Maenpaa et al. Journal of Internet Services and Applications (2018) 9:17

https://doi.org/10.1186/513174-018-0088-1

Journal of Internet Services
and Applications

RESEARCH Open Access

Organizing for openness: six models for

@ CrossMark

developer involvement in hybrid OSS

projects

Hanna Méenpaa' ®, Simo Makinen?, Terhi Kilamo?, Tommi Mikkonen', Tomi Mannist' and Paavo Ritala®

Abstract

complementary.

This article examines organization and governance of commerdially influenced Open Source Software development
communities by presenting a multiple-case study of six contemporary, hybrid OSS projects. The findings provide in-depth
understanding on how to design the participatory nature of the software development process, while understanding the
factors that influence the delicate balance of openness, motivations, and governance. The results lay ground for further
research on how to organize and manage developer communities where needs of the stakeholders are competing, yet

Keywords: Open source, Hybrid open source, Governance, Community management, Software development process

1 Introduction

Using Open Source Software (OSS) removes many bar-
riers regarding code reuse and modification. It offers
companies many opportunities for speeding up new
product development [1], by uncovering knowledge and
work of highly qualified individuals that can be flexibly
integrated into a company’s value creation processes [2].
Collaborating with OSS communities can provide low cost
means for early testing of quality and viability of products
[3, 4]. This can leverage the capabilities of especially small
and medium-sized companies [5, 6] — taken that they have
sufficient resources and technological competencies for
building effective and reciprocal collaborations [7].

Hybrid OSS communities can emerge either organic-
ally when companies become interested in existing pro-
jects or by design when companies initiate projects
themselves by releasing software source code with an
OSS-compliant license [5, 8]. When successful, this can
invite stakeholders from different organizations into
symbiotic relationships for creating a common software,
while sharing also the same competitive market for soft-
ware and services [9, 10]. This versatility introduces ele-
ments of competition in the collaborative software

* Correspondence: hanna.maenpaa@helsinki fi

'Department of Computer Science, University of Helsinki, Gustaf Hallstromin
katu 2b, 00041 Helsinki, Finland

Full list of author information is available at the end of the article

@ Springer Open

development effort [11] and emphasizes the importance
of drawing the line between sharing innovations and
maintaining private interests. While exchanging know-
ledge with a community is important for acquiring full
benefits of the approach [12, 13]), the knowledge ex-
change can expose the company’s assets and strategy or
outsiders, including possible competitors [14].

From the viewpoint of a hybrid OSS development pro-
ject, the varying aims of the stakeholders have a pro-
found influence on how the future of the software is
shaped. This effect is amplified by the stakeholders’ cap-
ability to deploy resources, such as software developers
into the development project [15]. These invisible power
structures highlight the importance of fair goal align-
ment and incentivization of those actors who may not
be able to advance their own aims as effectively as
others, but who still are essential in ensuring sustainabil-
ity of the development effort [12, 16].

As an OSS ecosystem grows, a central organization is
often established to ensure stability and a common dir-
ection for the development community’s work. This or-
chestrator can take an “open provider” role, where it
facilitates the community’s work with tools, infrastruc-
ture and social activities [4, 17, 18]. Another approach is
that of a “closed sponsor” [5, 19], in which the orchestra-
tor exercises centralized control over the community’s
platforms, processes and policies, controlling the

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13174-018-0088-1&domain=pdf
http://orcid.org/0000-0003-2594-0202
mailto:hanna.maenpaa@helsinki.fi
http://creativecommons.org/licenses/by/4.0/

Méenpaa et al. Journal of Internet Services and Applications (2018) 9:17

ecosystem on various scope levels [19, 20]. This ap-
proach requires conscious decisions on how to structure
the community to encourage - or limit participation [19]
and how autonomy and centralized governance are bal-
anced. If the community’s members feel that their values
are being compromised or that their opinions are not
being heard, their motivation to contribute to the project
can deteriorate [21, 22]. Here, distributing knowledge,
autonomy and responsibility aptly can help to achieve a
symbiotic state where the community sees the software
ecosystem’s members and especially the orchestrator as
an active co-developer of the software, rather than a
“parasitic” business owner that outsources its selected
tasks to a crowd [2].

As for recent research, Alves et al. [9] call for concrete
and actionable knowledge to help practitioners make
strategic design decisions on the organization and gov-
ernance of OSS ecosystems. This, as recommended by
Lindker et al. [1] and Hussan et al. [23], can be studied
at the scope level of the software development process
by exploring how knowledge and access to development
tasks are provided for the open developer community.
We address these calls by illustrating how six orchestra-
tors manage participation of external stakeholders in
their hybrid OSS ecosystems by asking:

RQ1: How can decision-making roles and responsibilities
be distributed?

RQ2: Which tasks of the development process can be
accessible for members of the open developer
community?

RQ3: What knowledge of the development process
can be exposed for members of the open developer
community?

While understanding that these issues are inseparable
from their context, we provide a rich description of the
case projects, their history and the current role of their
orchestrator before answering the research questions.
The work carries forward our previous work [24], where
we examined three commercially oriented hybrid OSS
developer communities in terms of their participation
architecture. For this paper, we revisited the research
questions that formed the core of our previous contribu-
tion, offering more precision to the results and adding
three new case projects to the study. Our goal is to pro-
vide empirically grounded, illustrative analysis of the
governance models in their genuine contexts. With this,
we aim to discuss elements that can be used in designing
and managing contemporary, hybrid OSS ecosystems.
Next section describes developer community governance
of hybrid software ecosystems based on literature.

Page 2 of 14

Section elaborates our research design and data collec-
tion strategy. Section 4 introduces the case communities,
continued by findings in Section 5. Results are discussed
and concluded in Sections 6 and 7.

2 Background and related work

Today, large OSS projects are typically arranged around
a central organization that acts both as a guardian of the
development community and as an orchestrator for its
actions. While the nature of this organization (e.g. a
foundation or a company) reflects the project’s history,
fundamentals of how a development community can
form, act and evolve are grounded on the license of the
software source code [5].

OSS licenses take different stands on users’ rights to
modify, re-use, and distribute the original software and
its derivatives, along with what obligations stakeholders
must adhere to when doing so [5]. The choice of a li-
cense has a profound effect on the project’s nature and
ability to attract new developers, and managers can use
them to encourage contributions from the open devel-
opment community [25]. Depending on the licensing
scheme, the orchestrator can be allowed to package and
re-sell the software [26]. This setting can structure the
stakeholders to a single or multi-vendor ecosystem
where individuals and businesses not only use and resell
the software product, but also provide products and ser-
vices for those who use it. When apt, the governance
model of a developer community allows consolidating
these various viewpoints into a coherent whole that sup-
ports the needs of the many and enables the ecosystem
to grow in a sustainable manner [5, 27].

2.1 Governance considerations

Governance of OSS projects involves the means that are
in place to steer the efforts of the autonomously working
developer community [27]. Each community has its own
governance model, which is an evolving configuration of
coordination processes and practices that guide the
community’s action [28]. A model can emerge slowly as
a collective learning process as the community finds its
own tools and ways of working [4]. However, in the case
of open sourcing a previously closed system, the govern-
ance model needs to be designed and implemented rap-
idly. Here, understanding which aspects and elements a
model should consist of is crucial.

