stored in the leaf node from left to right. The storage steps are given as
follows:

1. Number the 25-1 nodes of the sum tree, and initialize the priorities of all the leaf
nodes of the sum tree to 0;

2. The priority of the current sample is stored in the leftmost leaf node, and the current
sample tuple is stored in array 7 of which the index is idx=0. At the same time, the
priorities of the parent nodes of the whole binary tree are updated upward;

3. Add the priority of the sample at the second leaf node of the sum tree. Then, the
number of the leaf node can be expressed as 2°~! (obtained by (2°7'-1) +1). The
index of array T corresponding to this leaf node is 1 (obtained by 0+ 1). Then, add
the sample tuple to array T of which the index is 1. Update the priorities of the parent
nodes of the whole binary tree upward;

4. According to the storage method above, the priorities of the samples are added to the
leaf nodes one by one. When all the leaf nodes are filled, the subsequent priority will
be stored in the first leaf node again.

The difference between the leaf node number of the sum tree and the index of the cor-
responding 7 is 2°~!—1. The binary tree after storing the priority is shown in Fig. 3b. The
leaf node numbered 7 has the highest priority, and this indicates that this node has the
largest probability of being sampled.

C. Sampling data

Denote the number of samples to be extracted as N, and the priority of the root node
as P. Divide P by N, and the quotient M is obtained. Hence the total priority is divided
into N intervals, and the jth interval is between [(j-1)*M, j*M]. For example, if the pri-
ority of the root node is 1.12 and the number of samples is 8, the priority interval can
be expressed as [0,0.14], [0.14,0.28], [0.28,0.42], [0.42,0.56], [0.56,0.70], [0.70,0.84],
[0.84,0.98], and [0.98,1.12]. Sample a piece of data uniformly in each interval, and
suppose that 0.60 is extracted in the interval [0.56,0.70]. Start traversing from the root
node and compare 0.60 with the left child node 0.69. Since the left child node 0.69 is
larger than 0.60, take the path of the left child node and traverse its child nodes. Then
compare 0.60 with the left child node 0.50 of the node 0.69. Since 0.60 is larger than
0.50, subtract 0.50 from 0.60 to enter the right child node and traverse its child nodes.
Compare 0.10 with the left child node of 0.19. Because 0.10 is larger than 0.01, take
the path of right child node. Finally, the priority of the sample is 0.18, and the leaf
node number of the sum tree is 10. At the same time, the sample corresponding to
this leaf node is extracted from array T. After that, a number is uniformly selected
from each interval, and then hold this number to sample samples according to the
above-mentioned method. Finally 8 samples are sampled.
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D. Importance sampling

The distribution of the samples used to train the network should be the same as its origi-
nal distribution. However, since we tend to replay experience samples with high TD-
errors more frequently, the sample distribution will be changed. This change causes a
bias in the estimated value, and experience samples with high priority may be used to
train the network more frequently. Importance sampling is used to adjust and update the
network model by reducing the weight of the sample, so that the introduced error can be
corrected [28]. The weight of importance sampling is,

(1 1 )ﬁ
wi=[—.— (11)
N P(i)

where N is the number of samples, P(i) is the probability of the sample which is calcu-
lated according to (10), 8 is used to adjust the degree of deviation. The slight deviation
can be ignored at the beginning of learning. The effect of importance sampling to cor-
rect deviation is from small to large, so it increases linearly from the initial value, and
converges to 1 at the end of training. When 8 = 1, it indicates that the deviation has
been completely eliminated.

Figure 4 shows the relationship between $ and the number of iterations (the initial
value is 0.4). It can be seen from the figure that at the end of the iteration, 8 can converge
to 1, which means that the non-uniform probability is completely compensated, and the
deviation caused by prioritized experience replay can be corrected.

In order to ensure the stability of learning, we always normalize weights, so (11) can be

rewritten as,
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PGP (N-PG)TP
T omaxw; | max;[(N - P(j)F]
. — R _’B
__ @ ( P@). ) (12)
max;[(p;)#]  \ min;(P())

2. Prioritized-DQN based user grouping network

In this section, we introduce the user grouping framework based on Prioritized DQN.
As shown in Fig. 2, the user grouping part contains prioritized experience replay. Prior-
itized DQN contains two sub-networks, a Q Network is used to generate the estimated
Q value of the selected action, and a Target Q Network to generate the target Q value for
training the neural network.

In our NOMA system, at the beginning of each TS ¢, the base station receives chan-
nel state information s, and inputs it into the estimated Q Network of the Prioritized
DQN. With s; as input, the Q Network outputs all user combinations aXa} € A1) and
estimated Q value Q(s;, 4} ; w). In this paper, the ¢ — greedy strategy is used to select user
combination a}, which randomly selects a user combination from A1 with probability ¢,
or a user combination with the highest estimated Q value with probability (1 — ¢). That
is,

1

a, = arg max (8, as; )
! aleAl (13)

Finally, the user combination @} and power a? (produced by the next section) are given
back to the NOMA system. According to the selected actions, the NOMA system gener-
ates instant rewards r; and channel state information s, of the next time slot. We store
the sample tuple (s;, a}, rt,St+1) of each TS into the memory block.

