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Abstract
Background  Astaxanthin (ASX) has been documented to exert beneficial influence on various processes in fish. 
Largemouth bass (Micropterus salmoides) serves as a common model for studying glucose-induced liver disease, 
making it imperative to investigate the regulatory mechanisms underlying its liver health.

Methods  Largemouth bass were fed with a control diet (CON), a high carbohydrate diet (HC), or a HC diet 
supplemented astaxanthin (HCA) for 8-weeks, followed by the glucose tolerance test (GTT). Primary hepatocytes 
were treated with low glucose and high glucose combined with different concentrations of astaxanthin for 48 h. The 
histopathology, enzymology, transcriptomics, molecular biology and cell biology were combined to investigate the 
mechanism of liver injury.

Results  This study provides evidence for the protective effects of ASX against growth performance reduction and 
hepatic liver injure in largemouth bass fed HC diet. In GTT, HCA diet exhibited an improvement in glucose tolerance 
following glucose loading. Although HCA diet did not restore the expression of insulin resistance-related genes in 
livers at different time during the GTT, the addition of ASX in the long-term HC diet did improve the insulin resistance 
pathway by regulating the PTP1B/PI3K/Akt signaling pathway. Hepatic transcriptome analyses showed that ASX plays 
an essential role in the modulation of glucose homeostasis in response to treated with HC diet. In in vitro study, ASX 
treatment resulted in an exaltation in cell viability and a reduction in the rate of cell apoptosis and reactive oxygen 
species (ROS). Additionally, astaxanthin was observed to improve apoptosis induced by high-glucose via p38MAPK/
bcl-2/caspase-3 signaling pathway.

Conclusions  Astaxanthin exhibited a protective effect against apoptosis by regulating p38MAPK/bcl-2/caspase-3 
pathway, and ameliorated insulin resistance by activating the PTP1B/PI3K/Akt pathway. This study elucidated the 
mechanism of astaxanthin in the liver injury of largemouth bass from a new perspective and provided a new target 
for the treatment of insulin resistance.
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Introduction
Given the increasing scarcity of fish meal protein feed, 
carbohydrates are now being evaluating as an alterna-
tive protein source to fish meal in aquafeed [1, 2]. Unlike 
mammals utilize carbohydrates preferentially, fish pre-
dominantly utilize protein and fat as sources of energy, 
with a limited ability to metabolize carbohydrates, par-
ticularly in carnivorous species [3]. As a typical carnivo-
rous fish model of glucose intolerance, largemouth bass 
(Micropterus salmoides) is widely farmed around the 
world. There have been extensive studies shown that 
high dietary carbohydrates increase plasma glucose lev-
els and induces liver injure in largemouth bass, including 
disorders of metabolism, vacuolation of hepatocytes and 
fibrosis and accumulation of glycogen [4–7]. Commercial 
feed formulations for largemouth bass typically contain 
a maximum of 10% starch to maintain liver health [8]. 
Although glycogenic hepatopathy appears to be a com-
mon disease in carnivorous fish, it has been under-recog-
nized in many studies.

Astaxanthin (ASX) is a potent antioxidant with dem-
onstrated efficacy in ameliorating liver disease [9]. In 
mammal, astaxanthin has been found to mitigate liver 
inflammation and fibrosis caused by nonalcoholic steato-
hepatitis in mice [10]. Studies have also demonstrated the 
ability of astaxanthin to relieve liver endoplasmic reticu-
lum stress and inflammation in mice fed a diet contain-
ing high fructose and high fat [11]. Besides, astaxanthin 
may be useful in preventing diabetic complications and 
reversing hepatotoxicity in adult rats [12]. In aquacul-
ture, astaxanthin has been widely adopted for use for 
enhancing pigmentation and stress resilience. In a prior 
investigation, we exhibited that astaxanthin enhanced the 

ability to counteract oxidation, performance in growth, 
and immune reaction in largemouth bass that were fed 
a high-fat diet [13]. Collectively, these studies suggested 
that astaxanthin may represent a novel treatment of 
dietary-related metabolic disorders not only in mam-
mal but also in fish. Hence, this study is implemented to 
investigate the potential effect of astaxanthin on the miti-
gation of high-carbohydrate-induced liver injury in large-
mouth bass and its possible mechanisms.

The glucose tolerance test (GTT) is widely used to 
assess the ability of fish to utilize glucose [14, 15]. Carniv-
orous fish exhibit a notable resistance to insulin and glu-
cose in relation to carbohydrate metabolism, resulting in 
an elevation of blood glucose concentration with higher 
starch consumption [16]. Numerous studies have indi-
cated that inadequate insulin secretion is the major cause 
of such glucose intolerance in fish [17]. In glucose metab-
olism, insulin first activates the insulin receptor, followed 
by the PI3K/AKT signaling pathway [18, 19]. The PI3K/
AKT pathway is a critical node of insulin signaling [20]. 
Zhong et al. [5] employed transcriptomic analysis to 
found that high-carbohydrate diet causes disruption of 
hepatic glycogen metabolism and liver fibrosis in large-
mouth bass, which may be mediated by the PI3K/Akt sig-
naling pathway. In mammal, astaxanthin has the ability to 
ameliorate liver insulin resistance by modulating AMPK 
and MAPK signaling pathways and enhance post-recep-
tor insulin signaling events by promoting IR-β/PI3K/Akt 
signal pathway [21, 22]. Nevertheless, the available data 
on astaxanthin participates in glucose tolerance, insulin 
sensitivity, and PI3K/Akt signaling pathway to maintain 
glucose homeostasis in carnivorous fish is scarce.