Governance styles vary between projects, and even
within them, several layers of democratic, autocratic, oli-
garchic, federative and meritocratic principles and be-
haviors can coexist. These are implemented embedded
in the various social interactions, written guidelines and
standardized processes that operationalize the many au-
thoritative elements present in the complex ecosystem
[28]. A mature governance model explicitly documents

Méenpaa et al. Journal of Internet Services and Applications (2018) 9:17

who the ecosystem consists of, how roles and responsi-
bilities are distributed and ultimately: how contributions
and their related decisions are made [20]. A fit model
creates an efficient work environment where partici-
pants’ motivation is fostered so that the community at-
tracts and retains its developers [27]. From the
orchestrator, this can involve taking an active stand on
issues that are internal to the community, as well as its
external relationships, such as who can enter the ecosys-
tem and to which other projects the community’s devel-
opers should contribute to [20] in order to ensure
interoperability of the software or standardization of in-
dustry practices.

2.2 Accommodating participation

The first enabler of an open development project is the
freely available software source code which in truly open
communities is available for all stakeholders simultan-
eously in its complete form [29]. Next, the development
project needs the ability to store knowledge about the
software’s defects and a means for receiving code contri-
butions. While in the early forms of OSS projects, these
two functions were based on email exchange, contem-
porary projects use tools that support and automate the
contribution processes and related flows of knowledge
[18]. These socio-technical systems constitute boundary
objects of the community, providing personalized views
on the current state of the community’s work [30].

Using standardized tools facilitates the entrance of
new developers [31] and allows the orchestrator to nego-
tiate its relationship with the community from a more
neutral ground as a part of the community’s processes
and practices are embedded in the features the software
tools provide [28]. If the tool chain provides full trans-
parency to the development process, external stake-
holders can understand who the current members of the
community are, what activities they are engaged in and
at what state of the development process the current
contributions are in [29]. The choice and configurations
of these tools implement the governance model in terms
of on what premises different roles, responsibilities and
privileges are acquired and who can participate in dis-
tinct tasks [5]. These, together with a log of decisions
made by the project’s core developers, can open the de-
velopment process to be freely observable and under-
standable for external contributors [29].

To increase community-drivenness, public decision
support mechanisms can be used to choose who shall be
accredited as new contributors and code maintainers [5].
At the same time, they can be used to resolve develop-
ment priorities and contents of software releases. These
decisions can be made via an open call, be restricted to a
dominant control group, or kept to the central orches-
trator [4, 5]. For limiting participation, the orchestrator

Page 3 of 14

can obfuscate access to development tasks or keep selected
software assets proprietary, creating a “gate” that limits the
open developer community’s possibilities to understand
and participate the development activities [21].

In mature communities, development standards and
work practices may be enforced by automated testing of
code contributions or by requiring contributors to per-
form complementary tasks, such as writing test cases
and documentation [4, 32]. As for these complex nu-
ances, a considerable amount of work can be required
for making the community environment welcoming for
newcomers and often personal mentoring is required for
successful onboarding of new developers [33]. A special
type of openness are the support mechanisms that are
present for developers, such as documentation, tools and
understandability of the participation and decision-making
processes [29].

To summarize, while software licenses determine the
many rights of users to copy, modify and distribute an
Open Source software, they are only one component in
the mix. A community’s governance model defines how
external stakeholders can view and influence the devel-
opment project. Its openness or closeness is determined
by access to tasks and transparency of knowledge to ex-
ternal contributors to the current state of the commu-
nity and its activities. Managing a hybrid Open Source
collaboration requires understanding and decisions on
how “open” or “closed” a development project is for ex-
ternal contributors [29]. This degree of openness is
multifaceted, and its interpretation varies according to
the viewpoint. The main contribution of our paper is to
illustrate how openness and closeness can manifest in
the core of the development community - at the level of
the software development process. To do this, we report
empirical evidence from six hybrid OSS projects,
highlighting how knowledge and access of development
tasks can be used as leverages for openness.

3 Research design
Case studies can be used to investigate the industrial
state of the practice in software engineering [34]. They
can aim to extend the current body of knowledge about
how contemporary phenomena manifest and evolve, yet
also to create new theories that can be generalized and
extended to new contexts with future research designs
or practical applications [35]. Our research design is
grounded on the work of De Noni et al. [4], who pin-
pointed as defining characteristics of community govern-
ance 1) the nature and role of the community’s
orchestrator and 2) the level of control it exposes to its
community’s operation and decision-making.

With this scope of investigation, we purposefully se-
lected six Open Source Software development projects as
our units of analysis. All projects have high commercial

Méenpaa et al. Journal of Internet Services and Applications (2018) 9:17

involvement and a strong central orchestrator in place to
steer the software development effort. However, each pro-
ject represents a different flavor of organization and gov-
ernance. Our sample includes four company-based and
two foundation-driven Open Source development pro-
jects. We chose projects with both similar and different
application areas, including both independent and inter-
dependent projects in the mix. This strategy was chosen
to collect versatile and illustrative examples of the
build-up of contemporary hybrid Open Source communi-
ties and to highlight the differences of the way in which
they operate.

3.1 Data collection and analysis

Embedded case study designs can bring phenomena to
comparison in terms of the mutual characteristics they
share [36]. Acknowledging this, we created an initial,
theory-grounded framework for observing different aspects
of 1) community-level [37], 2) project-level and 3) develop-
ment process level governance and decision-making [5, 20].
In addition to knowledge and access to software develop-
ment tasks, we wanted our analysis to cover the two para-
mount decisions that define the role of new developers: 4)
how rights to make source code commits are gained and 5)
how maintainership of specified areas of software source
code can be achieved. This framework guided our inquiry
from the freely available documentation and affordances
that the projects’ socio-technical systems provided for ex-
ternal contributors. An exploratory data collection strategy
was chosen as explicitness of the governance model reflects
its maturity [20], which we also wanted to discuss as a part
of our findings. To increase validity of our findings, re-
searchers conducted different stages of the data collection
in pairs. When unsure, members of the development com-
munity were consulted for finding answers.

3.2 Research instrument

A community’s governance model can be understood by
examining the authoritative structures embedded in its
coordination processes [28]. Respecting this, we crafted
a research instrument to guide reporting our results.
The instrument includes nine questions on where the
case projects’ governance models place their emphasis at
the different stages of the software development process.
The first five questions of our research instrument
evaluate whether the open community’s members were
able to access development tasks by A) sending code
contributions B) reviewing them and C) accepting the
verified contributions to be integrated to the current de-
velopment version of the software. In addition, we inves-
tigated whether external contributors were able to D)
access the live development version of the software to
e.g. verify defect reports and finally, whether members of
the open developer community were able to E) impact

Page 4 of 14

priorities of the requirements. This, on its part, reflects
how well the open community’s members viewpoint was
considered in short-term development decisions.

The remaining four questions illustrate how knowledge
was exposed to external contributors about the status of
the development process: whether developers could
know F) which code contributions had recently been in-
tegrated to the development version of the software and
G) what product planning and H) release definition deci-
sions had been made. The last question assessed
whether contributors were able to be on the pulse of the
project by understanding the I) “live” development prior-
ities of the project. Table 2 in the Findings section dis-
plays these questions and their answers in detail.

To provide a graphical representation of the results
(Fig. 1), answers to these questions were coded based on
a four-step numerical scale. We evaluated whether each
matter was 0) kept proprietary to the central orchestra-
tor, 1) revealed only to an exclusive group of the com-
munity’s members, 2) open to individuals that had been
accredited by either the community’s members or the
central orchestrator or 3) open to anyone interested. We
claim that this approach presents a covering and suffi-
ciently reliable viewpoint of an external observer on the
practices in the case communities at the time of our ob-
servations in 2017.

4 Case projects

This section overviews the case projects in terms of their
nature and history, setting the context for our research.
Table 1 summarizes their main characteristics.

4.1 Eclipse

Eclipse is an integrated development environment (IDE),
which is widely used by businesses and educational insti-
tutions as it supports a variety of programming lan-
guages and purposes of use. Eclipse is available with the
EPL1 license, which places no restrictions on reuse or
commercialization of the software. Therefore, the Eclipse
community represents a typical multi-vendor ecosystem,
where stakeholders base their core businesses on deriva-
tives of the Eclipse software.

