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Abstract

Background: The nematode worm, Caenorhabditis elegans, is a saprophytic species that has been emerging as a
standard model organism since the early 1960s. This species is useful in numerous fields, including developmental
biology, neurobiology, and ageing. A high-quality comprehensive molecular interaction network is needed to
facilitate molecular mechanism studies in C. elegans.

Results: We present the predicted functional interactome of Caenorhabditis elegans (FIC), which integrates
functional association data from 10 public databases to infer functional gene interactions on diverse functional
perspectives. In this work, FIC includes 108,550 putative functional associations with balanced sensitivity and
specificity, which are expected to cover 21.42% of all C. elegans protein interactions, and 29.25% of these
associations may represent protein interactions. Based on FIC, we developed a gene set linkage analysis (GSLA) web
tool to interpret potential functional impacts from a set of differentially expressed genes observed in transcriptome
analyses.

Conclusion: We present the predicted C. elegans interactome database FIC, which is a high-quality database of
predicted functional interactions among genes. The functional interactions in FIC serve as a good reference
interactome for GSLA to annotate differentially expressed genes for their potential functional impacts. In a case
study, the FIC/GSLA system shows more comprehensive and concise annotations compared to other widely used
gene set annotation tools, including PANTHER and DAVID. FIC and its associated GSLA are available at the website
http://worm.biomedtzc.cn.
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Background
More than 50 years ago, Sydney Brenner selected
Caenorhabditis elegans as a genetic model to study de-
velopmental biology and neurobiology because of its
fully mapped genome and nervous system, rapid life
cycle (3 days), and ease of laboratory cultivation [1–4].
The experimental strength and physiological similarities
present in C. elegans and higher organisms (e.g.,
humans) have made it an important organism to explore
a variety of subjects, including neuron fate specificity [5],
axon guidance [6], and differentiation [7].
Recently, the development of omics technologies for

C. elegans has become indispensable to systems biology,
which can help to elucidate the mechanisms governing
cellular physiology at the molecular level [8, 9]. Al-
though the variety and complexity of omics data provide
a global overview of potential mechanisms of physio-
logical change, it also presents unparalleled challenges to
describe the underlying design logic of physiological pro-
cesses from molecular-level descriptions.
In fact, the existing approaches mostly rely on enrich-

ment analysis to obtain high-level biological insights
from the observed set of differentially expressed genes
(SDEG). These enrichment-based methods evaluate
whether an SDEG is enriched or clustered in a defined
biological process. To date, many gene set annotation
tools based on enrichment analysis have been developed
to analyse SDEG, and they show significantly different
expression in two or more physiological statuses. Some
tools are widely used, including PANTHER [10], KEGG
[11], and DAVID [12].
In reality, the observed SDEG is summarized into

established biological concepts by the above strategies,
which are successful in many cases. However, in
practical use, enrichment-based methods frequently re-
port that no annotation term is enriched or only report
conceptually general terms (such as GO: 0005634, nu-
cleus), where no established biological concepts can be
used to accurately describe the differentially expressed
gene set. Clearly, these results provide little assistance
for researchers attempting to elucidate molecular
mechanisms.
Alternatively, while there are no established concepts

to accurately describe the observed SDEG, we still may
utilize established biological concepts to interpret the
functional impacts of SDEG. For example, observed
SDEG may lead collectively to GO: 0051704 (defence re-
sponse to fungus), even when the SDEGs themselves are
not enriched in these terms (for details, please see the
Discussion section). In this study, the gene set linkage
analysis (GSLA) tool was developed to describe the po-
tential functional impacts of the observed SDEG, espe-
cially in cases in which no established concepts or no
suitable concepts can describe these changes. If the

