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Abstract 

Background:  In DNA methylation analyses like epigenome-wide association studies, effects in differentially meth-
ylated CpG sites are assessed. Two kinds of outcomes can be used for statistical analysis: Beta-values and M-values. 
M-values follow a normal distribution and help to detect differentially methylated CpG sites. As biological effect 
measures, differences of M-values are more or less meaningless. Beta-values are of more interest since they can be 
interpreted directly as differences in percentage of DNA methylation at a given CpG site, but they have poor statistical 
properties. Different frameworks are proposed for reporting estimands in DNA methylation analysis, relying on Beta-
values, M-values, or both.

Results:  We present and discuss four possible approaches of achieving estimands in DNA methylation analysis. In 
addition, we present the usage of M-values or Beta-values in the context of bioinformatical pipelines, which often 
demand a predefined outcome. We show the dependencies between the differences in M-values to differences in 
Beta-values in two data simulations: a analysis with and without confounder effect. Without present confounder 
effects, M-values can be used for the statistical analysis and Beta-values statistics for the reporting. If confounder 
effects exist, we demonstrate the deviations and correct the effects by the intercept method. Finally, we demonstrate 
the theoretical problem on two large human genome-wide DNA methylation datasets to verify the results.

Conclusions:  The usage of M-values in the analysis of DNA methylation data will produce effect estimates, which 
cannot be biologically interpreted. The parallel usage of Beta-value statistics ignores possible confounder effects and 
can therefore not be recommended. Hence, if the differences in Beta-values are the focus of the study, the intercept 
method is recommendable. Hyper- or hypomethylated CpG sites must then be carefully evaluated. If an exploratory 
analysis of possible CpG sites is the aim of the study, M-values can be used for inference.

Keywords:  Multiple testing, DNA methylation, Reproducible research, Epigenome-wide association study (EWAS), 
Estimands
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Background
The reporting of estimands, i.e., effect estimates, in 
DNA methylation analysis is a challenge for scientists. 
In DNA methylation analysis with DNA microarray 
data, the scientist can decide between two kinds of 
reported outcomes of the statistical analysis: differences 

in Beta-values and differences in M-values [1]. Raw 
data come as methylated and unmethylated intensities 
per sample. The fraction of methylated to unmethylated 
probes for a given CpG site is defined by the Beta-val-
ues by describing the percentage of DNA methylation 
for a given CpG site across all DNA molecules in the 
sample. While Beta-values describe the frequency of 
DNA methylation at a given CpG site; the M-values are 
standardized Beta-values. The standardization corre-
sponds to a “logit” transformation. Hence, Beta-values 
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follow a beta distribution with the limits at 0 and 1, 
while M-values are theoretically normal distributed 
real values. Which of the two outcomes, Beta-values 
or M-values, should be analyzed with which method is 
controversial among bioinformaticians. However, the 
discussion is somehow hidden in the different bioin-
formatical analysis pipelines. Here, we want to openly 
discuss the limitations and inconsistencies. Beta- and 
M-values are often associated with illumina microarray 
data; however, percentage of methylation and the cor-
responding “logit”-transformation can also be gener-
ated from bisulfite sequencing data.

We assume that the reader is familiar with clinical epi-
genetics and its potential as a biomarker and importance 
in heredity. If not, Berdasco and Esteller [2] demon-
strate the importance of clinical epigenetics in transla-
tion, and Herrel et  al. [3] provide a broader perspective 
of epigenetics in ecology and evolution. Discussing the 
differences between bisulfite sequencing and DNA meth-
ylation microarrays is beyond the scope of this work. We 
refer to Heiss et al. [4] to track this “battle of epigenetic 
proportions”.

DNA methylation analysis often focuses on the genera-
tion of p value sorted lists of CpG sites. Often these lists 
are adjusted for multiplicity to prevent an inflation of the 
type I error. These lists have their purpose in downstream 
pathway analysis. In contrast, Betensky [5] and Wasser-
stein et  al. [6] state that p values cannot be interpreted 
in isolation and must be seen in the context of the design 
and application including meaningful effect measures. In 
this work, therefore, we aim to shed light on how mean-
ingful effect estimates for DNA methylation analysis 
can be achieved. If the research question is focused on p 
value sorted lists of CpG sites, we recommend Van Rooij 
et al. [7] as a complement to our work.

The proper choice of estimands, i.e., effect estimates, 
is embedded into a more general discussion on repro-
ducibility. So far, the focus of the estimand discussion is 
driven by drug development and clinical trials [8]. Aka-
cha et  al. [9] state that specific choices in the statistical 
analysis may blur the scientific question in parts or com-
pletely. Hence, there is a need for estimands that properly 
answer the scientific question. However, the choice of the 
right estimand in DNA methylation analysis is disput-
able. We can see the statistical method of estimation as 
“estimator” and the target of the estimation as “estimand”. 
The interest reader might consider Mallinckrodt et  al. 
[10] for a deep discussion of estimands, estimators and 
sensitivity analysis in clinical trials.

Leuchs et al. [11] provide a process chart for the deci-
sion of a valid estimand in a clinical trial considering 
the primary endpoint, the clinical trial design, and the 
method of analysis. Therefore, it is paramount to discuss 

the choice of the estimand carefully. The authors do not 
discuss the topic in the context of genetics, but their con-
siderations are applicable here as well.

In general, any genetic analysis is done in a pipeline-
like fashion. This is also true for the analysis of DNA 
methylation data. Different statistical methods are run 
in a sequential pattern. For the detection of differentially 
methylated CpG sites, M-values are predominantly used 
due to their asymptotically normal distributed values and 
therefore better statistical properties. This is a theoreti-
cal statistical argument, which is valid; see Du et  al. [1] 
for a more comprehensive explanation. The analysis of 
M-values and the resulting p values is not problematic. 
But p values should be reported together with effect 
estimates so that clinical relevance can be assessed. The 
coefficients from the differential analysis are differences 
in M-values. Unfortunately, these differences are not pos-
sible to interpret biologically. Thus, if effect estimates are 
needed, differences in Beta-values—as difference of DNA 
methylation frequency—could be more sensible as effect 
measures.

Among others, Du et  al. [1] and Maksimovic et  al. 
[12] recommend to use M-values for the analysis of dif-
ferential DNA methylation and Beta-values statistics 
for reporting to investigators. At first glance, this advice 
seems reasonable, as it yields significance lists combined 
with interpretable differences in DNA methylation per-
centage. But this is only the case, if no confounding is 
present. Often the analysis on M-values is adjusted for 
batch effects and confounders. However, the raw Beta-
values statistics are not adjusted for these effects. Run-
ning the analysis on M-values and reporting changes as 
differences in Beta-values implicitly assumes that the 
data include no confounder effects.