The software originates from IBM, which open sourced
the project in 2001. Today, the Eclipse Foundation man-
ages the project, hosting a partner ecosystem with a mem-
bership scheme of many levels based on the size of the
stakeholder’s business, its willingness to devote developer
resources to the project and its desired position in the
decision-making activities of the Eclipse development pro-
ject. The foundation performs community building activ-
ities and actively hosts working groups, which e.g. develop
industry standards for the software, such as Eclipse for the
automotive industry and Eclipse for scientific use. The
Eclipse ecosystem also encompasses a versatile set of

Maenpaa et al. Journal of Internet Services and Applications (2018) 9:17 Page 5 of 14
Eclipse Qt Sailfish
A A A
3 3
B | B | B
2 2
H & H 1 C H) &
0
G D G D G D
E F E
NetBeans GTK+ Vaadin
A A A
3 3
B B |) B
H C H C H 5 C
~o~
G D G D G D
- F E
Fig. 1 Comparison of the case projects

independent software projects that build add-on compo-
nents for the main platform. The source code of Eclipse is
downloadable as a live, “debug” version. A new major ver-
sion of the software is released once every year and several
increments are made between. The development commu-
nity is the primary source of release planning and

Table 1 Overview of the case projects

definition and the foundation facilitates this through a
standardized decision-making process.

4.2 NetBeans
Development of NetBeans IDE started as a student pro-
ject in 1996. For the software’s close relationship with

Software Eclipse 4.7 NetBeans 82 Qt5 GTK+ 3 Vaadin 8 SailfishOS 2
type Integrated Integrated Application Application Application Operating system
Development Development development development development
Environment Environment framework framework framework
Language Java Java C++ C Java C, C++, QML,
Web technologies,
shell scripts
Current 275 70 321 137 133 12
contributors [44]
License EPL1 GNU LGPL2.1 GNU GPL GNU LGPL 2.1 Apache 2.0 Proprietary, GPL,
30, LGPL 2.1 and 3.0 LGPL, BSD, and MIT.
Orchestrator Eclipse Oracle Ltd. The Qt Company Ltd. GNOME Vaadin Ltd. Jolla Ltd.
Foundation Foundation
Position of The foundation’s Not primary ~ Primary business One of the GNOME Primary business Primary business
the project primary interest. business of of the company. Foundation's of the company. of the company.

the company.

Orchestrator Active open Passive open Closed sponsor,
role provider, hub provider. deploys resources to
for member development activities.

organizations.

interconnected
projects.

Open provider,
organizes
partnerships.

Closed sponsor, develops
the software, supports the
developer ecosystem.

Develops software,
deploys resources
to affiliated projects.

Méenpaa et al. Journal of Internet Services and Applications (2018) 9:17

the Java programming language, Sun Microsystems ac-
quired the NetBeans project from its original developers
in 1999, immediately open-sourcing the software and
continuing it as a community driven development pro-
ject. In 2010, the ownership of both Java and the Net-
Beans project was transferred to Oracle, which let the
NetBeans project operate independently, yet coordinat-
ing its two annual releases with those of the company’s
current Java platform.

The NetBeans software is licensed under GNU LGPL
2.1, which is intended to encourage development of both
free and proprietary plugins to complement the IDE.
Therefore, the NetBeans ecosystem invites numerous in-
dependently managed projects the work of which allows
the IDE to support state of the art web development lan-
guages and frameworks that integrate it to the wider
context of contemporary, industrial scale software devel-
opment. After our data collection period was over, the
NetBeans project was transferred from Oracle to the
governance of the Apache Foundation. In this article, we
focus on the community’s state of matters before this
major event in its history and leave the nature of this
transformation to be a topic for future research.

43 Qt

Qt is a framework for building software applications for
desktop, mobile, and embedded devices in domains such
as industrial automation, medical devices, and in-vehicle
entertainment systems. The project was started in 1991
by independent developers, who incorporated it in 1993
and released its software source code in 1995. After sev-
eral re-definitions, the Qt software was licensed under
GPL2 in 2000, which ensured the software’s status as a
common good. Following the commercial acquisitions
by Nokia and Digia, the Qt project became hosted by
the Qt Company, which today bases its primary business
on a single vendor position by using a dual-licensing
model. While the non-commercial version is Open
Source, the commercial license allows making applica-
tions proprietary and to access complementary software
components and personalized customer support. The Qt
software is used widely in Linux-based environments,
such as the KDE desktop environment and Sailfish OS,
which is included in our study and described later in this
section. For the KDE software’s dependence on Qt, the
KDE Foundation maintains the “Free Qt Foundation” to
ensure that an open source version of the software will
remain available. In addition to independent and com-
mercial Qt application developers, the community’s
stakeholder ecosystem consists of consultancy compan-
ies and individual consultants who help their customers
to build Qt applications, hardware manufacturers and
different Open Source projects that build Qt related
technologies. A major version of the Qt framework is

Page 6 of 14

released every 6 months, and several service releases are
typically made between them.

4.4 GTK+

Similarly, to the Qt software, GTK+ is an application de-
velopment toolkit that can be used to create graphical
user interfaces for multiple platforms, including Win-
dows, Linux, and iOS operating systems. It was origin-
ally developed in 1996 as a student project. Since then,
it has been used mainly in products of the GNOME
Foundation, such as the GNOME desktop environment
and the GIMP graphics editor. The GTK+ development
project has been orchestrated by the GNOME Founda-
tion since 2000. Currently, the software is released under
the GNU LGPL 2.1 license, which makes it possible to
build GTK+ based applications for both noncommercial
and commercial domains. The project’s code maintainers
are associated with commercial companies, such as
Novell, Intel and Red Hat, and its ecosystem includes
application developers and consultancies that help their
customers in building their own applications with GTK
+. Many OSS projects share inter-dependencies with the
GTK+ framework. Therefore, developers may participate
in the work of several related communities, and the
bi-annual releases of GTK+ are defined largely by the
work of the community’s developers themselves.

4.5 Vaadin

Vaadin Ltd. produces an application development frame-
work that is widely used for building interactive web ap-
plications for business use. The applications, written in
Java, are developed using a charge-free version of the
Vaadin framework, and they run on most operating sys-
tems and browsers. For accessing advanced features of
the Vaadin framework, users can acquire a bundle of
additional software components by purchasing a com-
mercial license. The company hosts developer meetups
and offers training for application developers.

The Vaadin software was initially developed as an
add-on for an existing OSS product in 2002, and it was
released as an independent software package in 2006.
The development project has since been hosted by the
Vaadin company that offers online training, consultancy
and sub-contracting of application projects. The soft-
ware is available under the Apache 2.0 license, which al-
lows free modification and distribution of the software if
the original copyright notice and disclaimers are pre-
served. However, distributing the Vaadin framework it-
self is not the primary aim of the ecosystem, which
includes independent and commercial application devel-
opers, add-on developers and application development
consultancies. The whole of the Vaadin software source
code is publicly available and the community pre-release
software version is available as a nightly build. The last

Méenpaa et al. Journal of Internet Services and Applications (2018) 9:17

full version of Vaadin (8.0) was released in 2017. Minor
releases are issued monthly.