Highlights
	• ASX improved liver damage in diabetic largemouth bass.
	• ASX improved apoptosis via p38MAPK/bcl-2/caspase-3 signaling pathway.
	• ASX alleviated insulin resistance through the PTP1B/PI3K/Akt signaling pathway.
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The objective of this research is to investigate the 
effects of astaxanthin on high carbohydrate induced insu-
lin resistant and liver damage in largemouth bass. Fur-
thermore, we will delve deeper into the anti-apoptotic 
properties of astaxanthin on the protein level, which 
may contribute to develop the nutritional strategies for 
improving high carbohydrate-induced liver injury.

Materials and methods
Experimental diets
Astaxanthin abundance in high-carbohydrate diets 
was determined from previous studies [23]. As shown 
in Table  1, three purified isonitrogenous and isolipidic 
diets were designed and formulated: including a control 
(CON) diet, a high-carbohydrate (HC) diet and a high-
carbohydrate supplemented with 0.1% Lucantin Pink 
CWD (BASF, Shanghai, China) containing 10% (w/w) 
astaxanthin (HCA) diet. In all diets, the main source of 
carbohydrate was corn starch. Bone meal was used for 
eliminating the difference of quantity caused by corn 
starch. The experimental diets were conducted using the 
previously reported method [24]. Further details can be 
found in Supplemental Methods.

Sample collection
Juvenile largemouth bass were obtained from Shunye 
Fishery Company (Foshan, China). More details of exper-
iment design and feeding management can be found in 
Supplemental Methods. Sampling was performed after 
8-week feeding trial, all fish were fasted for 24 h prior to 
sampling. 12 fish from each diet (4 fish per tank) were 
randomly chosen and measured the body length and 
weight. In order to prepare serum, caudal vertebral vein 
blood was sampled using a sterile syringe, then centri-
fuged at 4000 g for 10 min at 4 °C. The serum was imme-
diately stored at -80 °C to preserve it for future use. For 
future analyses, the dissected livers were also immedi-
ately frozen in liquid nitrogen and then kept at -80  °C. 
For more details on growth performance and morphol-
ogy parameters, see Supplemental Methods.

Glucose tolerance test (GTT)
The GTT method described by Chen et al. [25], blood of 
largemouth bass from three diet treatment was separately 
collected from the caudal vein. More details of glucose 
tolerance test can be found in Supplemental Methods.

Transcriptomic analysis
Nine liver samples of largemouth bass fed with CON, HC 
and HCA diets were prepared for transcriptomic analy-
sis. RNA integrity was measured by using the RNA Nano 
6000 Assay Kit on the Bioanalyzer 2100 system (Agilent 
Technologies, CA, USA). More details of transcriptomic 
analysis can be found in Supplemental Methods.

Histopathological studies
Liver tissues were fixed in neutral 4% formalin (Service-
bio, China) and embedded in paraffin wax. Hematoxy-
lin and eosin (H&E) staining and periodic acid-schiff 
(PAS) staining were conducted according to the stan-
dard protocol. Light microscopy was used to observe 
and photograph histopathological lesions (NikonNi–U, 
Nikon Corporation, Tokyo, Japan). For the transmission 
electron microscopy observations, livers were fixed in 
2.5% glutaraldehyde (AAPR46) and rinsed with buffer. 
To observe the various structures within stained cells, 
a transmission electron microscope (JEM-1400 Flash, 
Japan) was used.

Biochemical analysis
Measurements of serum glucose were performed using 
glucose oxidase kit (A154-1-1; Nanjing Jiancheng Bioen-
gineering Institute, Nanjing, China). The corresponding 
reagent kits (C009-2-1 and C010-2-1, respectively; Nan-
jing Jiancheng Bioengineering Institute, Nanjing, China) 
were utilized for measuring serum aspartate aminotrans-
ferase (AST) and alanine aminotransferase (ALT). The 
measurement of serum insulin level was conducted with 

Table 1  Ingredients and nutrient composition of the 
experimental diets (% dry matter)
Ingredients CON HC HCA
Corn starch 0 20 20
Fish meal 45 45 45
Krill meal 3 3 3
Beer yeast 5 5 5
Soybean meal 10.3 10.3 10.2
Wheat gluten 10 10 10
Fish oil 1 1 1
Soy oil 1 1 1
Soya lecithin 1 1 1
Mineral premix1 1 1 1
Vitamin premix2 1 1 1
Choline chloride (50%) 0.5 0.5 0.5
Monocalcium phosphate 1 1 1
Vitamin C 0.2 0.2 0.2
Bone meal 20 0 0
Lucantin Pink CWD3 0 0 0.1
Sum 100 100 100
Nutrient composition
Crude protein 47.92 48.66 47.90
Crude lipid 6.66 6.68 6.71
1Mineral premix provides the following per kg of diet: MgSO4∙7H2O, 1090 mg; 
KH2PO4, 932  mg; NaH2PO4∙2H2O, 432  mg; FeC6H5O7∙5H2O, 181  mg; ZnCl2, 
80 mg; CuSO4∙5H2O, 63 mg; AlCl3∙6H2O, 51 mg; MnSO4∙H2O, 31 mg; KI, 28 mg; 
CoCl2∙6H2O, 6 mg; Na2SeO3∙H2O, 0.8 mg
2Vitamin premix provides the following per kg of diet: Vitamin B1, 30 mg; Vitamin 
B2, 60 mg; Vitamin B6, 60 mg; Nicotinic acid, 200 mg; Calcium pantothenate, 
100 mg; Inositol, 100 mg; Biotin, 2.5 mg; Folic acid, 10 mg; Vitamin B12, 0.1 mg; 
Vitamin K3, 40 mg; Vitamin A, 10000IU, Vitamin, 160 IU
3Lucantin Pink CWD of 10% (w/w) astaxanthin content provided from BASF, 
Shanghai, China
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a commercially available Elisa kit (ml0258550; Shanghai 
Enzyme-linked Biotechnology Co., Ltd., China).