In each TS, in order to ensure that all samples can be sampled, Prioritized DQN sets
the new samples to the highest priority, and stores the sample tuples and priorities in
the experience pool following the storage steps in subsection 1-A in Sect. 2.2.2 above.
The sample tuples are selected according to the sampling method in subsection 1-B of
Sect. 2.2.2. As mentioned above, we use the probability of being sampled to calculate the
sample weight (i.e., (12)), and use the target Q network to generate the target Q value for
training the network, which is,

yi=ri+y max Q(s,'+1,ai1+1,w’) (14)

i€

The loss function of Prioritized DQN can be expressed as,
N
loss = N 2; wi(yi — Qsia} s ))* (15)
=

Update all the weights @ of the Q network in the Prioritized DQN through gradient
backpropagation, and update all the parameters of the target Q network by copying the
parameters of their corresponding network in every WTS, i.e. ' = w.

After the parameters of the Q network of the Prioritized DQN are updated, it is nec-
essary to recalculate the TD-error (i.e., (9)) of all the selected samples. Find the corre-

sponding leaf node according to the number of the leaf node obtained by sampling, and
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Fig. 5 Convergence analysis of the proposed algorithm. a Sum rate of the proposed algorithm under
different. b Sum rate comparison of PrioDQN-DDPG and DON-DDPG (The maximum transmission power of
the base stationP,,, = 40 dBm)

set the TD-error to the priority of the sample. Follow the same method of storing data to
update the priority of the sum tree leaf node and the priority of all its parent nodes.

2.2.3 Power allocation based on DDPG network

Since the output of DQN is discrete, it cannot be applied to a continuous action space.
Fortunately, an Actor-Critic-based DDPG network can handle continuous actions. Wang
et al. [29] proposed two frameworks (i.e., DDRA and CDRA) to maximize the energy
efficiency of the NOMA system, where DDRA is based on the DDPG network and
CDRA is based on multi-DQN. The results show that the time complexities of the two
frameworks is similar, but the DDPG network performs better than the multi-DQN net-
work. This is because in multi-DQN, the user power is quantized, resulting in the loss of
some important information and causing poor performance. DDPG network is similar
to DQN, using deep neural network and uniform sampling. It is also a deterministic pol-
icy gradient network, in which the action is uniquely determined in one state. Moreover,
DDPG can handle continuous action tasks without quantifying the transmission power.
Hence this paper uses the DDPG network to perform the user’s power allocation task.

3 Results and discussion

This section shows the simulation results of the above-mentioned DRL based NOMA
system user grouping and power allocation algorithms. Assume that there are 4 users to
transmit signals on 2 channels, among which 4 users are randomly distributed in a cell
with a radius of 500 m and the minimum distance between the user and the base station
is 30 m. The path loss equation is PL™'(d ) = 38 + 15lg(d,,).. The total system bandwidth
is 10 MHz, and the noise power density is -110dBm/Hz. The maximum transmission
power transmitted of the base station is 40dBm, and the minimum power is 3dBm.

In the Prioritized DQN, the number of leaf nodes is 500, the number of samples N is
32, when the training process is finished, the sample size is 6400. The reward discount
factor y is 0.9, and the greedy selection strategy probability setting ¢ is 0.9. Set the ini-
tial deviation degree $=0.4 and the priority degree «=0.6 in the prioritized experience
replay.
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3.1 Convergence of the proposed algorithm

Figure 5 shows the convergence performance of the proposed algorithm. Figure 5a
shows the convergence of the sum rate of the proposed algorithm under different max-
imum transmission powers of the base station. Set the maximum transmission power
of base station to 30dBm, 37dBm, and 40dBm, respectively. It can be observed that
under different base station transmission powers, the sum rate of the system gradually
increases and then tends to converge, which proves that the proposed algorithm has
good convergence.

Figure 5b compares the common DQN user grouping algorithm and analyzes the
convergence performance of the proposed Prioritized DQN. Power is allocated to users
based on the DDPG network. It is clear that the algorithm with prioritized sampling
can reduce the training time and make the learning process more stable. It takes about
100 episodes for prioritized experience replay to complete the user grouping task, while
around 300 episodes for the uniform experience replay to complete the same task. This
is because prioritized experience replay stores the learning experience with priority in
the experience pool, and traverses the sum tree to extract samples with high TD-errors
to guide the optimization of model parameters, which alleviates the problem of sparse
reward and insufficient sampling strategies, and improves learning efficiency. Also, pri-
oritized experience replay not only focuses on samples with high TD-error to help to
speed up the training process, but also involves samples with lower TD-error to increase
the diversity of training.