4.6 Sailfish OS

Our last case is the Linux-based “Sailfish” operating sys-
tem (OS) for mobile devices. This project was selected
for its out-liar position: it is run by a commercial
organization that displays a very closed governance
model while employing a mixed licensing strategy in dis-
tributing its software — offering a contrast to the previ-
ous examples. The history of Sailfish OS originates from
the Meego operating system software that was released
from Nokia as open source in 2011. The current host of
Sailfish OS is Jolla Ltd., a startup that sells both
proof-of-concept mobile devices and distributor licenses
for the OS. The technical architecture of Sailfish OS is
layered, and parts of the software rely on the work of
several Open Source communities, such as Qt and the
independent, community-driven project Mer. The Mer
software alone comprises of packages that are using vari-
ous Open Source licenses, such as GPL, LGPL, BSD
Licenses, and MIT License. The orchestrator’s largest
contribution to Sailfish OS are proprietary
hardware-dependent Linux Kernel adaptations and
closed source user interface libraries that define funda-
mentals of user experience of the operating system.

The Jolla company had chosen a gated source ap-
proach for Sailfish OS: it developed the hardware
dependent kernel and user experience layers as an in-
ternal process and in isolation from the open developer
community. The complete Sailfish OS software is avail-
able only in binary format, however, the company has
experimented with different open innovation strategies
for acquiring defect reports and testing for the propri-
etary components. The Sailfish OS project’s immediate
stakeholder ecosystem consists of users of Sailfish OS
devices, the Mer project’s software developers and hard-
ware manufacturers that use Sailfish OS in their distrib-
uted devices.

With this set of six projects, we hope to provide a rich
and versatile representation of possible governance con-
figurations. The next section overviews the roles of the
central orchestrator and describes the communities
within the scope of the research questions that were pre-
sented in Section 1.

5 Findings

Guided by the framework described by Lindman et al.
[38], we first lay out the support the orchestrator pro-
vided to its community and then proceed to describe the
role of each orchestrator in their project’s governance.
Next, we describe how access to development tasks and
transparency of knowledge were configured in each pro-
ject. This is illustrated in Fig. 1, to which Table 2 reveals

Page 7 of 14

the research instrument’s questions and coding of their
answers.

5.1 Role of the orchestrator

All orchestrators sponsored platforms, tools and services
to facilitate their open development project’s work. Each
ensured financial stability by bonding stakeholders to the
project’s ecosystem through partnering, customer relation-
ships and memberships. Orchestrators offered legal and
marketing support and helped with community-building
activities. Most advocated actively to reach prospective
new software users and developers. However, the level of
the orchestrators’ influence on their project’s software de-
velopment activities and related decision-making varied
significantly.

The Eclipse Foundation maintained a complex, formal
and hierarchical organization that was based on council
and board memberships. A multi-leveled, fee-based mem-
bership scheme ensured the foundation’s members special
positions in the community’s decision-making - in some
cases also obliging them to deploy developer resources to

Table 2 The research instrument with questions and their
coded answers

Eclipse Netbeans Qt Vaadin GTK+ Sailfish

A Who can contribute 2 2 3 3 3 2°
source code?

B Who can test code 3 2 3 0 3 1°
contributions?

C Who can accept 2 2 2 0 2 1°

code contributions?

D Who can access 3 3 1 3 3 0°
the complete, live
development
version?

E Who can impact 3 3 30 3 0°
work issue
priorities?

F Who knows 3 2 3 3 3 1
integration
status of code
contributions?

G Who can view the 3 3 1 0 3 0
product roadmap?
H Who knows 3 3 1 3 3 0

release timing
and content?

| Who knows 3 3 30 3 0
priorities of
work issues?

0) Closed from outsiders, 1) Open only to an exclusive group, 2) Open to
accredited individuals, 3) Open to any external observer

“Due to the distributed repository strategy, practices vary per

software component

Méenpaa et al. Journal of Internet Services and Applications (2018) 9:17

the project. The Eclipse Foundation applied standardized
decision-making processes to accommodate viewpoints of
both the corporate and independent developers, offering
also a process for intellectual property rights clearance
and mentoring to sustain architectural integrity and qual-
ity of the software. Daily work of the development com-
munity was organized in small and autonomous teams
that each took care of a specific architecture module au-
tonomously. Release definition of the software was notably
community-driven, as sub-projects would suggest their
own deliverables for each upcoming release.

Oracle stewarded the development of both the Java
language and its affiliated development environment,
NetBeans. However, it remained very passive towards
the NetBeans project’s governance. A management
board with one representative of the orchestrator and two
publicly elected community members was in place, yet
not involved in the project’s ongoing decision-making.
The board existed to ensure that the project remained
open and that conflicts between developers were resolved
fairly. The project’s support relied on a “Dream team” of
committed individuals who were voluntarily in charge of
the ecosystem-level activities. The development project
acted autonomously, and community-level, project level,
and technical decisions were at the sole responsibility of
the open development community’s members. Releases of
both the Java language and NetBeans were synchronized,
yet the NetBeans community’s members had full auton-
omy in terms of release definition.

Similarly, the company-led Qt project showed a
community-driven governance style, although in practice
the orchestrator dominated the project by deploying its
software engineers to the development community’s
work. A full software development pipeline was access-
ible and transparent for all stakeholders, yet the com-
pany’s commercial customers and strategic affiliates held
most of the technical leadership positions of the project.
The orchestrator held to itself all decisions related to
product planning and release definition. In addition to
participating in the open development community’s
work in a transparent manner, the Qt Company offered
several types of customer support, also building commis-
sioned changes and new features to the software product
through its internal software development process.

The Vaadin project invited both requirements, defect re-
ports and code contributions from the open developer
community. However, the development project was run by
the company’s employees and prioritization of work, release
definition and long-term planning were at the sole respon-
sibility of the orchestrator. Compared to The Qt Company,
Vaadin presented a more transparent approach, constantly
integrating small changes to their open repository. Still, the
focus of the orchestrator was more on educating and build-
ing a community of Vaadin application developers than

Page 8 of 14

appropriating work from outsiders to the core framework.
Both The Qt Company and Vaadin maintained technical
and user documentation to support their developers’ and
application builders” work, whereas in the other projects,
this was expected to be a community-driven effort.

The GTK+ project followed the GNOME Foundation’s
governance model. Membership of the foundation was
free, accessible for all, and required for making contribu-
tions to the project. Membership granted a vote in the
foundation’s decision-making. The orchestrator hosted a
portfolio of independent OSS projects, the work of
which it packaged into the Gnome operating system
software. Therefore, the foundation coordinated releases
of its affiliated projects and aimed at unifying their de-
velopment processes. An Advisory Board invited the
foundation’s corporate partners to enable communica-
tion and to strengthen the project’s stakeholder ecosys-
tem. A Board of Directors was in place to acquire
sponsorships, to lay out the foundation’s budget, and to
manage staffing, legal issues, trademarks and public rela-
tions. The board was not directly involved in technical
decisions, yet many of its elected members held tech-
nical leadership positions in the development commu-
nity. As for commercial influence, the project’s core
maintainer team consisted of members of companies,
such as RedHat, Novell and Google.

Jolla packaged the proprietary layers of the Sailfish OS
with Open Source-based components and distributed
the Sailfish operating system only as an executable bin-
ary, yet full source code was available with a written re-
quest from the company. Therefore, the orchestrator
held release definition and product planning decisions to
itself. In comparison to Vaadin and Qt, the Jolla com-
pany had a more outwards and networked approach as
an orchestrator. Its employees worked in symbiosis with
the open Mer OS project and directed defect reports
and incoming code contributions to this project’s issue
tracking system. The orchestrator’s engineers were dom-
inant in steering the Mer community’s work and they
also participated actively in the work of related OSS
communities, such as the Qt project, yet the emphasis
of their work was mainly on the open Sailfish OS reposi-
tories and the Mer project.

5.2 Access to work tasks
Except for Sailfish OS, all projects disclosed the full soft-
ware source code and offered a public contribution
process for it. The main differences between the projects
yielded from the way in which contributors could be-
come actionable developers and how quality of the code
contributions was ensured.