Western blot and quantitative real-time PCR (RT-PCR)
The livers and cells were used to harvest and extract 
total protein by utilizing RIPA lysis buffer (FD009; 
Fdbio science, Hangzhou, China) along with a mixture 
of protease inhibitor and phosphatase inhibitor cocktail 
(FD1002; Fdbio science, Hangzhou, China). To measure 
the amount of total protein, a BCA assay (KS134848; 
Thermo, Scientific, Waltham, MA, USA) was employed. 
All details of primary antibodies can be found in Sup-
plemental Methods. The PVDF filters were rinsed and 
treated with anti-rabbit (SA00001-2; Proteintech, United 
States, diluted 1:10000) secondary antibody for 1  h at 
ambient temperature. The Azure 300 ultra-sensitive 
chemiluminescence imager was utilized to visualize the 

protein bands. The levels of protein were standardized by 
β-actin and measured using the Image-Pro Plus software.

The extraction of total RNA and the synthesis of cDNA 
were performed following the previously described pro-
tocol [26]. A gene responsible for maintaining the clean-
liness of a house, known as elongation factor 1a (ef-1α; 
GenBank accession no. KT827794), was normalized as 
an internal reference. Table  2 displays the gene-specific 
primers utilized for largemouth bass mRNA. The qPCR 
examination was conducted in a 10 µL reaction volume 
using a Light Cycler 480II Real-Time System from Roche, 
located in IN, USA. The qPCR protocol started with a 
10 min incubation at 95 °C, followed by 40 cycles consist-
ing of 5 s at 95 °C, 30 s at 60 °C, and 30 s at 72 °C. Addi-
tionally, the reaction quality was assessed by analyzing 
standard melting curves. The 2−ΔΔCt method was used to 
calculate qPCR data for each sample.

Culture of largemouth bass primary hepatocytes
Largemouth bass primary hepatocytes were isolated 
and cultured as follows: briefly, the liver was minced 
as small as possible with surgical scissors under sterile 
conditions, and washed thoroughly with pre-warmed 
phosphate-buffered saline (PBS) to remove the blood 
and other components. The rinsed livers were enzymati-
cally digested using trypsin (25200072; Thermo Fisher 
Scientific, Waltham, MA, USA) at 28 °C for 40 min. Cen-
trifuge the cells after 6 min at 1000 rpm, discard superna-
tant, and resuspend harvested cell pellet in low-glucose 
medium containing 20% FBS and 1% penicillin-strepto-
mycin. The isolated hepatocytes were seeded at a density 
of 1 × 106 cells/mL and cultured in a humidified 28  °C 
incubator with 5% CO2. When the confluence reached 
70–80%, cells were divide into six groups: (1) LG, treated 
with low-glucose for 48 h; (2) HG, treated with high-glu-
cose for 48 h; (3) HG + 10 µM ASX, treated with 10 µM 
astaxanthin and high-glucose for 48  h; (4) HG + 20 µM 
ASX, treated with 20 µM astaxanthin and high-glucose 
for 48 h; (5) HG + 30 µM ASX, treated with 30 µM astax-
anthin and high-glucose for 48 h; (6) HGA, HG + 50 µM 
ASX, treated with 50 µM astaxanthin and high-glucose 
for 48  h. Astaxanthin (S3834; Selleck Chemicals, Hous-
ton, Texas, USA) was added at the start of low or high 
glucose culture and remained present throughout the 
experiment. The cells were pretreated with various con-
centrations of SB203580 (p38 MAPK pathway inhibitor; 
S1076, Selleck Chemicals, Houston, Texas, USA) for 2 h, 
then treated with HG or HGA for 48 h.

CCK8 assay
Six replicates of primary hepatocytes were seeded in 
a 96-well culture plate at a density of 1 × 104 cells/mL. 
Subsequently, the cells were exposed to different con-
centrations of astaxanthin in combination with a glucose 

Table 2  Sequences of primers used in this study
Genes Forward prim-

ers (5’ to 3’)
Reverse primers 
(5’ to 3’)

Sources/Gen-
Bank No.

tnf-α ​C​T​T​C​G​T​C​T​A​C​A​G​
C​C​A​G​G​C​A​T​C​G

​T​T​T​G​G​C​A​C​A​C​C​G​
A​C​C​T​C​A​C​C

[49]

il-6 ​G​A​C​C​A​G​C​A​G​C​C​
A​G​G​A​G​G​A

​G​G​A​G​G​T​T​G​T​A​C​A​
C​G​A​T​G​C​T​G

[49]

il-8 ​C​G​T​T​G​A​A​C​A​G​A​C​
T​G​G​G​A​G​A​G​A​T​G

​A​G​T​G​G​G​A​T​G​G​C​T​
T​C​A​T​T​A​T​C​T​T​G​T

[49]

il-10 ​C​G​G​C​A​C​A​G​A​A​A​T​
C​C​C​A​G​A​G​C

​C​A​G​C​A​G​G​C​T​C​A​C​
A​A​A​A​T​A​A​A​C​A​T​C​T

[49]