In the past, different approaches were applied in order 
to circumvent the problem of biologically non-informa-
tive effect measures. A beta regression can be calculated 
on the Beta-values without transforming them to M-val-
ues [13]. Beta regression delivers directly interpretable 
effect estimates. This method, however, has severe het-
eroscedasticity for highly unmethylated or methylated 
(hypo- and hypermethylated) CpG sites [1]. This method 
has been applied in different studies [14, 15], with differ-
ent link functions [16] or with the reporting of both linear 
and beta regression coefficients [15]. A comprehensive 
overview and introduction can be found in Douma et al. 
[17]. Others use the Gaussian linear regression on Beta-
values and discuss the p values and the false-/true-posi-
tive rates [18].

Finally, Xie et  al. [19] present different approaches to 
overcome the problem of biologically non-interpretable 
estimands as differences in M-values �M . They propose 
different algorithms of transforming the �M directly into 
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differences in Beta-values �Beta . However, the work lacks 
a comprehensive comparison of different possible models 
and a usable implementation.

The aim of the paper is to provide guidance to scien-
tists in the field of DNA methylation analysis. To date, 
specific guidance for the use of estimands in differential 
DNA methylation analysis is lacking. The decision to use 
an estimand may be driven by the bioinformatics analy-
sis pipeline or by the requirement of the research ques-
tion. We aim to raise awareness of the difficulties that 
can arise when the two views are not connected. There-
fore, we present four “intuitive” approaches and discuss 
the impact of the choice on the results. Thus, our goal 
is to facilitate the choice of statistical models and algo-
rithms to integrate statistical significance and biologically 
informative effect sizes in DNA methylation analysis. 
Furthermore, we found that the most problematic CpG 
sites are the hyper- or hypomethylated ones. These sites 
show DNA methylation levels close to zero and one. 
This numerical property must be taken into account if 
the interpretation of the estimates should not become 
misleading. We illustrate this problem with experimen-
tal data and a simulation study. We present the inter-
cept method for a valid transformation of differences in 
M-values into differences in Beta-values [19]. Finally, we 
demonstrate the problem on two freely available human 
genome-wide DNA methylation data. The corresponding 
R code is available on GitHub.

Results
In the choice of Beta-values or M-values for bioinfor-
matical analysis, one must consider two aspects. First, 
one wants interpretable estimands based on the research 
question, so that biologically meaningful effect estimates 
can be reported. Second, one wants statistical packages, 
which are available to obtain the required estimates from 
the data to address the research question. In the follow-
ing, we will therefore look at the problem of the report-
ing of effect estimates from two different angles: (1) the 
biologists’ research question and (2) the analytical bioin-
formatical view using a pipeline of different tools.

We frequently use terms like “beta” in different con-
texts, which might be confusing for the reader [20]. 
Therefore, we have defined the used terms and the sta-
tistical meaning in Table  3 in the "Methods" section. In 
addition, a difference between the technology must be 
made. There are two technologies available: the Illumina 
DNA methylation assay and bisulfite sequencing. Both 
types deliver intensities of DNA methylation. The word-
ing differs slightly. The outcome of Illumina DNA meth-
ylation assay is called “Beta-values” and the outcome in 

bisulfite sequencing “methylation levels”: a ratio of meth-
ylation on a given CpG site.

Estimand decision based on research question
Beside the bioinformatics view, the research question 
should be the main focus of analysis. We focus our work 
on the unbiased estimand question. Which means that, 
we do not want to have a sorted p value list, but want to 
obtain a good estimand for each CpG site answering the 
research question. Typically, the scientist is interested in 
the effect of some treatment on the DNA methylation at a 
certain CpG site, i.e., the average difference between two 
treatment groups per CpG site. The differences in M-val-
ues do not have any biological meaning. The Beta-values 
describe the percentage of DNA methylation at a given 
CpG site. There are now four possible approaches for the 
generation of meaningful estimands in DNA methylation 
analysis: 

(1)	 Gaussian linear regression on Beta-values,
(2)	 Beta regression on Beta-values,
(3)	 M-values for significance, Beta-values for estimands 

and,
(4)	 Transformation of differences in M-values to differ-

ences in Beta-values.

To compare these approaches, we performed a simula-
tion with a simple model of a differential DNA methyla-
tion analysis, consisting of two treatment levels placebo 
and verum. First, we use a model without confounders 
and then a more complex model including two confound-
ers age and sex. We run the simulation in a high sample 
size setting, with each treatment group containing 500 
patients. The simulation is described in more detail in the 
"Methods" section. We also verify the results using exper-
imental data obtained from primary samples.

Approach 1: Gaussian linear regression on Beta‑values
The approach (1) means simply feeding Beta-values into 
the standard bioinformatical pipeline. We switch from 
the asymptotically normal distributed but biologically 
meaningless M-values to the Beta-values. Then, we run 
the pipeline using minfi (i.e., limma) on Beta-values. 
Therefore, we generated normal distributed M-values 
and transformed them to Beta-values by Eq.  3. Further 
information is supplied in the "Methods" section. How-
ever, this approach may yield predicted values below 0 
or larger than 1, especially when adjustment for continu-
ous variables is performed. Further, since Beta-values are 
beta-distributed, they tend to show severe heteroscedas-
ticity, violating the assumption of the regression model. 
On the other hand, linear regression yields estimates 
for the mean difference in percentage points between 
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groups, which may be an interpretable measure of change 
in DNA methylation. Depending on the strength of the 
effect, the p values can be significant. However, p values 
should be jointly discussed with an appropriate unbiased 
effect estimate [6]. Potential effects should be investi-
gated after the initial differential analysis. We repeated 
the simulation in a mid- and large sample size setting. 
The overall pattern is the same; the effect estimates from 
a Gaussian linear regression on Beta-values might be 
biased, if CpG sites with Beta-values close to 0 and 1 are 
analyzed. The scientist must verify that the estimands are 
trustworthy.

Approach 2: Beta regression on Beta‑values
Approach (2) is calculating a Beta regression on the Beta-
values. In this case, the distribution of the Beta-value is 
taken into account, and the correct regression model is 
used. This avoids the above-mentioned problems: Beta 
regression yields predictions in the range of 0 to 1 and has 
no heteroscedasticity problems. The R package betareg 
[21] offers a practical implementation. The resulting coef-
ficients must be back-transformed by an inverse logit 
transformation exp(x)/(1+ exp(x)) . The result of the 
beta regression is then similar to an odds ratio and must 
be interpreted accordingly, not as a difference in percent-
age points of DNA methylation, but as the ratio of DNA 
methylation odds.