Due to both the Eclipse’s technically fragmented archi-
tecture and the project’s orientation towards small and
autonomous teams, the projects requirements

Méenpaa et al. Journal of Internet Services and Applications (2018) 9:17

management tool (Bugzilla) provided a complicated view
to the project’s development tasks. As each sub-project
team managed their own source code repository inde-
pendently, the sub-project’s leader was held accountable
for the quality of the work by the foundation’s “release
review”-process. For each release, the sub-project’s con-
tributions were integrated to the main development re-
pository based on multi-stage release deadlines to which
a sub-project committed by announcing its plans to the
release management team. Before the final decision to
integrate, the projects were subject to several formal re-
views by the Eclipse Foundation’s councils. Maintainer-
ship could be gained through self-nomination and a
community vote by existing developers.

The contribution process of the NetBeans project was
also open and community-driven, yet more centralized.
While anybody could submit minor code increments to
the project’s mailing list and requirements management
tool (Bugzilla), major development decisions were made
by a core developer group who reviewed and integrated
the contributions. The core maintainers had either cre-
ated the architecture module or been accredited
through a merit-based voting process by the existing
maintainers. A write access to the development reposi-
tory could be granted for developers after meaningful,
small bug fixes. After showing their capability, a
self-nomination and a consensus vote from existing de-
velopers was required. Maintainership could be gained
by taking over an abandoned or starting a new
sub-project or having it handed over by a current main-
tainer based on proven merit. Technical and
community-level decisions were discussed publicly on
the project’s mailing list.

In the Qt project, submitting code contributions to
the code review tool (Gerrit) was open for all and no
limitations were in place for taking up either develop-
ment-, testing- or code review tasks. Compliance of the
contributions to the development standards was auto-
matically tested, after which two humans were required
to vote for accepting the code to the main development
repository. Even though not strictly required, these
typically were maintainers of the code area that the con-
tribution dealt with - and most maintainers were associ-
ated with either The Qt Company or its affiliates KDAB
Group GmbH and Intel. However, in principle this pos-
ition was accessible for merited developers despite their
organizational affiliation. After the code review stage,
contributions were automatically integrated to the
current development repository and the software was
also delivered as nightly builds. Decision-support func-
tions of the project’s workflow management tools (Jira)
allowed external developers to view requirements, verify
existence of defects and to study their nature as an open
and communicative process.

Page 9 of 14

The Vaadin project welcomed everybody to contribute
code and test the software, yet the company required a
large amount of complementary contributions to accom-
pany code increments sent by external developers. The full
development version’s repository was accessible, and the
project had an openly available code review tool, from
which also the status of each contribution was visible. How-
ever, in practice only the company’s employees were accept-
ing new contributions - in a communicative process with
the associated developer - and maintaining the software
source code. However, the company had recently started
seeking periodical contributions through defect fixing cam-
paigns [39], reaching out for a more interactive relationship
with their community.

The GTK+ project welcomed contributions to the pro-
ject’s issue tracker (Bugzilla) and developer mailing list
from all. Write access to the GTK+ project’s develop-
ment repository needed to be applied from the GNOME
Foundation, and it was explicitly stated that the decision
was not based solely on the contributor’s previous merit.
Also, here the core developers were making the final de-
cisions on which code to integrate to the development
version and the emphasis of the external contributors’
work was more on reporting, testing and fixing defects
than developing the core framework. Maintainership
was based on a contributor’s merit and discussed on the
developers’ mailing list.

While dominating the development project in both the
proprietary and open components of the Sailfish OS and
its affiliated Mer OS project, Jolla offered an online
question and answer forum for contributors who pro-
vided user assistance, product planning feedback and de-
tailed defect triage information. Even though the
contribution process in the open components was ac-
cessible for any contributor, the distributed repository
strategy encumbered entry of new contributors signifi-
cantly. Aspiring contributors needed to first find the ap-
propriate repository where their contributions should be
submitted, which was an overly demanding task for new-
comers. Maintainership was nominally open for all, yet
in practice both Mer and the open repositories of Sail-
fish OS were maintained by the company’s employees. In
Fig. 1 and Table 2 we provide additional detail to the ac-
cessibility of development tasks. This view has been soli-
cited by accessing publicly available documents and
development tools, and therefore it is based on the ex-
ternal observer’s view on openness of the community at
the time of our observations during 2017.

5.3 The project’s pulse and future

As explained above, the communities had versatile strat-
egies for product planning, ranging from genuinely
transparent and community-driven (NetBeans, GTK+,
Eclipse) to collaborative (Sailfish OS) and even

Méenpaa et al. Journal of Internet Services and Applications (2018) 9:17

possessive (Qt, Vaadin). Questions F-I of Table 2 provide
additional detail to the transparency of the state of the
development process, product- and release planning.

In the case of Eclipse, daily status of the work was effi-
ciently known only at the sub-project level where devel-
opers interacted most frequently. The project’s release
definition was based on the sub-projects commitment to
their own, announced goals. Here, the role of the or-
chestrator was to coordinate and communicate and to
offer mentoring to support the sub-projects to achieve
their targets.

In both the GTK+ and the NetBeans projects, having a
closely-knit core developer group and an emphasis on
mailing-list based communications created ambiguity of
the daily status and priorities of the development pro-
ject. However, roadmaps and release goals were dis-
closed publicly in a very specific manner.

At the other extreme, the Qt project provided a com-
pletely transparent end-to-end view to the development
pipeline by disclosing the integration status of code con-
tributions with its code review tool. However, the or-
chestrator communicated an overview if its long-term
goals at a very general level. To compensate, the orches-
trator published memos of the company’s internal re-
lease team’s online meetings, Here, due to the varying
abilities of the developer ecosystem stakeholders to de-
ploy developers to the project, invisible power structures
had a profound influence on the development effort and
transparency of its priorities.

In the case of Vaadin, the release- and product plan-
ning decisions were solely at the responsibility of the or-
chestrator. Even though online collaboration tools
revealed timely information about the project’s status,
the project’s priorities were known only by the com-
pany’s engineering team. Vaadin visibly sought input for
their next software release from the public by allowing
them to vote from a pre-selected set of features and
published both release themes and milestone-specific
task lists in their Github issue manager. However, the
company neither revealed the full contents of the re-
leases, nor expressed commitment to any scope of these
goals.

Even though Jolla was very cautious in disclosing the
Sailfish OS release dates and product plans, the orches-
trator held weekly online meetings to synchronize with
their supportive projects’ contributors. These meetings
were public so that external stakeholders could under-
stand the progress at a coarse level and some develop-
ment decisions could be traced back to their source. The
company published themes for the releases yet kept
exact stage and plans of the development proprietary.
Additional transparency was provided by issuing fre-
quent “community” releases for the downloadable, bun-
dled operating system.

Page 10 of 14

6 Discussion

Hybrid Open Source projects accommodate work from
stakeholders with versatile and often competing interests
[11, 14]. Here, the importance of goal alignment and
management of both the stakeholders, their expectations
and contributions becomes highlighted. The different
governance models described in our study reflect the
history and mission of the central orchestrators [15, 19],
at the same time enabling complex relationships and dy-
namics between the actors. In each case project, varying
levels of trust and autonomy coexisted towards the open
developer community, which was found to be the sum
of several issues in the communities’ governance model.

6.1 Inviting participation

In terms of distributing development tasks, decision-making
roles and responsibilities (RQ1), the orchestrator’s influence
can span all aspects of the development community’s oper-
ation. It can range from ecosystem level to community
organization, project management and technical decisions.
This can require active leadership through building commu-
nications strategies and designing operational support
throughout the whole life cycle of the project. Here, the
focus and scope of the orchestrator’s control offers an inter-
esting viewpoint to the case communities.