SDEG has strong functional associations with genes in
an established biological process, the observed SDEG
will be expected to interfere with this biological function.
This strategy is called GSLA and has been successfully
used in human and Arabidopsis transcriptome interpret-
ation [13, 14]. The main contribution to the successful
interpretations of functional impacts is the high-quality
functional association networks in these two species [13,
15]. Worm researchers have made efforts to construct
molecular interaction databases, which include Worm-
Base (2390 proteins, 6343 interactions) [16], WormNet
(16,122 proteins, 760,116 interactions) [17], mentha
(4774 proteins, 12,136 interactions) [18], MIST (4929
proteins, 626,262 interactions) [19], STRING (12,050
proteins, 3,300,700 interactions) [20], and ComPPI (4958
proteins, 13,659 interactions) [21]. These databases have
greatly facilitated C. elegans research, but they do not
support the gene set linkage analysis (GSLA) algorithm
well in our evaluation.
Therefore, in this study, we constructed a high-quality

reference functional gene association network for C. ele-
gans, which provides an alternative resource for high-
reliability functional gene associations to facilitate mech-
anism exploration. Additionally, this set of functional
gene associations supports the GSLA interpretation of
the collective functional impacts of SDEGs in worm.
The predicted functional interactome of Caenorhabditis
elegans (FIC) integrates six types of functional associ-
ation data from 10 public databases with timestamps be-
fore 2018. To evaluate the accuracy of inferred
functional associations in FIC, we used experimentally
confirmed protein-protein interactions recently reported
after 2018. The current version of FIC includes 108,550
functional gene associations, which are expected to
cover 21.42% of protein-protein interactions in C. ele-
gans, and 29.25% of functional gene interactions may
represent protein interactions. For users to query func-
tional associations of their genes of interest in C. elegans,
we provide an FIC web interface that is easy to operate.
We also provide a GSLA web tool so that users can in-
terpret the potential functional impacts of the observed
set of differently expressed genes. A case study is also
provided to illustrate the way to use the FIC/GSLA
system.

Methods
Evidence data
In this work, we selected six types of evidence that sug-
gest functional associations between genes from 7 public
databases to build the interaction prediction model.
These data were collected before 2018 and include 18,
947 expression profiles (Coxpresdb), 44,300 gene
annotations (GOC), 35,195 domain interactions (IDDI
and Pfam), 14,457 subcellular gene localizations
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(Compartments), 14,866 phylogenetic profiles (DIOPT),
and inparalogue/orthologue relationships between 5137
worm proteins and proteins from A. thaliana, D.
melanogaster, H. sapiens, M. musculus, R. norvegicus, S.
cerevisiae and S. pombe to compute interologues. Thirty-
six features belonging to six categories were computed
based on these evidence data, each suggesting a certain
type of functional association (Supplementary Table 2)
[22, 23]. Detailed methods and equations can be found
in website help (the indirect evidence section).
Protein-protein interactions were considered to be evi-

dence of strong functional associations. In this study, we
attempt to predict functional associations that are as
strong as protein interactions [13]. We collected a total
of 26,367 experimentally reported protein-protein inter-
actions of C. elegans from three public databases, includ-
ing WormBase [16], BioGRID [24], and IntAct [25]
(Additional file 1: Table S1). Among 26,367 interactions,
we retained 5606 high-quality protein-protein interac-
tions to ensure that these interactions are experimentally
confirmed, rather than predicted. The interactions that

were reported in less than two independent studies or
reported only in high-throughput experiments were re-
moved (Additional file 1: Table S1). To obtain the uni-
form gene ID for the functional association prediction,
UniProt [26] and BioMart [27] software were used to
convert different gene IDs to WormBase ID (Fig. 1).