Betareg, however, shows severe convergence problems 
at the borders of the beta distribution. Supplementary 
figure  1 shows the convergence rates for different β0 as 
mean of the Placebo group and an effect to the Treat-
ments group of β1 = 0.1 . Nearly all models will converge, 
if at least the mean of the Placebo group β0 is 0.1. Smaller 
simulated Beta-values tend to result in no-model fit and 
thus no estimates. If the Beta-values are large enough 
> 0.1 , the model will produce unbiased effect estimates. 
Due to symmetry of the Beta distribution, this will be 
also the case for Beta-values > 0.9 . Hence, the approach 
(2) is only feasible, if the DNA methylation sites are not 
mainly hypo- or hypermethylated. Therefore, a filtering 
step might be a solution in which only CpG sites between 
a DNA methylation of 0.1 and 0.9 are modeled. Triche 
et  al. [22] show the application of the Beta regression 
on genome-wide DNA methylation association studies. 
They showed as a result of enhanced power, and there-
fore, greater sensitivity to detect changes in DNA meth-
ylation can be observed in the simulation studies.

Approach 3: M‑values for significance, Beta‑values 
for estimands
The advice to use the approach (3) is not uncommon [1, 
12]. M-values are used for calculating p values. Beta-val-
ues are then used for reporting estimands as differences 

in Beta-value means. However, reporting raw mean dif-
ferences not accounting for confounders will result in 
confounded effect estimates. In the following, we want 
to answer the question how strong the bias between the 
estimated effect �̂Beta to the predefined �Beta would be, 
if we used the mean difference in Beta-values as esti-
mand. Therefore, we run two additional simulation stud-
ies (both included in Fig. 1) and check whether we could 
recover the original effect by simply taking the mean 
between the two treatment groups. We hypothesize that 
if a simple model does not deliver satisfying results, the 
more complex ones (i.e., with a more complex variance 
structure) will also have problems. Therefore, the most 
simple model would be a model with one treatment fac-
tor and two levels Placebo and Treatments (Eq.  4), the 
classical differential analysis setting. Further, we exam-
ined a more complex model with two confounders Age 
and Sex (Eq. 5).

Approach 3.1: Differential analysis without confounder 
We first run a simple simulation study without any con-
founder effects. The data consist only of one treatment 
factor with two levels Placebo and Treatments (Eq.  4), 
where each group consists of 500 observations. Further, 
we let the mean of the placebo group (GrpPlacebo ) run 
from 0.1 to 0.9 by 0.2 and the effect �Beta , i.e., the dif-
ference between GrpPlacebo and GrpTreatments , from 0.005 
to 0.3 with different distances. Figure 1 left panel shows 
the results of the simulation: If no confounders influence 
the effect of the Treatments group, the mean of the raw 
Beta-values can be used as an estimand for the report of 
the effects. However, if confounding is present, the simu-
lation shows considerable deviations from the predefined 
effect.

Approach 3.2: Differential analysis with  two confound-
ers  The above setting is quite unrealistic. Usually, con-
founder effects are present. The confounder effects can 
be caused by different sources like cell composition effect 
[23, 24]. Further, confounder effects might be chip effects 
[25] or in general batch effects [26]. A well written over-
view on confounder adjustment and inference in epidemi-
ology delivers Vanderweele [27]. DNA methylation analy-
sis in particular demands adjustment for batch effects, cell 
composition, and gender or age effects. These confound-
ing effects might be quite drastic. The more complex 
model now extends the above model by two confounders, 
Age and Sex. We choose Age and Sex as naming, because 
both are easy to capture. Both confounders add up to 10% 
or 20% of the overall effect. Hence, if the confounders 
have 20% influence, only 80% of the effect is driven by the 
Treatments treatment (Eq. 5). Figure 1 shows the results of 
the percentual effect confounding by calculating the mean 
difference of the Beta-values of both treatment levels. If 
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no confounder effect is present, the bias is the same as in 
Fig. 1. With a combined confounder effect of 10%, the per-
centage bias will increase to 100% if the predefined mean 
differences become larger. The effect is more drastic, if the 
combined confounder effect becomes larger at 20%.

The results in Fig. 1 indicate that the mean Beta-value 
method is valid only if no confounder effects are pre-
sent. If the scientist must assume a slight confounder 
effect, the deviation increases drastically. We cannot 
recommend using M-values for significance and mean 
differences of “raw” Beta-values for reporting and visu-
alization. A 10% confounder effect will bias the results at 
high cost of reproducibility.

Approach 4: Transformation of differences in M‑values ( �M ) 
to differences in Beta‑values ( �Beta)
Single Beta-values can be transformed into a single 
M-value with a simple formula and vice versa. No bijec-
tive dependency, however, exists between differences of 
M values and that of Beta-values. Therefore, coefficients 
from the M values linear regression cannot be directly 
transformed into Beta-value effects. In fact, any single 
M-value difference can map to a range of Beta-value dif-
ferences, as visible in Fig. 5.

Xie et  al. [19] proposed a different solution by trans-
forming differences in M-values to differences in Beta-
values. The best results are achieved if the intercept of 
the regression model is available. Then, differences in 
M-values can easily be transformed to differences in 
Beta-values by using the intercept of the Gaussian linear 
regression on M-values. In general, the lmFit function of 
the limma R package omits the intercept from the report-
ing. However, the functionality is easy to adapt and the 
intercept can be retrieved with little programming effort. 
We present R code in supplementary section 3. Figure 2 
shows the results of a data simulation with one treatment 
factor with two levels Placebo and Treatments with each 
group consists of 500 observations. In addition, two con-
founders were added, Age and Sex. Both confounders add 
up to 10% or 20% of the overall effect (Eq. 5). If the inter-
cept of the Gaussian regression model is known, the con-
founder-adjusted M-values of the Placebo group, i.e., the 
intercept, can be transformed into Beta-values as well as 
the M-values of the Treatments group. Then, the differ-
ences between the transformed Beta-values of both treat-
ment levels can be accurately calculated and be reported. 
We call this approach the intercept method.
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Fig. 1  Simulation of the effects estimation influenced by none or two confounder effects. On the y-axis, the percentage deviation from the 
predefined �Beta to estimated �̂Beta and on the x-axis the raw mean difference of the Beta-values between treatment groups. The first subplot 
shows the 0% confounder effect. The other two subplot the confounder effects of 10% and 20%. Simulated data with two treatment levels. The 
deviation is not symmetrical, because the confounder effects were always simulated in the same direction. 5000 simulations with n = 1000 each
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Estimand decision based on bioinformatical analysis 
pipeline
After the theoretical part and the determination of the 
method fitting to the research question, the practical 
part must be solved. The unpracticed scientist might be 
overwhelmed with the available software solutions in 
DNA methylation analysis. The consulting bioinformati-
cian might prefer a known pipeline. Therefore, the deci-
sion which outcome, Beta-values or M-values, to use for 
a DNA methylation analysis might be determined by the 
used bioinformatical pipeline and technology. Here, we 
cannot give a comprehensive overview over all available 
bioinformatical tools in DNA methylation in respect to 
estimands, but we try to cover the most popular tools. 
We therefore refer the reader to Maksimovic et al. [12], 
who provide a comprehensive overview of a typical DNA 
methylation analysis workflow and Wreczycka et  al. 
[28], who present strategies for the analysis of bisulfite 
sequencing data. Heiss et  al. [4] discuss the differences 
between both technologies. Therefore, we will give a 
broad overview in Table 1 of possible software solutions 
that might be considered. Table  1 shows a selection of 
the most frequently used tools in the order of application 
from the statistical software R and Bioconductor. Differ-
ent R packages exist for the analysis of DNA methyla-
tion and bisulfite sequencing data. Some packages can be 