In both the Eclipse and Qt projects the orchestrators’
earnings logic required them to ensure that some stake-
holders were offered more influence on the development
community’s work than others. In Eclipse, this was done
through membership-based decision-making mecha-
nisms, whereas in the Qt project, the stakeholders’ in-
fluence was directly ensured by offering customers
both the orchestrator’s internal software development
unit’s work and a possibility to gain a direct commit
access to the development repository. In the third
framework-based project Vaadin, the orchestrator’s
strategy was to service as wide and versatile applica-
tion developer ecosystem as possible, which in their
case emphasized the orchestrator’s need to control
quality and product development decisions over ser-
vicing the needs of individual stakeholders, as was the
case in the Qt project.

We hypothesize that the GNOME Foundation aims at
increasing interoperability of its portfolio projects by
standardizing their development processes, platforms
and schedules. Similar synchronization was in place in
the NetBeans project, yet the only control point was
found to be timing of the community’s action. This
could be due to the nature of the products, as the GTK+
software was used as a component, rather than a
stand-alone software. Similarly, to the GNOME Founda-
tion, the Jolla company composed its product from the
work of several projects. However, as a relatively new
project, the orchestrator was only opening its

Maenpaa et al. Journal of Internet Services and Applications (2018) 9:17

development approach with the aim of securing oppor-
tunities for its future customers to participate in adapt-
ing the software. Therefore, its goal seemed to be to
control its affiliated projects to gain a maximum of ben-
efits from their work.

6.2 Managing contributions

The orchestrators had different means for controlling
their development project and its related ecosystem. Ex-
amples of these are summarized in Table 3. As a general
finding, offering access to a public repository, work issue
trackers and code review tools did not guarantee an
un-obscured view to the development project and its
priorities. Even though e.g. release planning information
was available, in most cases it was not detailed enough
to give a fully transparent view to the project.

In terms of the different development tasks (RQ2), ac-
cess to the full software source code formed the most
powerful leverage of openness. At the same time, creat-
ing a gated approach could be done through proprietary
licensing, distributing work to small and autonomous
teams or developing parallel branches of the complete
source code individually. These were found to be effect-
ive for limiting participation by obfuscating development
tasks and their status from aspiring contributors.

Also, the choice between providing live access to the
most recent software version was used for creating dif-
ferent “tiers” of stakeholders that view the development
process from different perspectives. Varying knowledge
about the current state and plans of the development
work were used in a similar fashion: to either encourage
or limit participation.

Table 3 A summary of findings

Form of control Examples

Stakeholder control Product pricing and membership fees.
Strategic partnerships and special treatment

of selected stakeholders. Offering advisory- and
board memberships. Requirements for
contributions, initiation rites. Disclosure of the

ecosystem'’s members.

Process control Nature and form of decision-making and
software development processes. Milestones
and decision points. Choice of supportive
platforms and development tools. Full or

partial disclosure of the development processes.

Assets control Means for storing and processing requirements
and other data. Documentation. Offering limited
access to source code based on time-, scope

level or requirements for stakeholders.

Leadership Acquisition of new developers and software
users. Campaigns for increasing contributions.
Communicating product vision, release themes

and timing.

Page 11 of 14

6.3 Sharing the cost of openness

All in all, the openness does not come without a cost, as
it often requires major inputs and investments from the
ecosystem’s orchestrator. How these costs are covered
and how the orchestrator is incentivized to support the
openness is an important question. It is worthwile to
consider which part of the development process benefits
the most from feedback - and who should act according
to it, if any.

In the case of Eclipse, autonomy of the sub-projects
came at the cost of deadline pressure and possible manage-
ment overhead. In the case of Qt, community-drivenness
required extensive tool support and resource deployment
from strong, commercial organizations with high techno-
logical skills and in many cases a direct relationship with
the company. For Vaadin, Jolla and The Qt Company, se-
curing the orchestrator’s strong position necessitated an
active approach from its employees for the software devel-
opment to sustain its focus. This, on its part, raised the
costs of orchestration. In the more community driven pro-
jects GTK+ and Net Beans, this responsibility was distrib-
uted to the community’s external stakeholders in a more
equal manner. Here, the collaborative decision-making was
ensured by the communities’ consensus-driven accredit-
ation process of new developers. Understanding these
kinds of tradeoffs provides an interesting viewpoint to
planning both value creation and delivery processes of the
orchestrator.

6.4 Theoretical implications

Our results contribute to the interface of Open Source
and Open Innovation literature by showing how soft-
ware engineering processes can be built and managed to
accommodate open innovation strategies [23], and what
decision factors should be considered in doing so [1].
This can be contextualized to the community-type organ-
izing of open innovation activities [16] and thus, contrib-
ute to the discussion of how open community-type of
innovation activities can be organized in cases where a
focal actor is orchestrating or facilitating the development
community environment [40]. Second, our results imply
that the tension between private-collective innovation in-
centives (see [41, 42]) can be addressed through consider-
ations on how the different dimensions of governance
support or restrict community-drivenness of the develop-
ment organization. This tension in private-collective inter-
ests constitute an ongoing debate in research and
development relationships and networks (see e.g. [43]),
and managing them is decisive in open innovation com-
munities and projects with diverse stakeholders.

Here, future research could examine how openness af-
fects other design choices in the orchestrator’s value cre-
ation processes, and to the way in which the ecosystem’s
partnering is organized. Further research could ask: as

Méenpaa et al. Journal of Internet Services and Applications (2018) 9:17

openness grows, what are the other design choices that
need to be modified in the platform to ensure innova-
tiveness and capture of value from the ecosystem? As
openness is seen as both necessary as well as risky strat-
egy from the point of view of commercial actors [14],
more understanding is needed on reaching the right bal-
ance between intellectual property protection, openness,
and innovation potential of ecosystems [26].

6.5 Limitations

Governance models can evolve throughout time and in
many cases, these changes are undocumented. Our data
collection period took place in June and December 2017
and therefore the results represent the state of the prac-
tices in the case communities at those given points of
time. Also, during the validation stage of our first find-
ings, we recognized that the viewpoint of the observers
can greatly influence their perception of the commu-
nity’s openness. What seems open from within the cen-
tral organization, may not be so from the external
contributor’s point of view.

Our empirical approach does not allow generalization
of the findings to larger contexts [34, 35], however we
claim our study to be illustrative of the versatility of a
possible governance configuration. Regarding the con-
nection between the community’s history and its govern-
ance model, we remark that a more focused and
longitudinal research approach would be required for
drawing conclusions on why certain models have
emerged and exist. We leave this as an idea for future
researchers, also calling for studies of transitions from
company-led to foundation-driven governance. Of inter-
est could also be to study how changes in the sociotech-
nical tools of a community can act as a change driver for
its governance.

7 Conclusions
The work of Open Source Software development com-
munities has already demonstrated its ability to disrupt
software businesses by enabling faster product develop-
ment cycles, cutting development costs and allowing
new business concepts that in turn are creating new
markets in the form of different service offerings and li-
censing models. At the same time, the OSS field suffers
from the different goals and values of the involved stake-
holders, which can range from almost purely ideological
thrive to fundamentally commercial and often compet-
ing interests. This environment calls for reciprocal value
creation models where stakeholders must have an op-
portunity to meet their own goals — simply to motivate
them to play a role in the community.

In this paper, we contribute to this field in two ways.
We investigate how hybrid OSS communities can be
built to accommodate developer ecosystems and

Page 12 of 14

examine governance configurations of six longstanding
software development organizations. We find that the
role of the open development community and the prin-
ciples according to which individuals can meaningfully
participate in its activities are essential design factors of
the hybrid OSS development model.