cat ​A​T​C​C​C​T​G​T​G​G​G​C​
A​A​A​A​T​G​G​T

​C​G​G​T​G​A​C​G​A​T​G​T​
G​T​G​T​C​T​G​G

XM_038704976.1

gsh-px ​G​G​G​G​C​T​C​C​A​C​C​T​
G​C​T​T​C​T​T​G

​A​C​C​C​C​T​C​T​G​C​T​C​
A​G​G​C​A​T​T​T

MK614713.1

sod1 ​T​G​G​C​A​A​G​A​A​C​A​A​
G​A​A​C​C​A​C​A

​C​C​T​C​T​G​A​T​T​T​C​T​C​
C​T​G​T​C​A​C​C

XM_038708943.1

caspase-3 ​G​C​T​T​C​A​T​T​C​G​T​C​T​
G​T​G​T​T​C

​C​G​A​A​A​A​A​G​T​G​A​T​
G​T​G​A​G​G​T​A

[49]

caspase-8 ​G​A​G​A​C​A​G​A​C​A​G​
C​A​G​A​C​A​A​C​C​A

​T​T​C​C​A​T​T​T​C​A​G​C​A​
A​A​C​A​C​A​T​C

[49]

caspase-9 ​C​T​G​G​A​A​T​G​C​C​T​T​
C​A​G​G​A​G​A​C​G​G​G

​G​G​G​A​G​G​G​G​C​
A​A​G​A​C​A​A​C​A​G​
G​G​T​G

[49]

bcl-2 ​T​G​C​C​T​T​T​G​T​G​G​A​
G​C​T​G​T​A​T​G

​G​G​A​A​G​A​G​G​A​G​G​
A​G​G​A​G​G​A​T​G

[49]

bax ​T​C​T​T​C​A​C​T​C​A​G​T​C​
C​C​A​C​A​A​A

​A​T​A​C​C​C​T​C​C​C​A​G​
C​C​A​C​C

XM_038704178.1

bad ​C​A​C​A​T​T​T​C​G​G​A​T​
G​C​C​A​C​T​A​T

​T​T​C​T​G​C​T​C​T​T​C​T​G​
C​G​A​T​T​G​A

XM_038730645.1

ir ​C​A​T​T​T​T​G​A​G​G​G​A​
A​C​T​G​G​G​T​C

​C​T​T​G​A​T​G​A​T​G​T​C​T​
T​T​A​G​C​G​A

[49]

irs1 ​T​A​G​T​G​G​T​G​G​T​G​T​
C​A​G​C​G​G​T

​G​G​A​G​G​T​G​G​A​A​G​T​
A​A​A​G​G​A​T

MT431531

pi3kr1 ​A​A​G​A​C​C​T​T​C​C​T​C​
A​T​C​A​C​G​A​C

​C​C​T​T​C​C​A​C​T​A​C​A​
A​C​A​C​T​G​C​A

Clus-
ter-21914.23096

ef-1α ​T​G​C​T​G​C​T​G​G​T​G​T​
T​G​G​T​G​A​G​T​T

​T​T​C​T​G​G​C​T​G​T​A​A​
G​G​G​G​G​C​T​C

KT827794.1
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solution. Cell viability was assessed after incubating for 
either 24–48  h using a CCK8 assay (FD3788; Fdbio sci-
ence, Hangzhou, China), following the guidelines pro-
vided by the manufacturer.

Annexin V-FITC/PI staining
Flow cytometry was used to examine apoptosis by 
employing annexin V-FITC/PI staining (BL110A; 
Biosharp life science, Beijing, China). Cells (1 × 106) 
were seeded in 6-well plates and exposed to glucose and 
astaxanthin for 48  h. Afterward, the cells were digested 
by trypsin without EDTA and washed twice with chilled 
PBS. Finally, they were suspended in 100 µL of binding 
buffer. The cells were stained with Annexin V-FITC (5 
µL) for 10 min at room temperature, followed by 10 µL PI 
for 5 min in the dark. Flow cytometry (Backman cytoflex) 
was used to analyze the cells.

ROS detection
ROS formation within the cell was identified by utilizing 
the H2DCF-DA probe (C-2938; Invitrogen™, Waltham, 
MA, USA), which is a 6-carboxy-2’, 7’-dichlorodihydro-
fluorescein diacetate, di (acetoxymethyl ester). After 
being pretreated with LG, HG, and HGA for 48  h, the 
primary hepatocytes (1 × 106) were collected and resus-
pended in serum-free DMEM with 15 µM H2DCF-DA. 
The harvested primary liver cells were incubated at a 
temperature of 28  °C for a duration of 30 min and sub-
sequently analyzed using flow cytometry (Backman 
cytoflex).

Immunofluorescence analysis
Cells were seeded in a 20-mm laser confocal culture dish 
(cat. no. BDD012035) and treated with LG, HG and HGA 
for 48  h. More details of immunofluorescence analysis 
can be found in Supplemental Methods.

Statistical analysis
To analyze data on serum parameters in the GTT, a 
two-way ANOVA was employed to examine variations 
in treatment means considering sampling time, dietary 
treatments, and their interaction. If there were signifi-
cant differences (P < 0.05) observed in the interaction, 
each factor was subsequently analyzed individually using 
one-way analysis of variance (ANOVA). Means ± SEM, 
calculated from 3 to 6 biological replication, were used 
to present additional data. The comparison of variables 
between the two treatments was done by the student’s 
t-test. *P < 0.05, **P < 0.01 and ***P < 0.001 were estab-
lished to indicate statistical difference. GraphPad Prism 
8.0 (GraphPad, USA) was responsible for creating all 
visual elements.