used without modification of the raw data; others require 
a transformation step.

There are different points to consider. The scientist 
should be aware of the pipeline-like structure of the DNA 
methylation analysis. Hence, the input of a method is 
often the output of the immediately preceding method. 
A standard analysis pipeline starts with preprocessing 
including quality control and normalization followed by 
an exploratory analysis including PCA and MDS analysis 
followed by differential analysis. The results of the differ-
ential analyses are then further examined in the genetic 
context, one example being differentially expressed 
regions. Therefore, it is important to track what each 
new method demands: Beta-values or M-values. Switch-
ing between values and methods might be problematic if 
the effects, i.e., changes of the values, are of interest. The 
changing between the values might be not problematic, if 
p value sorted list of CpG sites are the main focus of the 
analysis.

First, we present complete bioinformatical pipelines 
with well-established workflows. As an advantage, com-
plete bioinformatical pipelines allow the user to analyze 
the data in one run. However, if different modules of a 
given pipeline should be adapted or changed, the user 
must be aware of the demanded data type. Full pipelines 
are complex and therefore hard to judge if all the changes 

0% confounder effect 10% confounder effect 20% confounder effect

0.01 0.05 0.1 0.2 0.3 0.01 0.05 0.1 0.2 0.3 0.01 0.05 0.1 0.2 0.3

−100%

0

100%

200%

300%

400%

Predefined Beta−value differences from TrtPlacebo to TrtVerum (∆Beta)

Pe
rc

en
ta

ge
 d

ev
ia

tio
n 

fro
m

 p
re

di
fin

ed
 to

 e
st

im
at

ed
 ∆

B
et

a

TrtPlacebo

0.1

0.3

0.5

0.7

0.9

Fig. 2  Simulation of the effects estimation with the intercept method and the influence of two confounder effects. On the y-axis the percentage 
deviation from the predefined �Beta to estimated �̂Beta and on the x-axis the raw mean difference of the Beta-values between treatment groups if 
we ignoring the confounder effects of 10% and 20%. Simulated data with two treatment levels (5000 simulations with n = 1000 each)
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between the steps have no effect on the estimand like, for 
example, the R package RnBeads [29, 30], ChAMP [31], 
or minfi [32].

Second, we highlight functions from selected and 
often used R packages. Each module in a complete bio-
informatical pipeline can theoretically be changed or 
offers different options. Especially the preprocessing 
step has many different approaches available [30, 33]. 
Often the core method in detection of differentially 
methylated regions (DMRs) is the well-established R 
package limma [34]. Therefore, the “main” computa-
tions in several R packages are carried out by the func-
tion lmFit(). The limma functionality assumes at 
least asymptotically normal distributed outcome (Y) 
and therefore uses a Gaussian linear regression with 

variance stabilization. For the estimates to be unbi-
ased, at least asymptotically normal distributed residu-
als are therefore assumed. Thus, one would naturally 
use M-values as outcome to these functions. Therefore, 
when the focus is on unbiased estimates, some bioin-
formatical analysis pipeline require the usage of asymp-
totically normal distributed M-values.

In the following, we highlight some functions and pack-
ages. The package EpiDish [35] uses Beta-values as out-
come and a Gaussian linear regression for the analysis. 
The approach should generally be unproblematic if the 
focus is on generating a variable for confounder adjust-
ment or if very low or very high methylated CpG sites are 
not considered. Thus, for CpG sites with beta values close 
to 0 or close to 1. Jühling et al. [36] present a stand-alone 

Table 1  Overview and guidance on common and selected R packages used in DNA methylation pipelines as a starting point for 
making decisions based on the desired estimate. See Heiss et al. [4] for information on the differences between Illumina microarrays 
and bisulfite sequencing. See table 3 for information on M-values and Beta-values

1Wang [59], 2Aryee [32], 3Tian [31], 4Müller [29], 5Jühling [36],
6Johnson [52], 7Pidsley [44], 8Phipson [60], 9Zheng [35], 10Smyth [34],
11Park [16] 12Irizarry [61], 13Peters [62], 14Hansen [63]
†BS-seq: Supports (processed) bisulfite sequencing data. Packages might need “transformed count data”
‡See Assenov [30] for bisulfite sequencing and McEwen [33] for Illumina microarray data

R function (Package) Estimates come from Used input

Full pipeline (DMCs and DMRs)

BioMethyl1 M-values, Beta-values (BS-seq†)

minfi2 M-values, Beta-values

ChAMP3 M-values, Beta-values

RnBeads4 M-values (BS-seq†)

metilene5 Beta-values (BS-seq†)

Preprocessing‡

ComBat (sva6) M-values (BS-seq†)

melon (wateRmelon7) Beta-values

BMIQ (wateRmelon7) Beta-values

SWAN (missMethyl8) Beta-values

CellDMC (EpiDISH9) lm (stats) Beta-values

Detect differentially methylated single CpG sites (DMCs)

champ.DMP (ChAMP3) lmFit (limma10) M-values, Beta-values

dmpFinder (minfi2) lmFit (limma10) M-values, Beta-values

calDEG (BioMethyl1) t-test M-values, Beta-values

varFit (missMethyl8) lmFit (limma10) M-values

DMLtest (DSS11) Count values (BS-seq†)

Detect differentially methylated regions (DMRs)

bumphunter (bumphunter12) lmFit (limma10) M-values(BS-seq† , after transformation)

champ.DMR (ChAMP3) bumphunter (bumphunter12) M-values

dmrcate (DMRcate13) lmFit (limma5) M-values (BS-seq†)

gometh (missMethyl8) M-values, Beta-values

BSmooth (bsseq14) Beta-values (BS-seq†)
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package for DMR detection of DNA methylation lev-
els (Beta-values) from bisulfite sequencing data, which 
uses “absolute DNA methylation ratio (in [0, 1])”. Finally, 
Park and Wu [16] present the R package DSS, which only 
accepts count data from bisulfite sequencing and models 
the data by a negative-binomial or beta-binomial distri-
bution to determine difference in DNA methylation lev-
els, i.e., Beta-values.