Managing this environment requires careful consider-
ation on how much knowledge and influence should be
released to the open development community and what
the impact of this openness is. Also, we encourage con-
siderations on how contributions can be managed by
using the many different roles and requirements that
can be defined by a community’s governance model.
These decisions also influence the scope of the commu-
nity’s autonomy and followingly the extent to which it
can steer the future of the software product.

Organizations that use the hybrid OSS development
model can act in different ways, leveraging either closed
or open practices to support their own interests and rev-
enue earning model. As a trend in our six cases,
modernization of the socio-technical systems allowed a
more open and distributed decision-making model.
However, we emphasize that these conclusions should
not be extended other contexts than presented in our
study. Still, our observations can provide valuable in-
sights for both researchers and practitioners that design
and manage contemporary, open development commu-
nities that stem from similar settings as our case
projects.

Abbreviation
OSS: Open Source Software

Funding

This work was funded partially by the “Innovative Requirements Engineering
Methods, Algorithms and Tools” research project (OpenReq), which received
funding from the European Union’s Horizon 2020 research and innovation
program under grant agreement No 732463. Researchers were granted full
autonomy in designing and conducting the research.

Availability of data and materials
Please contact author for data requests.

Author’s contributions

HM is responsible for preparing the manuscript, including the literature
review and overall design and coordination of the study. SM has helped the
first author to reliably gather data for the GTK+, Eclipse and NetBeans on for
answering RQ1-RQ3. The research instrument was designed in collaboration
with TK who is also responsible for gathering data for the Vaadin case and
triangulating the results for Qt, Vaadin and Jolla cases with the first author.
TMi, TM& and PR have helped by reviewing and commenting the paper and
its various working versions. All authors read and approved the final
manuscript.

Ethics approval and consent to participate
Not Applicable

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Méenpaa et al. Journal of Internet Services and Applications (2018) 9:17

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

'Department of Computer Science, University of Helsinki, Gustaf Hallstromin
katu 2b, 00041 Helsinki, Finland. *Department of Pervasive Computing,
Tampere University of Technology, Korkeakoulunkatu 1, FI-33720 Tampere,
Finland. *School of Business and Management, Lappeenranta University of
Technology, Skinnarilankatu, 34 53850 Lappeenranta, Finland.

Received: 11 October 2017 Accepted: 15 June 2018
Published online: 16 August 2018

References

1.

Lindker J, Regnell B, Munir H. Requirements engineering in open innovation:
a research agenda. In: proceedings of the 2015 international conference on
software and system process. ICSSP. 2015;2015:208-12. https://doi.org/10.
1145/2785592.2795370. ACM

Dahlander L, Wallin MW. A man on the inside: unlocking communities as
complementary assets. Res Policy. 2006;35(8):1243-59. https://doi.org/10.
1016/j.respol.2006.09.011.

Watson RT, Boudreau M-C, York PT, Greiner ME, Wynn D Jr. The business of
open source. Commun ACM. 2008,51(4):41-6. https;//doi.org/10.1145/
1330311.1330321.

De Noni I, Ganzaroli A, Orsi L. The evolution of Oss governance: a
dimensional comparative analysis. Scand J Manag. 2013,;29(3):247-63.
https://doi.org/10.1016/j.scaman.2012.10.003.

West J, O'Mahony S. The role of participation architecture in growing
sponsored open source communities. Ind Innov. 2008;15(2):145-68. https://
doi.org/10.1080/13662710801970142.

Dahlander L, Magnusson M. How do firms make use of open source
communities? Long Range Plan. 2008;41(6):629-49. https://doi.org/10.1016/j.
Irp.2008.09.003.

Colombo MG, Piva E, Rossi-Lamastra C. Open innovation and within-
industry diversification in small and medium enterprises: the case of open
source software firms. Res Policy. 2014;43(5):891-902. https://doi.org/10.
1016/j.respol.2013.08.015.

Dahlander L, Magnusson MG. Relationships between open source software
companies and communities: observations from nordic firms. Res Policy.
2005;34(4):481-93. https://doi.org/10.1016/j.respol.2005.02.003.

Alves C, de Oliveira JAP, Jansen S. Software ecosystems governance-a
systematic literature review and research agenda. In: ICEIS 2017-proceedings
of the 19th international conference on Enterprise information systems, vol.
3;2017. p. 26-9. https//doi.org/10.5220/0006269402150226.

Franco-Bedoya O, Ameller D, Costal D, Franch X. Open source software
ecosystems: a systematic mapping. Inf Softw Technol. 2017,91:160-85.
https://doi.org/10.1016/j.infsof.2017.07.007.

Teixeira J, Robles G, Gonzlez-Barahona JM. Lessons learned from applying social
network analysis on an industrial free/libre/open source software ecosystem.
JInternet Serv Appl. 2015;6(1) https://doi.org/10.1186/513174-015-0028-2.

West J, Gallagher S. Challenges of open innovation: the paradox of firm
investment in open-source software. R D Manag. 2006;36(3):319-31. https.//
doi.org/10.1111/j.1467-9310.2006.00436.x.

Muiller-Seitz G, Reger G. Is open source software living up to its promises?
Insights for open innovation management from two open source software-
inspired projects. R D Manag. 2009;39(4):372-81. https;//doi.org/10.1111/j.
1467-9310.2009.00565.X.

Laursen K, Salter AJ. (2014). The paradox of openness: appropriability,
external search and collaboration. Res Policy. 2014;43(5):867-78. https.//doi.
0rg/10.1016/j.respol.2013.10.004.

Schaarschmidt M, Walsh G, von Kortzfleisch HFO. How do firms influence
open source software communities? A framework and empirical analysis of
different governance modes. Inf Organ. 2015;25(2):99-114. https://doi.org/
10.1016/j.infoandorg.2015.03.001.

Felin T, Zenger TR. Closed or open innovation? Problem solving and the
governance choice. Res Policy. 2014/43(5):914-25. https://doi.org/10.1016/j.
respol.2013.09.006.

Gonzalez-Barahona JM, Robles G. Trends in free, libre, open source software
communities: from volunteers to companies. It-information technology it-

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

32.

33.

34,

35.

36.

37.

38.

39.

40.

Page 13 of 14

information. Technology. 2013;55(5):173-80. https.//doi.org/10.1515/itit.2013.
1012.

Bosch J. From software product lines to software ecosystems. In:
Proceedings of the 13th international software product line conference:
Carnegie Mellon University; 2009. p. 111-9.

Benlian A, Hilkert D, Hess T. How open is this platform? The meaning and
measurement of platform openness from the complementors’ perspective.
JInf Technol. 2015,30(3):209-28. https://doi.org/10.1057/jit.2015.6.

Baars A, Jansen S. A framework for software ecosystem governance. In:
International conference of software business; 2012. p. 168-80. https://doi.
0rg/10.1007/978-3-642-30746-1-14. Springer.

Shah SK. Motivation, governance, and the viability of hybrid forms in open
source software development. Manag Sci. 2006;52(7):1000-14. https://doi.
0rg/10.1287/mnsc.1060.0553.

O'Mahony S. The governance of open source initiatives: what does it mean
to be community managed? J Manag Govern. 2007;11(2):139-50. https.//
doi.org/10.1007/510997-007-9024-7.

Munir H, Wnuk K, Runeson P. Open innovation in software engineering: a
systematic mapping study. Empir Softw Eng. 2016;21(2):684-723. https://doi.
0rg/10.1007/510664-015-9380-x.

Méenpaa H, Kilamo T, Mikkonen T, Mannist6 T. Designing for participation:
three models for developer involvement in hybrid Oss projects. In: Open
source systems: towards robust practices: Springer International Publishing;
2017. p. 23-33. https//doi.org/10.1007/978-3-319-57735-7-3.

Santos CDd. Changes in free and open source software licenses: managerial
interventions and variations on project attractiveness. J Int Serv Appl. 2017,
8(1):11. https://doi.org/10.1186/513174-017-0062-3.