Results
Astaxanthin improved growth performance in high 
carbohydrate-fed largemouth bass
Following an 8-week feeding trial, the impact of astaxan-
thin on the growth performance of largemouth bass was 
depicted in Fig.  1. The HC diet exhibited significantly 
lower WG, survival, and SGR compared to the CON diet, 
but the inclusion of astaxanthin considerably increased 
these 3 parameters (P < 0.01). CF, VSI and HSI were sig-
nificantly higher in HC diet than in CON diet (P < 0.01). 
While, the VSI and HSI of largemouth bass fed HCA diet 
were considerably lower in comparison with those fed 
the HC diet (P < 0.01). These findings collectively demon-
strated that astaxanthin supplementation improved the 
growth performance of largemouth bass that were fed a 
high-carbohydrate diet.

Astaxanthin reduced the elevated glucose tolerance and 
alleviated insulin resistance through the PTP1B/PI3K/Akt 
signaling pathway
To further characterize the glucose homeostasis phe-
notype in largemouth bass, glucose tolerance test was 
performed. The findings illustrated in Fig.  2A indicated 
that the levels of glucose were significantly affected by 
the time of sampling, dietary treatments, and the inter-
action between them (P < 0.001). HC diet impaired glu-
cose tolerance manifested by a significantly lower area 
under the curve (AUC), as well as reduced glucose and 
increased insulin. Consistently, we found that HCA diet 
significantly ameliorated the insulin sensitivity caused 
by HC diet, demonstrated by elevated glucose tolerance 
and insulin, and reduced glucose (Fig.  2A-C). With the 
increase in the glucose injection time, it can be seen that 
ir, irs1 and insulin presented an overall trend of increas-
ing first and then decreasing, while pi3kr1 presented 
obvious decreasing first and then increasing (Fig.  2D). 
After 1 h of injection, the results indicated that HC diet 
led to a rise in mRNA level of ir and irs1 and a reduc-
tion in mRNA level of pi3kr1, and insulin expression 
was not affected by dietary treatments (Fig.  2E). After 
3 h following glucose injection, pi3kr1 mRNA level was 
increased in HC diet, while the expression of ir, irs1 and 
insulin were not altered (Fig.  2F). At hour 12 after glu-
cose injection, HC diet reduced liver mRNA level of ir, 
irs1 and pi3kr1, while promoted liver mRNA level of 
insulin (Fig. 2G). Surprisingly, HCA diet did not restore 
these gene expressions in livers at different time during 
the GTT. Subsequently, we examined the protein levels 
of insulin resistance markers in the livers. Gray degree 
analysis showed that HCA diet repressed the accumu-
lation of PTP1B and induced an increase in AKT phos-
phorylation (Fig.  2H). Real-time PCR analysis indicated 
that HC diet significantly inhibited the mRNA expression 
of pi3kr1 and insulin and HCA diet significantly reversed 
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the expression of these genes, whereas ir and irs1 levels 
remained unchanged (Fig. 2I). The results indicated that 
astaxanthin has a direct impact on the signaling pathway 
of PTP1B/PI3K/Akt.

Astaxanthin altered the hepatic gene expression pattern of 
largemouth bass
To further elucidate and explain the gene expression pat-
terns of largemouth bass fed with three diets, transcrip-
tome profiles were performed by RNA-seq analysis. By 
comparison with CON diet, HC diet led to a total 1329 
upregulated genes while 2471 downregulated genes 
(Fig. 3A). By comparison with HC diet, HCA diet led to a 
total 453 upregulated genes and 273 downregulated genes 
(Fig. 3B). The Gene Ontology (GO) analysis showed that 
the differentially expressed genes (DEGs) were highly 
enriched in cofactor binding, enzyme regulator activity, 
enzyme inhibitor activity and peptidase regulator activity 
between HC and CON diets (Fig. 3C). When compared 
to HC diet, the enriched DEGs were mainly focused 
on the apoptotic process, cell death programmed cell 
death and lipid metabolic process in HCA diet (Fig. 3D). 
KEGG enrichment analysis revealed that DEGs were 
highly enriched in carbon metabolism, cytokine-cyto-
kine receptor interaction, oxidative phosphorylation and 

glycolysis/gluconeogenesis between HC and CON diets 
(Fig. 3E). Furthermore, compared to HC diet, the DEGs 
were enriched in pathways such as steroid biosynthesis, 
regulation of actin cytoskeleton, glycolysis/gluconeogen-
esis and FoxO signaling pathway in HCA diet (Fig. 3F).