We conclude that many but not all bioinformatical 
tools require an at least asymptotically normally dis-
tributed outcome: the M-values. In the perspective of 
estimands, the M-values have no biological meaning; 
however, the intercept method (Approach 4) can be a 
solution to transform differences in M-values to differ-
ences in Beta-values (see Supplementary section 3 for the 
application in R). There are other solution, which model 
the Beta-values directly. The scientist must weigh which 
methodology will provide the answers to their research 
question.

Example on two real epigenome‑wide association studies 
data sets
The transformation from Beta-values to M-values is 
possible; impossible is the transformation of differences 
in Beta-values to differences in M-values. Table  4 dem-
onstrates the dependencies, and Fig.  5 visualizes them. 
Now, one might say this is only a theoretical problem. In 
real data, this problem does not exist. Be it that certain 
Beta-values always match certain M-values or follow a 
mathematical function. Therefore, we decided to investi-
gate the relationship on two experimental data sets.

So far, we have looked at the problem using simulation 
data. However, we want to check whether the problem 
also exists in experimental data. The theoretical M-values 
are real numbers and asymptotically normal distributed; 
therefore, the differences are also asymptotically normal 
distributed. In experimental data sets, this might not be 
the case. It is possible that in real life the distribution of 
the differences in M-values differs from the simulated 
ones. Therefore, we checked the distribution of M-values 
and possible �M ’s on two freely available ArrayExpress 
data sets: the ArrayExpress data set E-GEOD-55763 
[37] and the ArrayExpress data set E-GEOD-68379 [38] 
as a large cancer study, both genome-wide data. Cancer 
status could have stronger effects on the DNA methyla-
tion state, than in normal experiments. E-GEOD-55763 

has also a study population and technical replicates. The 
technical replicates were originally used for data quality 
issues. Here, we concentrate on the study population.

We used the available processed datasets “GSE68379_
Matrix.processed.txt” and “GSE55763_normalized_
betas.txt”, which are both preprocessed and should be 
therefore quality-controlled. Further information on the 
quality control can be found in the connect references 
[37, 38]. We provide a R script for the processing on 
https://​github.​com/​jkrup​pa/​estim​ands_​DNA methyla-
tion. The scientist must download the example data from 
ArrayExpress. E-GEOD-55763 has 2711 samples and 
431,961 CpG sites, and E-GEOD-68379 has 1028 samples 
and 474,517 CpG sites. Table 2 shows the summary of the 
M-values of both data sets. Overall, both data sets seem 
to have the same distribution, as the summary statistics 
differ only slightly.

Further information on the distribution of the Beta-
values of both studies can be seen in the corresponding 
Additional File 1: Sections 4 for E-GEOD-55763 and sec-
tion  5 for E-GEOD-68379. We present the distribution 
of the Beta-values for E-GEOD-55763 in supplementary 
figures 2, 4, and 5 as well as the M-values in supplemen-
tary figures  3, 6 and 7. Further, the distribution of the 
Beta-values for study E-GEOD-68379 in supplementary 
figure 10 and for the M-values in figure 11.

Figure 3 shows an example of the occurrence of hyper- 
or hypomethylated CpG sites. Therefore, we can observe 
that there are many CpG sites with Beta-values close to 
0 and 1 that are consistent with our simulation results. 
Additional File 1: Section  5 shows additional figures. 
The histograms of the M values show the implication of 
approximately normally distributed. Although there may 
be a shift, the analyst must conduct the final judgment.

In addition, we wanted to picture the distribution of 
�M values from a differential analysis based on a per-
mutation test for both data sets. Therefore, we randomly 
generated treatment and placebo groups of different sizes 
each: 5, 10, 20, 50, and 100. We ran a permutation test 
with 1000 replicates and determined the range of differ-
ences in M-values. Additional File 1: Figure S8 and S9 
show the distribution of �M for the different group sizes 
of the study population and the technical replicates (n = 
36) for the ArrayExpress data set E-GEOD-55763. The 
technical replicates were originally used for data quality 

Table 2  Summary table of the ArrayExpress data

Min 1st Median Mean SD 3rd Max

E-GEOD-55763 −31.214 −3.493 0.721 −.327 3.505 2.598 8.500

E-GEOD-68379 −15.960 −3.334 0.350 −0.123 3.479 2.846 15.974

https://github.com/jkruppa/estimands_DNA
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issues. Additional File 1: Figure S12 plots the results for 
the ArrayExpress data set E-GEOD-68379, respectively.

We observe the largest effect ranges in differences in 
M-values between both groups in small group sizes of 5. 

Therefore, we perform differential analyses with a Treat-
ments and Placebo group size of 5 each. Such a small 
group size is not realistic, but helps to demonstrate the 
dependency of M-values to Beta-values in experimental 
data. The small group size of five was chosen for dem-
onstration purposes of effect ranges and is by no means 
a sufficient group size for future planned EWAS. There-
fore, we were able to determine the range of �M gener-
ated in both data sets. We see in Fig. 4 the dependency 
between the differences in M-values and corresponding 
Beta-values for both studies. First, we estimated M-val-
ues for the Placebo and the Treatments group. Then, we 
transformed both M-values into the respective Beta-val-
ues. This way, we were able to calculate from the known 
M-values the corresponding Beta-values and the differ-
ences of the means in both groups. Hence, Fig. 4 shows 
the 3D plot of the distribution of differences: The �M 
values are on the x-axis, the corresponding �Beta values 
on the y-axis, and on the z-axis are counted the number 
of occurrences for each pair of differences. This is plotted 
for E-GEOD-55763 (left) and E-GEOD-68379 (right). The 
differences in M-values are mapped to the possible differ-
ences in Beta-values observed by the differential analysis. 
Interestingly, both data sets show different distributions. 
Therefore, a general pattern cannot be inferred from real-
life data sets.