Parker G, Alstyne MV. Innovation, openness, and platform control. Manag
Sci. 2017; https://doi.org/10.1287/mnsc.2017.2757.

Markus ML. The governance of free/open source software projects:
monolithic, multidimensional, or configurational? J Manag Govern. 2007;
11(2):151-63. https://doi.org/10.1007/510997-007-9021-x.

Shaikh M, Henfridsson O. Governing open source software through
coordination processes. Inf Organ. 2017;27(2):116-35. https://doi.org/10.
1016/jinfoandorg.2017.04.001.

Laffan L. A new way of measuring openness: the open governance index.
Technol Innov Manag Rev. 2012;2:18-24.

Star SL. Distributed artificial intelligence (vol. 2): Morgan Kaufmann
Publishers Inc; 1989. p. 37-54. Chap. The Structure of lll-structured Solutions:
Boundary Objects and Heterogeneous Distributed Problem Solving
Steinmacher |, Wiese IS, Conte T, Gerosa MA, Redmiles D. The hard life of
open source software project newcomers. In: Proceedings of the 7th
international workshop on cooperative and human aspects of software
engineering; 2014. p. 72-8. https://doi.org/10.1145/2593702.2593704. ACM.
Bettenburg N, Hassan AE, Adams B, German DM. Management of
community contributions. Empir Softw Eng. 2015;20(1):252-89. https://doi.
0rg/10.1007/510664-013-9284-6.

Fagerholm F, Guinea AS, Munch J, Borenstein J. The role of mentoring and
project characteristics for onboarding in open source software projects. In:
Proceedings of the 8th ACM/IEEE international symposium on empirical
software engineering and measurement; 2014. p. 55. https//doi.org/10.
1145/2652524.2652540.

Yin RK. Case study research: design and methods, 5th edn. Sage
publications. 2014; https://doi.org/10.3138/cjpe.30.1.108.

Eisenhardt KM. Building theories from case study research. Acad Manag Rev.
1989;14(4):532-50.

Runeson P, Host M. Guidelines for conducting and reporting case study
research in software engineering. Empir Softw Eng. 2009;14(2):131-64.
https://doi.org/10.1007/510664-008-9102-8.

Gonzalez-Barahona J, Robles G, Izquierdo D, Maffulli S. Using software analytics
to understand how companies interact in free software communities. IEEE
Softw. 2013;30(5):38-45. https//doi.org/10.1109/MS.2013.95.

Lindman J, Hammouda I. Support mechanisms provided by floss
foundations and other entities. J Intern Serv Appl. 2018;9:1-12.

Kilamo T, Rahikkala J, Mikkonen T. Spicing up open source development
with a touch of crowdsourcing. In: 2015 41st Euromicro conference on
software engineering and advanced applications; 2015. p. 390-7. https://doi.
org/10.1109/SEAA.2015.33.

Snow CC, Fjeldstad @D, Lettl C, Miles RE. Organizing continuous product
development and commercialization: the collaborative community of firms
model. J Prod Innov Manag. 2011;28(1):3-16.

https://doi.org/10.1145/2785592.2795370
https://doi.org/10.1145/2785592.2795370
https://doi.org/10.1016/j.respol.2006.09.011
https://doi.org/10.1016/j.respol.2006.09.011
https://doi.org/10.1145/1330311.1330321
https://doi.org/10.1145/1330311.1330321
https://doi.org/10.1016/j.scaman.2012.10.003
https://doi.org/10.1080/13662710801970142
https://doi.org/10.1080/13662710801970142
https://doi.org/10.1016/j.lrp.2008.09.003
https://doi.org/10.1016/j.lrp.2008.09.003
https://doi.org/10.1016/j.respol.2013.08.015
https://doi.org/10.1016/j.respol.2013.08.015
https://doi.org/10.1016/j.respol.2005.02.003
https://doi.org/10.5220/0006269402150226
https://doi.org/10.1016/j.infsof.2017.07.007
https://doi.org/10.1186/s13174-015-0028-2
https://doi.org/10.1111/j.1467-9310.2006.00436.x
https://doi.org/10.1111/j.1467-9310.2006.00436.x
https://doi.org/10.1111/j.1467-9310.2009.00565.x
https://doi.org/10.1111/j.1467-9310.2009.00565.x
https://doi.org/10.1016/j.respol.2013.10.004
https://doi.org/10.1016/j.respol.2013.10.004
https://doi.org/10.1016/j.infoandorg.2015.03.001
https://doi.org/10.1016/j.infoandorg.2015.03.001
https://doi.org/10.1016/j.respol.2013.09.006
https://doi.org/10.1016/j.respol.2013.09.006
https://doi.org/10.1515/itit.2013.1012
https://doi.org/10.1515/itit.2013.1012
https://doi.org/10.1057/jit.2015.6
https://doi.org/10.1007/978-3-642-30746-1-14. Springer
https://doi.org/10.1007/978-3-642-30746-1-14. Springer
https://doi.org/10.1287/mnsc.1060.0553
https://doi.org/10.1287/mnsc.1060.0553
https://doi.org/10.1007/s10997-007-9024-7
https://doi.org/10.1007/s10997-007-9024-7
https://doi.org/10.1007/s10664-015-9380-x
https://doi.org/10.1007/s10664-015-9380-x
https://doi.org/10.1007/978-3-319-57735-7-3
https://doi.org/10.1186/s13174-017-0062-3
https://doi.org/10.1287/mnsc.2017.2757
https://doi.org/10.1007/s10997-007-9021-x
https://doi.org/10.1016/j.infoandorg.2017.04.001
https://doi.org/10.1016/j.infoandorg.2017.04.001
https://doi.org/10.1145/2593702.2593704. ACM
https://doi.org/10.1007/s10664-013-9284-6
https://doi.org/10.1007/s10664-013-9284-6
https://doi.org/10.1145/2652524.2652540
https://doi.org/10.1145/2652524.2652540
https://doi.org/10.3138/cjpe.30.1.108
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1109/MS.2013.95
https://doi.org/10.1109/SEAA.2015.33
https://doi.org/10.1109/SEAA.2015.33

Méenpaa et al. Journal of Internet Services and Applications (2018) 9:17

41.

42.

43.

44,

Lamastra CR. Software innovativeness. A comparison between proprietary
and free/open source solutions offered by italian smes. R D Manag. 2009;
39(2):153-69.

Stuermer M, Spaeth S, Von Krogh G. Extending private-collective innovation:
a case study. R D Management. 2009;39(2):170-91.

Ritala P, Huizingh E, Aimpanopoulou A, Wijbenga P. Tensions in r&d
networks: implications for knowledge search and integration. Technol
Forecast Soc Chang. 2017;120(Supplement C):311-22. https://doi.org/10.
1016/j.techfore.2016.12.020.

OpenHub.org public directory of free and Open Source software (FOSS)
projects. https://www.openhub.net. Accessed on 23 4 2018.

Page 14 of 14

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

https://doi.org/10.1016/j.techfore.2016.12.020
https://doi.org/10.1016/j.techfore.2016.12.020
https://www.openhub.net

	Abstract
	Introduction
	Background and related work
	Governance considerations
	Accommodating participation

	Research design
	Data collection and analysis
	Research instrument

	Case projects
	Eclipse
	NetBeans
	Qt
	GTK+
	Vaadin
	Sailfish OS

	Findings
	Role of the orchestrator
	Access to work tasks
	The project’s pulse and future

	Discussion
	Inviting participation
	Managing contributions
	Sharing the cost of openness
	Theoretical implications
	Limitations

	Conclusions
	Abbreviation
	Funding
	Availability of data and materials
	Author’s contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