3.2 Average sum rate performance of the proposed algorithm

The NOMA system resource allocation algorithm based on Prioritized DQN and DDPG
proposed in this paper is denoted as PrioDQN-DDPG. In order to verify the effective-
ness of the proposed algorithm, this paper compares several resource allocation algo-
rithms. The algorithms for comparison are ES-EPA, ES-MP, multi-DQN, DQN-DDPG
and IPOP. Specifically, ES-EPA uses an exhaustive searching method to select the best
user combination, and uses the average power allocation scheme. ES-MP also uses an
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exhaustive searching method to select the best user grouping, and the maximum power
transmission algorithm is utilized to determine the power for each user. The multi-
DQN algorithm [29] uses multiple DQN to quantify power, and DQN-DDPG algorithm
selects the user grouping based on the DQN and allocates power for each user based
on DDPG [30]. IPOP is an iterative power optimization algorithm [31], which finds the
optimal solution by constructing a Lagrangian dual function. Figure 6 shows the experi-
mental results of user sum rate. All the experimental results are averaged every 200 TS
to achieve a smoother and clearer comparison.

As can be seen from Fig. 6, The sum rate of the ES-MP algorithm is lower than those
of the other algorithms. This is because the power allocated to each user is the allowed
maximum power, and strong interferences are caused among users. The performances of
the multi-DQN, DQN-DDPG and PrioDQN-DDPG algorithms are getting better as the
number of episodes increases. The PrioDQN-DDPG algorithm proposed in this paper
is better than the other two DRL-based algorithms, respectively. Compared with the
DQN-DDPG algorithm, the algorithm proposed in this paper improves the system sum
rate by 2%. This is mainly because Prioritized DQN sets the priority for some valuable
samples that are beneficial to training the network; moreover, prioritized DQN uses the
sum tree to store the priority, so that it is convenient to search experience samples with
high priorities, and the valuable experience could be replayed more frequently, which
can improve the learning rate and system sum rate. Compared with the multi-DQN
algorithm, this article uses the DDPG network to complete the user’s power allocation.
DDPG can handle continuous action tasks and solves the problem of quantization errors
caused by quantization power.

Furthermore, the PrioDQN-DDPG framework proposed in this paper interacts with
the NOMA system, finds the optimal resource allocation strategy based on system feed-
back, and can dynamically find the optimal resource allocation strategy according to the
changes of environment, which can reach 93% of the IPOP, and can reach 94% of the
ES-EPA algorithm. Although the sum rate of the proposed PrioDQN-DDPG network is
lower than IPOP and ES-EPA, it can greatly reduce the computational complexity, which

will be discussed in the following part.
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3.3 Computational complexity analysis

This section analyzes the computational complexity of the proposed algorithm, and
Fig. 7 shows the result. The computational time complexity of the algorithm in this
paper is 10% higher than that of the traditional DQN-DDPG algorithm. This is because
the prioritized experience replay algorithm is mainly composed of setting sample pri-
ority, storing experience samples and extracting samples. It needs extra time to calcu-
late the TD-error and traverse the sum tree. However, the prioritized experience replay
algorithm can replay valuable samples frequently, which avoids some unnecessary DRL
processes and reduces training time, compared with the optimal ES-EPA and IPOP algo-
rithms, the computational complexity is reduced by 43% and 64%, respectively.

4 Conclusion and future work
This paper proposes a joint user grouping and power allocation algorithm to solve the
resource allocation problem in the multi-user NOMA system. While ensuring the mini-
mum data rate of all users, we use a DRL-based framework to maximize the sum rate of
the NOMA system. In particular, with the current channel state information as input
and the sum rate as the optimization goal, we design a Prioritized-DQN-based network
to output optimal user grouping strategy, and then use a DDPG network to output the
power of all users. The proposed algorithm uses prioritized experience replay to replace
previous uniform experience replay, which uses TD-error to evaluate the importance
of samples, and uses the binary-tree-based priority queue to store experience. The pro-
posed sampling method allows the samples that are more useful for the learning process
to be replayed more frequently. The simulation results show that the proposed algorithm
with prioritized sampling can replay valuable samples at a high probability and increase
the learning rate. In the power allocation part, there is no need to quantify the trans-
mission power, and the powers of all users are directly output under the current state
information. In addition, the joint algorithm proposed in this paper improves the sum
rate of the system by 2% compared with the ordinary DQN algorithm, and reaches 94%
and 93% of the optimal exhaustive search algorithm and iterative power optimization
algorithm, respectively.

In addition, with the promising development prospects of NOMA on complex chan-
nels, how to allocate resources for cell-free massive MIMO-NOMA networks is a
research focus of this article in the future.
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