Histogramm of beta values
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Fig. 3  Histogram of the β-values of the study population of the 
ArrayExpress data set E-GEOD-68379. This study in particular shows a 
high number of methylation sites close to 0 and 1, which could be of 
interest and a problem in modeling

Fig. 4  3D surface density plot of the distribution of differences in M-values to differences in Beta-values from E-GEOD-55763 (left) and 
E-GEOD-68379 (right). The difference in M-values ( �M ) is mapped to the corresponding differences in Beta-values ( �Beta ) observed in the data 
set by comparing two groups of five observations each with random group assignment in 5000 simulations . For �M larger than 7, we run 10000 
simulations. The small group size of five was chosen for demonstration purposes and is by no means a sufficient group size
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Discussion
A lot of guidance for DNA methylation analysis has been 
published. Starting with a global comparison of Beta-val-
ues and M-values by Du et al. [1], followed by Saadati and 
Benner [39] with emphasis on Gaussian and Beta regres-
sion. Then, Li et al. [40] concentrated on differential DNA 
methylation analysis with regard to FDR control, power, 
and stability as well as Mansell et al. [18], which focus on 
the p values using a Gaussian linear regression on Beta-
values, and discussed the false-/true-positive rates. All 
these guidelines have the focus on false discovery rates 
like p values, q values, FDR, or power in common. None 
of them discuss the demands of practical estimands in 
DNA methylation analysis. Even in practical tutorial-
like publications, the issue is not discussed [1, 12]. The 
reporting of p values without estimands, i.e., effect esti-
mates, must be seen critical. P values cannot be inter-
preted in isolation and must be seen in context [5]. In our 
work, we want to concentrate on the problems of esti-
mands in DNA methylation analysis. However, a compre-
hensive discussion on effect estimates and p values in the 
context of clinical studies can be found in Pogrow [41].

Choosing the right estimand in a differential DNA 
methylation analysis is not straightforward. The decision 
to be made is complex due to two possible usable values 
and the available bioinformatical software. The inherent 
assumption of normal distribution is made by the bio-
informatical pipeline. In this work, we discussed four 
approaches of reporting estimands in differential DNA 
methylation analysis.

The analysis of beta-distributed outcomes with Gauss-
ian linear regression seems counterintuitive. However, 
the approach has been used in recent research. Salas 
et al. [42] used Beta-values as outcome and linear mixed 
models regression as statistical models with confounder 
adjustment. This is feasible, because the candidate CpG 
sites have mean Beta-values around 25% and 75% in both 
groups. Hence, there is a good example of the appropri-
ate usage of a linear regression on Beta-values. Among 
other criteria, the post hoc enrichment analysis was 
based on Beta-value differences greater than 0.1 across 
all cell types. All visualization was done on the Beta-
values. A replication of the results seems to have been 
computed with the same statistical models. In our study, 
we observed severe convergence problems with low Beta-
values when applying the beta regression on Beta-values, 
resulting in the lack of effect estimates in datasets with 
smaller differences in DNA methylation patterns. Fur-
thermore, as the estimand of a beta regression is not a 
difference but a ratio, researchers must be aware of the 
different interpretation of a difference or a ratio.

Next, for the widely used approach to divide the dif-
ferential analysis and the reporting of p values from the 

reporting of effect estimates, we showed that the esti-
mands would be biased if confounder effects, a typical 
feature of biological data, were present. If the sample is 
large enough, even small clinical irrelevant effects can 
become significant. We therefore cannot recommend 
using M-values for significance and mean differences of 
“raw” Beta-values for reporting and visualization. Even a 
small confounder effect will bias the results at high cost 
of reproducibility. Finally, the intercept method, based 
on Xie et al. [19] and refined in this work, allows to cal-
culate the difference in Beta-values from the difference 
in M-values using the intercept estimate of the limma 
model, providing estimands that take the effects of con-
founders into account. The transformation is easy to 
accomplish, but not available in common software pack-
ages. We provide a easy-to-use R code example using the 
limma package in Additional File 1.

Bisulfite sequencing datasets are based on alignment 
of reads to a reference genome. Therefore, the determi-
nation of the degree of DNA methylation is technically 
different. However, the final measure is a percentage 
of DNA methylation at a given position, i.e., CpG site. 
Therefore, the result of bisulfite sequencing can also be 
converted to M-values. The here presented and discussed 
numeric properties would be the same; however, the data 
processing is largely different in bisulfite sequencing and 
may affect the differential analysis. It is important to note 
that there are differences to probe design of the illumina 
arrays, which is important to account for [43, 44]. Zhou 
et  al. [45] provide an overview of a DNA methylation 
pipeline with bisulfite sequencing. Interestingly, bisulfite 
sequencing data are often called DNA methylation levels 
or proportion, which can be named Beta-values. The dif-
ferent naming makes sense, because of the different con-
text of read counts and signal intensities.

In addition to discussing the proper estimation of 
effects in clinical trials, we also discuss the influence of 
normalization methods on final results. So, do we model 
the noise caused by preprocessing (e.g., normalization 
and filtering) or the biological effect? Or is the noise effect 
more important than the choice of statistical model? 
Hancock et al. [46] discussed the issue in a broader sense 
and Qin et al. [47] with emphasizes to omics data. In par-
ticular, for DNA methylation analyses, the confounder 
effect of cell composition must be considered [48, 49]. 
Other confounding factors that should be considered are 
batch effects [50]. Depending on the study type and the 
patient collective study, specific confounders might be 
needed. Finally, Mishra et al. [51] discuss the global goals 
of data preprocessing. The work of Mishra et  al. (2020) 
is in the context of chemometric models, but provides a 
comprehensive overview of the general selection process 
strategies of preprocessing methods. We decided to use 
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confounder effects which make effects. Finally, we chose 
confounder effects that clearly led to differences in the 
simulation study. These effects may be too high or too 
low. However, this evaluation of confounder effects also 
depends on the experiment conducted, design, and tissue 
used. Researchers should know the effect of confounders 
on the effect estimators and consider them in the inter-
pretation [7, 35, 52].

If the research question is based on a “p value” ranked 
CpG site list, we recommend the work of Van Rooij et al. 
[7] as a complement to our work. For error rates, Van 
Rooij et al. [7] evaluated different statistical models and 
methylation values as well as the effects of confound-
ing. In addition, they discuss the results in the context 
of RNAseq. Van Rooij et  al. [7] found that no methyla-
tion value transformation has a large impact on the rank-
ing by error rates. They recommend beta-3IQR values, 
i.e., Beta-values without extreme values. Van Rooij et al. 
[7] do not discuss effect estimates because they are not 
within the scope of their work.

In terms of the research question, the researcher 
could focus on specific CpG sites. It might be possible to 
focus on CpG sites with Beta-values close to 0 and 1 and 
dichotomize the CpG sites into a binary indicator. After 
dichotomization, a Fisher exact test would be possible. 
Again, the estimate of an exact Fisher test is an odds ratio 
and the definition of the binary indicator must meet the 
requirements of the scientist. This approach may be of 
interest as our analysis of E-GEOD-68379 may serve as 
an example.