Computation and assessment of feature values
From six types of functional association evidence, we
used 36 mathematical characterizations to compute
feature values, which include 3 shared annotation
features, 2 co-expression features, 4 subcellular co-
localization features, 23 domain interaction features, 3
phylogenetic profile features, and 1 homologous inter-
action (Additional file 3: Table S2).
To evaluate whether the above feature values can sug-

gest functional associations, the area under the curve
(AUC) of the receiver operating characteristic (ROC)
test was employed. Each feature value produced a series
of sensitivities and specificities by applying different cut-
offs when predicting the protein interactions. According

Fig. 1 Workflow for inferencing functional interactions between C. elegans genes. High-quality experimentally reported protein interactions were
integrated from three databases and were used as positive examples. Six types of functional association evidence from 10 databases were
collected to infer putative functional interactions. A total of 10 high-quality feature values were selected from 36 feature values that characterize
this evidence with different mathematical representations. Random gene pairs after removing positive examples were used as negative examples.
The number of negative examples was 100 times that of the positive examples
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to different cut-offs, the ROC curve was plotted with
sensitivities and specificities (X-axis, 1-specificity; Y-axis,
sensitivity). Assessment of feature values was performed
using the training dataset (data before 2018). If the AUC
of a feature value was higher than 0.6, a strong func-
tional association was present. A total of 10 features
were eventually selected to predict the functional associ-
ations (Additional file 4: Table S3 and Additional file 2:
Fig. S1).

Website construction
Our developed FIC database runs on LNMP that inte-
grated the running environment, including Linux,
Nginx, MySQL, and PHP. Data storage, maintenance,
and operation are supported by the MySQL database.
The interaction interface is developed with the Lara-
vel framework based on PHP. The front-end of FIC is
a Vue.js-based single page application (SPA). Vue.js is
an open-source JavaScript framework for interface
creation and a web application framework compatible
with SPA. The functional association network is visu-
alized with Cytoscape [28].

Microarray data analysis
From the GEO database [29, 30], we retrieved micro-
array data GSE97678 [31]. In the original article, 35
genes were upregulated between 2- and 8-fold on the E.
coli HT115 diet, while 22 genes were upregulated be-
tween 2- and 20-fold in the E. coli OP50 diet. Three bio-
logical replicates were performed by the authors. These
expression profiles were re-analysed based on the online
GEO2R tool [32–34] using default parameters. The top
transcriptionally changed genes were selected by adj. P.
Val (P-value after adjustment for multiple testing). The
GEO2R tool adjusts the P-values to correct for false
positive results. We chose the default Benjamini &
Hochberg false discovery rate method to adjust multiple
tests.

Results
Data integration for functional association prediction in C.
elegans
Six types of evidence for functional association inference
between C. elegans genes were collected from seven da-
tabases, including Coxpresdb [35], Gene Ontology Con-
sortium (GOC) [36], Compartments [37], IDDI [38],
Pfam [39], DIOPT [40] and Inparanoid [41] (Fig. 1).
Thirty-six feature values from six types of evidence were
used to measure the strength of functional associations
(Additional file 3: Table S2).
Not all 36 of these features were suitable to separate

protein interactions from random gene pairs. To de-
crease the noise-to-signal ratio in the following func-
tional associations prediction step, we only kept those

features that showed a strong correlation to functional
associations. The AUC of the receiver operating charac-
teristic (ROC) curve was used to measure the capability
of a feature to indicate protein interactions. In this
study, we selected ten features with AUC higher than
0.6 for the subsequent inference of functional gene asso-
ciations (Additional file 4: Table S3 and Additional file
2: Fig. S1).
In addition, protein-protein interactions reported in

experimental studies of C. elegans were collected from
three databases, including WormBase [16], BioGRID
[24], and IntAct [25] (Fig. 1 and Additional file 1: Table
S1). We removed protein-protein interactions based on
the supporting evidence provided in each database (Fig.
1), only retaining the experimentally confirmed high-
quality protein-protein interactions, which were used as
positive examples in prediction model training (Add-
itional file 1: Table S1).