Astaxanthin alleviated liver damage by improving 
apoptosis, inflammation and oxidative stress in high 
carbohydrate-fed largemouth bass
The pathology slices stained with H&E and PAS (Fig. 4A 
and B) showed that the livers of HC-fed largemouth bass 
exhibited cell swelling, obvious vacuoles, and glycogen 
accumulation. However, HCA diet alleviated the patho-
logical changes in livers. The obvious mitochondrial 
damage and the presence of significant amounts of glyco-
gen revealed by transmission electron microscopy (TEM) 
suggested that HC diet led to a dysfunctional mitochon-
drion. Notably, the administration of astaxanthin demon-
strated a mitigating effect on the mitochondrial damage 
(Fig. 4C). The qPCR was used to quantify the expression 
of Caspase family (caspase-3, caspase-8, and caspase-9), 
Bcl-2 family (bcl-2, bax, and bad), inflammatory fac-
tor (tnf-α, il-6, il-8, and il-10), and antioxidant capac-
ity (ca.t, gsh-px, and sod1) genes. As expected, HC diet 
boosted mitochondrial apoptosis (Fig.  4D and E) and 

Fig. 1  Astaxanthin improved growth performance in high carbohydrate-fed largemouth bass. Values were mean ± SEM of four biological replicates. WG, 
weigh gain; SGR, specific growth rate; CF, condition factor; VSI, Viscerosomatic index; HSI, hepatosomatic index. *P < 0.05, **P < 0.01 and ***P < 0.001; ns, 
no significant difference
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Fig. 2  Astaxanthin reduced the elevated glucose tolerance and alleviated insulin resistance through the PTP1B/PI3K/Akt signaling pathway. (A) Serum 
glucose concentration in GTT (n = 6). (B) The serum glucose level in different diets (n = 4). (C) The serum insulin level in different diets (n = 4). (D) Hepatic 
mRNA fold change of insulin resistance related genes at 0 h, 1 h, 3 h and 12 h after glucose injection (n = 6). (E) The expression of liver insulin resistance 
genes (ir, irs1, pi3kr1 and insulin) of largemouth bass after 1 h of glucose injection (n = 4). (F) The expression of liver insulin resistance genes (ir, irs1, pi3kr1 
and insulin) of largemouth bass after 3 h of glucose injection (n = 4). (G) The expression of liver insulin resistance gene (ir, irs1, pi3kr1 and insulin) of large-
mouth bass after 12 h of glucose injection (n = 4). G-CON: control diet during the GTT; G-HC: high-carbohydrate diet during the GTT; G-HCA: high-car-
bohydrate diet supplemented with astaxanthin during the GTT. (H) The expression of insulin resistance proteins (PTP1B, p-Akt, and Akt) in different diets 
(n = 3). I The expression of liver insulin resistance genes (ir, irs1, pi3kr1 and insulin) in different diets (n = 4). Values were mean ± SEM of three-six biological 
replicates. *P < 0.05, **P < 0.01 and ***P < 0.001; ns, no significant difference

 



Page 8 of 14Liao et al. Cell & Bioscience          (2024) 14:122 

inflammation (Fig. 4F), and decreased antioxidant capac-
ity of livers (Fig.  4G). Correspondingly, astaxanthin has 
antiapoptotic, anti-inflammatory and antioxidant effects 
in largemouth bass fed HC diet. In addition, the results 
also indicated that the increases of serum ALT and AST 
activities induced by HC diet were reduced by HCA diet 
(Fig. 4H and I).

Astaxanthin suppressed HG-induced apoptosis in 
largemouth bass primary hepatocytes
To further investigate the advantageous mechanism of 
astaxanthin in largemouth bass, primary hepatocytes 
were treated with low glucose (LG) or high glucose 
(HG) conditions, along with varying doses of astaxan-
thin (10–50 µM). Cell viability was assessed using CCK8 

Fig. 3  Astaxanthin altered the hepatic gene expression pattern of largemouth bass. (A) Volcano plot of differentially expressed genes in HC diet com-
pared with CON diet. Red dots represent upregulated genes and green dots represent downregulated genes. (B) Volcano plot of differentially expressed 
genes in HCA diet compared with HC diet. Red dots represent upregulated genes and green dots represent downregulated genes. (C) Bubble plot of 
Gene Ontology (GO) terms between HC and CON diet. (D) Bubble plot of GO terms between HCA and HC diet. (E) Bubble plot of KEGG pathways be-
tween HC and CON diet. (F) Bubble plot of KEGG pathways between HCA and HC diet; CON: control; HC: high-carbohydrate; HCA: high-carbohydrate diet 
supplemented with astaxanthin
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assays (Fig.  5A), revealing that astaxanthin effectively 
ameliorated the decline in cell viability caused by HG 
treatment over a 48-h period, with the most significant 
improvement observed at concentrations of 30 or 50 µM. 
The proportion of total injured cells was measured using 
annexin V-FITC/PI staining, it was found that primary 
hepatocytes treated with 30 or 50 µM astaxanthin exhib-
ited a lower proportion of injured cells compared to those 
treated with HG (Fig. 5B). Flow cytometry was employed 
to measure ROS production, which demonstrated that 
HG treatment led to an increase in ROS levels, whereas 
astaxanthin treatment showed a concentration-depen-
dent decrease in ROS production (Fig. 5C), with the most 
pronounced effect observed at a concentration of 50 µM. 
Consequently, further investigation utilized a concentra-
tion of 50 µM astaxanthin (named HGA).

Astaxanthin improved apoptosis induced by high-glucose 
via p38MAPK/bcl-2/caspase-3 signaling pathway
In order to elucidate the impact of astaxanthin treatment 
on the MAPK pathway, western blotting was conducted 
in vitro model. The findings of this study indicated that 
HG treatment led to the activation of ERK, JNK, and 
p38MAPK phosphorylation. Conversely, HGA treat-
ment inhibited the phosphorylation of p38 MAPK, but 
not ERK and JNK. Additionally, HG treatment resulted 
in an increase in protein expression of CAS3, whereas 
HGA treatment blocks this increased protein expression 
(Fig.  6A). The p-p38 fluorometric assay demonstrated 
that the heightened fluorescent intensity of p-p38 in HG 
treatment was reversed by HGA treatment (Fig.  6B). 
Thus, we ensured that astaxanthin significantly inhibited 
the p38MAPK signal pathway. In this study, pretreatment 