We cannot cover all issues connected with biased 
reported estimands. We consider the combination of dif-
ferent clinical studies in a meta analysis as one of them. 
Therefore, the highest value of evidence can be reached 
with meta analysis and systematic reviews. If a meta anal-
ysis should be run, two settings must be distinguished: 
(1) all data of the studies are available and can be reana-
lyzed or (2) only the publication is available and effect 
estimates should be combined. It is very important to 
distinguish between DNA methylation measurements as 
outcome [53, 54] or as risk factor [55]. In our work, we 
concentrate on DNA methylation measurements as out-
come. While single studies might have a lack of reproduc-
ibility, the combination of different single studies can be 
an impossible challenge due to differences in processing 
pipelines and statistical models. As an example, Morris 
et al. [56] discuss the epigenetic landscape of renal can-
cer. There are no estimands reported for the DNA meth-
ylation part. Instead, more a general scheme of up- and 
down regulation by CpG islands connected to promotor 
regions. Kerr et al. [57] stated, in their recent review on 
rare renal diseases, that the methodical rigor was weak 
in all thirteen considered studies. The information on the 

DNA methylation measurement method is reported for 
each study, but this does not help to judge the estimands 
in each study as a lack of accounting for confounding fac-
tors can be found in all case–control studies even if the 
factors are mentioned. They conclude that “future stud-
ies would benefit from standardization of the detection 
and analysis of methylation, [...] and a comprehensive, 
transparent reporting structure”. A template might be the 
STREGA statement, which provides the scientific com-
munity with a checklist for the performance of genome-
wide association studies to enhance the transparency of 
its reporting, regardless of choices made during design, 
conduct, or analysis [58]. With this work, we aim to facil-
itate the choice of correct estimands for specific DNA 
methylation analyses and therefore add to more stand-
ardized analysis workflows, enhancing comparability and 
reproducibility across different studies.

Conclusion
Many bioinformatical DNA methylation analysis pipe-
lines demand the usage of an asymptotically normal dis-
tributed outcome. The outcome should be asymptotically 
normal because commonly used R packages are based 
on the R package limma and therefore have the inher-
ent assumption of normally distributed outcome. So far, 
methodically benchmarks are done on false discovery 
rates, which might not be affected by the use of Beta-val-
ues analyzed by Gaussian linear regression analysis. This 
might be the reason of a low number of CpG sites close 
to 0 and 1 or the usage of robust methods. Neverthe-
less, the question remains, if the estimands are unbaised. 
However, we show that confounder effects will bias the 
effect estimates. In addition, the usage of the technology 
might also influence the choice of the appropriate esti-
mand. With our study, we come to the following recom-
mendations. M-values should be used if significance is 
a filter for post hoc analysis like pathway analysis or the 
detection of interesting CpG sites. In a next step, we rec-
ommend the usage of Beta-values in a Beta regression to 
estimate the effects of the CpG sites scrutinized, where 
the estimand has to be interpreted as an odds ratio. In 
this context, it has to be emphasized that the Beta regres-
sion has problems of modeling values at the borders of 
the 0 and 1 distribution, i.e., if a CpG site has mostly high 
methylation or no methylation. In this case, estimating 
the effect in terms of differences in Beta-values may also 
be achieved by using the intercept method.

Therefore, depending on the experimental setting 
and the connected research question, M-values or 
Beta-values can be used as outcome. In no case should 
M-values be used for determination of the significance 
and raw Beta-value differences as effect measure. The 
estimands on Beta-values will be biased, if even a small 
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confounder effect is present. We want to encourage sci-
entist to choose the estimand, which fits best to the 
research question and the biological model. We see simi-
lar mathematical symbols and statistical word usage in 
DNA methylation for different concepts, which can lead 
to unnecessary confusion. With our work, we hope to 
facilitate the collaboration and planning of further clini-
cal trials.

Methods
Statistical wording in DNA methylation analysis
Some statistical wording in DNA methylation analysis is 
special, because one of the measured outcomes is called 
“beta”. Therefore, in our article we will frequently use 
statistical terms like “beta” in a different context which 
might be confusing for the reader [20]. Therefore, we 
have defined the used terms and the statistical mean-
ing in Table  3. A DNA methylation analysis can consist 
of hundreds of thousands of CpG sites. Each i th CpG site 
has a single Betai value. Each of the single Beta-values 
can be transformed into M-values. In general, the Beta- 
and M-values are the outcome of the DNA methylation 
analysis. In our article, we concentrate on the differences 
between M-values and Beta-values defined as �M and 
�Beta , respectively. We call these differences in Beta- and 
M-values estimands, because the differences are “what is 
to be estimated” [9]. Further, a linear regression will pro-
duce estimates for the intercept β0 and the effect estimate 
β1 for the treatment effect, i.e., the difference between the 
Placebo and Treatment.

Transformation of M‑values and Beta‑values
In the following, we briefly describe Beta-values, M-val-
ues and the differences in them as estimands, respec-
tively. We recommend as introduction to the topic of 
Beta- and M-values the work of Du et al. [1]. Maksimovic 

et al. [12] can be recommended for a deeper discussion of 
potential bioinformatical analysis pipeline.

In an analysis of Illumina Infinium DNA methyla-
tion arrays methylated and unmethylated intensities are 
produced. The fraction of methylated to unmethylated 
probes for a given CpG site is defined by the Beta-values. 
The Beta-values describe the percentage of DNA meth-
ylation for a given CpG site. The Beta-values can be cal-
culated as follows.

The Beta-values are a probability and therefore limited to 
a range of 0 to 1. Consequently, they are Beta-distributed. 

(1)

Betai =
max(methylated, 0)

max(methylated, 0)+max(unmethylated, 0)+ 100

Table 3  Table of used terms, their statistical meaning, and description

Term Description and usage

Beta-values Describe the frequency of methylation at a given CpG site. Numeric values between 0 and 1. Biological interpretable.

Beta i Single Beta-value i of all p Beta-values

M-values Standardized Beta-values. The standardization must be read as “logit” transformation. Numeric values from −∞ to 
+∞ . No biological meaning.

M i Single M-value i of all p M-values

Outcome Dependent variable Y of the regression models; here Beta-values or M-values

�Beta Difference in Beta-values

�M Difference in M-values

β0 , β1 Coefficients of the regression model; β0 as the intercept and β1 as the effect estimate, i.e., the mean difference 
between the two groups Placebo and Treatment.

Fig. 5  Mustache plot of the theoretical relation of differences in 
M-values to differences in Beta-values. On the left side, the difference 
in M-values ( �M ) is mapped to all possible corresponding differences 
in Beta-values ( �Beta ). A difference of �M = 5 , for example, can be 
mapped to a �Beta from 0.0009 to 0.6996
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The Beta-values can be standardized to M-values as 
follows.

The M-values are asymptotically normal distributed 
after the log2-transformation. The M-values can be 
back-transformed.

Counterintuitively, the differences in Beta-values can-
not be transformed into differences in M-values and 
vice versa. First, we have examined the theoretical dis-
tribution of the �M of a linear regression analysis to the 
corresponding possible �Beta . We demonstrate in Fig.  5 
the mustache-like plot of the theoretical distribution. A 
direct translation of �M to �Beta is not possible. The dif-
ference of �M = 5 can be represented by a �Beta from 
0.0009 to 0.6996. Due to the fact that the mustache plot 
is symmetrical we will concentrate on the positive differ-
ences of the �M values.

Table 4 shows the numeric dependencies between the 
Beta- and M-values as well as the differences. The �Beta is 
always 0.1 between the Placebo and Treatment group of 
the treatment. The �M value depends on the Beta-value 
of the Placebo and the Treatment. Therefore, single �M 
values cannot be matched to single �Beta values. In the 
last column, the respective regression model on M-values 
is shown. As Xie et al. [19] are pointing out, the best way 
to achieve the differences of Beta-values out of a Gauss-
ian linear regression on M-values is to back transform the 
estimates of the regression. As an example, the regression 

(2)Mi = log2

(

Betai

1− Betai

)

(3)Betai =
2Mi

1+ 2Mi

formula on M-values with −3.15+ 1.16 · GrpTreatment 
has a β0 = −3.15 , the mean of the Placebo group, and 
β1 = 1.16 the difference between the mean of the Placebo 
and Treatment group. Hence, the mean of the Treatment 
group would be −3.15+ 1.16 = −1.99 as shown in the 
table. Now, the mean of the Placebo group of −3.15 can 
be back-transformed to 0.101 and the mean of the Treat-
ment group of −1.99 to 0.201, respectively. Then, it is 
possible to calculate the differences in Beta-values of 0.1.

Used simulation models
In the following, we describe the simulation approach 
mathematically, for those who have a better access via 
programming code the simulation R code is available 
on https://​github.​com/​jkrup​pa/​estim​ands_​methy​lation. 
We used two different simulation models for the com-
parison of the predefined and estimated effects. First, a 
simple model on which we can discuss the advantages 
and disadvantages of the approach. The results can be 
seen in Fig. 1 on the left panel.

where

•	 Outcome represents the measured M-values or 
Beta-values for one CpG site

•	 β0 is the intercept of the regression model and the 
mean of the Placebo group

•	 β1 is the effect estimate, i.e., estimand, of the Treat-
ment group representing the mean difference 
between Placebo and Treatment.

The regression model (4) is very simple and can also 
be seen as a t-test. However, standard bioinformatical 

(4)Outcome = β0 + β1 · Grp+ ǫ

Table 4  Table of example for the transformation of Beta-Values to M-values and the differences, respectively. The Beta-value difference 
between the Placebo group and the Treatments group is constant at 10%. Due to the transformation, the M-values differ and the 
differences in M-values can not be mapped to the differences in Beta-values

GrpPlacebo GrpTreatment �Beta �M Regression formula

Beta-value M-value Beta-value M-value on M-values

0.001 −9.96 0.101 −3.15 0.10 6.81 −9.96 + 6.81 · GrpTreatment

0.101 −3.15 0.201 −1.99 0.10 1.16 −3.15 + 1.16 · GrpTreatment

0.201 −1.99 0.301 −1.22 0.10 0.77 −1.99 + 0.77 · GrpTreatment

0.301 −1.22 0.401 −0.58 0.10 0.64 −1.22 + 0.64 · GrpTreatment

0.401 −0.58 0.501 0.01 0.10 0.59 −0.58 + 0.59 · GrpTreatment

0.501 0.01 0.601 0.59 0.10 0.58 0.01 + 0.58 · GrpTreatment

0.601 0.59 0.701 1.23 0.10 0.64 0.59 + 0.64 · GrpTreatment

0.701 1.23 0.801 2.01 0.10 0.78 1.23 + 0.78 · GrpTreatment

0.801 2.01 0.901 3.19 0.10 1.18 2.01 + 1.18 · GrpTreatment

0.901 3.19 0.999 9.96 0.10 6.77 3.19 + 6.77 · GrpTreatment

https://github.com/jkruppa/estimands_methylation
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pipelines often use the Gaussian linear regression with 
variance correction for the differential analysis [34]. 
The reason is that regression models can be adjusted 
for confounders like age and sex. The confounder 
effects are normally not of interest and are discarded.

where

•	 Outcome represents the measured M-values or Beta-
values for one CpG site

•	 β0 is the intercept of the regression model and the 
mean of the Placebo group

•	 β1 is the effect estimate, i.e., estimand, of the Treat-
ment group representing the mean difference 
between Placebo and Treatment ( �M)

•	 β3 and β4 are the effect estimates of the confounder, 
i.e., Age and Sex.

The approaches (1) to (4) are tested on both models, and 
the implications were discussed. The overall data gen-
erating was done in the environment of the R package 
simstudy (https://​kgold​feld.​github.​io/​simst​udy/​index.​
html). We used the simstudy setup for the data genera-
tion. First, the Outcome has been generated as normally 
distributed (dist = normal). If Beta-values were 
needed, the normally distributed M-values were trans-
formed to Beta-values using Eq.  3. In the case of the 
analysis of the convergence rate of the Beta regression, 
betareg(), we generated a Beta distributed Outcome 
(dist = beta).

Table 4 shows the data generation setting for an effect 
�Beta of 0.1 between GrpPlacebo and GrpTreatment . In the 
next step, we generated the Beta-values for the placebo 
group and added the effect to achieve the Beta-value for 
the case group. The difference is always 0.1 as the prede-
fined effect. We use the M-values to generate the regres-
sion formula and the normal distributed outcome as 
pictured in Table  4. The regression formula represents 
the difference of Beta-values of 0.1 in the space of the 
M-values. We are then able to back transform the Out-
come to Beta-values and use them as outcome. The effect 
�Beta is varied in the simulation study. Further, we gen-
erated a confounder effect matrix Eq. 6. The confounder 
effects are positive defined. Therefore, if we ignore the 
confounder effects, our estimates should have a negative 
deviation, which can be seen in Fig. 1.

(5)
Outcome = β0 + β1 · Grp+ β3 · Age + β4 · Sex + ǫ Depending on the confounder effect, the treatment 

effect is reduced by the portion shown in Eq.  6. We 
decided to use a categorical and continuous variable as 
possible confounders. Figure  1 shows the simulation 
results of the different confounder effects.
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