Fig. 4  Astaxanthin alleviated liver damage by improving apoptosis, inflammation and oxidative stress in high carbohydrate-fed largemouth bass. (A) H&E 
staining, Scale bar, 100 μm, original magnification×4. (B) PAS staining. (C) The structure of the ultramicroscopic characteristics and structure in the livers 
under electron microscopy. (D) Relative expression of Caspase family genes (caspase-3, caspase-8 and caspase-9) (n = 3). (E) Relative expression of Bcl-2 
family genes (bcl-2, bax and bad) (n = 3). (F) Relative expression of inflammatory factor genes (tnf-α, il-6, il-8 and il-10) (n = 3). (G) Relative expression of an-
tioxidant genes (cat, gsh-px and sod1) (n = 3). (H) and (I), The activities of serum ALT and AST (n = 3). Values were mean ± SEM of three biological replicates. 
AST, aspartate aminotransferase; ALT, alanine aminotransferase. CON: control; HC: high-carbohydrate; HCA: high-carbohydrate diet supplemented with 
astaxanthin. *P < 0.05, **P < 0.01 and ***P < 0.001; ns, no significant difference
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with SB203580 (an inhibitor of the p38MAPK signaling 
pathway) significantly inhibited CAS3 expression at the 
gene and protein levels (Fig.  6C and D). Furthermore, 
this effect was significantly enhanced by the addition of 
astaxanthin. The gene expression levels of bcl-2 and bad 
were significantly altered in cells treated with HG and 
HGA, in the presence of SB203580, whereas there were 
no notable differences observed in the expression of bax 
and caspase-9. These findings suggested that astaxanthin 
may hinder apoptosis induced by high glucose through 
the p38MAPK/bcl-2/caspase-3 signaling pathway.

Discussion
Earlier studies have successfully shown the limited use of 
glucose in largemouth bass, where an excessive intake of 
carbohydrates had a detrimental impact on their growth 
and overall health [27, 28]. In this study, the supplemen-
tation of astaxanthin led to an improvement of growth 
performance in largemouth bass fed HC diet. The inclu-
sion of astaxanthin with a concentration of 0.01% had 
notable beneficial effect on the growth of Trachinotus 
ovatus when fed a high-fat diet [29]. Nevertheless, there 
was no notable disparity in the developmental progress 
of Oncorhynchus mykiss when exposed to a 0.05% ASX 

Fig. 5  Astaxanthin suppressed HG-induced apoptosis in largemouth bass primary hepatocytes. (A) Cell counting kit-8 test (n = 3). (B) Flow cytometry 
for apoptosis (n = 3), LL: live cells; LR: early apoptotic cells; UR: late apoptotic cells; UL: mechanically damaged cells. (C) ROS production analysed by flow 
cytometry. (C’) The proportion of intracellular ROS in primary hepatocytes (n = 3). Values were mean ± SEM of three biological replicates. LG: low-glucose; 
HG: high-glucose. *P < 0.05, **P < 0.01 and ***P < 0.001; ns, no significant difference
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concentration [30]. Variations in dietary patterns, fish 
species, and concentrations of astaxanthin may con-
tribute to the inconsistent impacts on growth. Further 
studies for determining the growth-promoting effect of 
astaxanthin on different fish species may help astaxan-
thin for aquafeed application.

Our results showed long term intake of a HCA diet 
improved glucose homeostasis by improving insulin 
sensitivity, lowering glucose intolerance, and reducing 
glucose levels. It only taken 4–6 h to return to the base-
line blood glucose level after the same dose of glucose 
injection in omnivorous and herbivorous fish [31], while 
largemouth bass needed 12 h to return to normoglycemia 
during a GTT. Further evidence that largemouth bass 
was a typical sugar intolerance carnivorous fish. Gener-
ally speaking, elevated fasting glucose levels are due to 
hepatic insulin resistance [32]. It appeared that astaxan-
thin has lycemia-lowering and insulin resistance-improv-
ing effects, which was in accordance with the other 
studies [33]. Specifically, although astaxanthin efficiently 
regulated the PTP1B/PI3K/Akt signaling cascade in long 
term HC diet, it failed to alter expression of insulin resis-
tance genes in the liver during the GTT. This discrepancy 
suggests that different effects of astaxanthin treatment 
might be related to the length of time for high glucose 
exposure.

Fish is more likely to convert glucose into glyco-
gen in the liver when fed a high-carbohydrate diet [34]. 
Red grouper juveniles fed a high carbohydrate diet 
has reduced growth rate and increased liver glycogen 
[35]. The increased glycemia observed in many fishes is 
accompanied by a decline in hepatic glycogen, suggest-
ing stimulation of glycogenolysis and a role in mobilizing 
carbohydrates [36]. However, in largemouth bass, this is 
accompanied by elevated glucose and accumulation of 
glycogen, possibly that is why largemouth bass cannot 
utilize carbohydrates a metabolic fuel source. In addition, 
it should be noted that this excessive and irreversible 
accumulation of liver glycogen can cause glycogenic hep-
atomegaly, leading to liver dysfunction and liver damage 
[37]. Astaxanthin has been widely studied and acclaimed 
as a powerful antioxidant and anti-inflammatory agent 
under certain pathological conditions [38]. Our results 
showed that astaxanthin effectively ameliorated liver 
vacuolization, inflammation, hepatic glycogen deposi-
tion and mitochondrial damage induced by the HC diet. 
This may aid in dealing with the nutritional-technological 
conundrum associated with producing carnivorous fish 
feed.

In this study, GO analysis showed that astaxanthin 
plays an important role in regulating the signaling path-
ways of apoptosis. Apoptosis consists of two primary 
routes: the intrinsic pathway, which engages the mito-
chondria, and the extrinsic pathway, which involves 

Fig. 6  Astaxanthin improved apoptosis induced by high-glucose via 
p38MAPK/bcl-2/caspase-3 signaling pathway. (A) The expression of levels 
of p-ERK, ERK, p-p38, p38, p-JNK, JNK and CAS3 proteins of primary hepa-
tocytes cultured with three treatments (n = 3). (B) immunofluorescence for 
p-p38. (C) and (D), primary hepatocytes were pretreated with SB203580 
for 2  h, inhibitors of the p38MAPK pathways, and treated with HG and 
HGA for 48 h, respectively. Expression levels of p-p38, p38 and CAS3 were 
analyzed using western blotting (n = 3), expression levels of bcl-2, bax, 
bad, caspase-3 and caspase-9 were analyzed using RT-PCR (n = 3). Values 
were mean ± SEM of three biological replicates. LG: low-glucose; HG: high-
glucose; HGA, treated with 50 µM astaxanthin and high-glucose. *P < 0.05, 
**P < 0.01 and ***P < 0.001; ns, no significant difference
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death receptors [39]. Mitochondrial apoptosis is also 
known as the Bcl-2 signaling pathway [40]. Our find-
ings unequivocally demonstrated that astaxanthin could 
ameliorate high carbohydrate-induced Bcl-2 signaling 
pathway by suppressing caspase-3, caspase-9, bax, and 
bad expression and simultaneously restoring bcl-2 gene 
expression. The existing scholarly investigations pertain-
ing to the impact of excessive carbohydrate consumption 
on largemouth bass primarily concentrate on transcript 
levels, enzyme activity, and metabolites in vivo model 
[23, 41]. Malwina et al. [42] reported that astaxanthin 
inhibited cell proliferation by inducing the apoptosis of 
equine ASC cells by regulating the ratio of Bax/Bcl-2. 
In this study, we utilized primary hepatocytes cultured 
in a high glucose setting as a vitro model to evaluate the 
changes caused by astaxanthin on cell growth and cell 
death. Our findings also indicated that astaxanthin exhib-
ited a significant ability to enhance primary cell survival 
and reduce the rate of apoptosis, which was also compat-
ible with what was known of the in vivo model we used.

Under typical cellular circumstances, the production 
and removal of ROS maintain in a balanced and ever-
changing state. However, when the body is stimulated 
by specific factors, an overproduction of ROS can occur 
[43]. It is known that mitochondrial damage leads to an 
increase in ROS production, and that excessive ROS can 
damage mitochondria significantly more [44, 45]. In this 
study, we confirmed that that HC diet induced mitochon-
drial damage in largemouth bass by increased intracel-
lular accumulation of ROS due to decreased expression 
of antioxidant genes cat and sod1. Simultaneously, large-
mouth bass fed HC diet displayed an excessive oxidative 
stress, which caused a decline in growth performance 
and liver health. According to our results, astaxanthin 
modulates oxidative stress within HG treated primary 
hepatocytes, which evidenced by the observed drop in 
the number of ROS positive cells and the restoration of 
the expression of cat and sod1. Astaxanthin alleviates the 
adverse effects of high carbohydrate on largemouth bass 
could also be attributed to its antioxidant property.

The significance of the mitogen-activated protein 
kinase (MAPK) signaling pathway in apoptosis has been 
highlighted [46]. This pathway encompasses the ERK, 
JNK, and p38MAPK pathways, which are known to be 
crucial in various biological processes such as inflam-
mation, cellular growth, and stress response [47]. In the 
present investigation, the involvement of MAPK sig-
naling in largemouth bass fed HC diet was examined, 
and it was found that the phosphorylation of ERK1/2, 
JNK1/2, and p38MAPK was significantly increased. 
As a super antioxidant, astaxanthin has been shown to 
exhibit efficacy in the treatment of diabetic mellitus by 
suppressing anti-apoptotic activity via modulation of 
MAPKs and PI3K/Akt pathways [48]. Our observation 

that astaxanthin significantly inhibited phosphorylation 
of p38MAPK, but not ERK1/2 and JNK1/2. This result 
indicated that the mechanism of astaxanthin-inhibited 
apoptosis might differ from previous studies. Moreover, 
the present study also demonstrated that astaxanthin 
may hinder apoptosis induced by high glucose by target-
ing p38MAPK/bcl-2/caspase-3 signaling pathway. These 
findings suggest that astaxanthin could be a promising 
therapeutic target for managing insulin resistance and 
liver health in carnivorous fish.

Conclusion
In a word, our findings showed that astaxanthin allevi-
ated high-glucose-induced mitochondrial apoptosis in 
largemouth bass via the regulation of p38 MAPK/bcl-2/
caspase-3 pathway. To our knowledge, astaxanthin 
reduces cell apoptosis, ameliorates oxidative stress and 
mitochondrial damage. This study provides strong evi-
dence for the role of astaxanthin in fish metabolic syn-
drome prevention and treatment. Besides, astaxanthin 
is first shown to improve insulin resistance through the 
PTP1B/PI3K/Akt axis, which promotes the use of astax-
anthin in aquafeeds and provide a potential strategy to 
improve the utilization of dietary carbohydrate in car-
nivorous fish.
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