Functional gene association prediction
We used the libSVM package to train and predict func-
tional associations [42, 43] (Fig. 1). Specifically, 5606
high-quality experimentally confirmed protein-protein
interactions that were published before 2018 were used
as positive examples, which represent examples of strong
functional associations between C. elegans genes. Ran-
domly generated gene pairs that do not overlap with
positive examples served as negative examples. We con-
sidered that two random genes may have functional as-
sociations, although the probability is low. To reduce the
false positive rate in the negative examples, we set the
positive-to-negative ratio in the training dataset to be 1:
100 such that only a notably small fraction of gene pairs
has functional associations.
We utilized the soft-margin Gaussian kernel SVM al-

gorithm to train the prediction model. The parameters σ
(kernel width) and C (soft margin) targeted an optimal
harmonic mean of sensitivity and specificity that were
optimized with a 5-fold cross-validation. Based on the
optimized σ and C, all training data were used to train
the prediction model, which was validated with an exter-
nal validation dataset consisting of protein-protein inter-
actions that were published after December 31, 2017,
and randomly generated negative examples. After valid-
ation, this model showed a sensitivity of 21.42% and a
specificity of 99.95%. In this study, we also evaluated
how well the predicted interaction in WormNet, MIST,
and STRING covered these new interactions. The results
are shown in Supplementary Table S4.
Applying this model to all gene pairs of C. elegans pro-

duced 101,727 inferred functional associations. These in-
ferred functional interactions together with the 6823
known protein interactions make the FIC dataset, which
consists of 108,550 interactions. A total of 108,550
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putative functional interactions were inferred when ap-
plying this model to all C. elegans gene pairs. Among
the protein-protein interactions, we further estimated
the proportion covered by the predicted functional inter-
actome using the following equation:

Ninteractome � Sensitivity þ Nall − pairs −Ninteractome
� �

� 1 − specificityð Þ ¼ Npredict

where Ninteractome is the expected number of all protein-
protein interactions in C. elegans, Nall − pairs is the num-
ber of all gene pairs in C. elegans, and Npredict is the
number of predicted gene associations. The sensitivity
and specificity are the accuracy measures produced
when the prediction model was validated with newly
published protein interactions. Solving this equation
yields an estimated size of 1.42 × 105 for the C. elegans
protein interactome. Based on the estimated interactome
size (1.42 × 105) and the estimated sensitivity (21.42%,
the conservative estimation from the training stage sen-
sitivity 21.69% and the evaluation stage sensitivity
21.42%), the predicted interactions in FIC are expected
to include 29,755 protein interactions. Therefore, 29.25%
of the FIC functional interactions (29,755 out of
101,727) are expected to represent protein interactions.

Assessment of functional gene association network
We evaluated the quality of the functional gene associ-
ation interactome FIC by its ability to group functionally
associated genes together. A gene’s function prediction
accuracy based on its network neighbours may be used
to measure the quality of our predicted interactome FIC.
To this end, the quality of the inferred functional associ-
ations was compared with six other public C. elegans
interactomes, including WormBase [16], WormNet [17],
mentha [18], MIST [19], STRING [20], and ComPPI
[21]. In this study, the PATHER term enrichment tool
[10] was used to measure the accuracies to predict the
new GO biological process annotations on each
interactome.
The collection date of data for the inference of FIC

gene associations was before 2018 (December 31, 2017).
We collected 13,043 genes from GO [44, 45] with new
annotations dated up to August 1, 2018. These genes
contained a total of 117,848 annotations, 9108 annota-
tions of which were newly added after 2018. We evalu-
ated the prediction performance of gene function based
on these genes and their annotations.
The overall prediction accuracy of new annotations

across seven interactomes was compared by precision-
recall curve. In this instance, precision means whether
the annotations reported by PANTHER are consistent
with the known annotations (all 117,848 annotations),
while recall means the proportion of annotations

reported by PANTHER that covered the newly added
9108 annotations. The number of PANTHER reported
annotations is correlated with the cut-off on the signifi-
cant value. Setting a higher cut-off value results in more
reported annotations and a higher recall but with a
higher false positive rate. In contrast, setting a lower
cut-off value results in fewer reported annotations and
lower recall but with higher precision. Therefore, the ad-
vantage of the precision-recall curve is that it shows the
rates of precision and recall on different cut-offs. Inde-
pendent of the selection cut-offs, the precision-recall
curve can provide a more comprehensive view of the
quality of the interactome.
Figure 2 shows that the curve of our predicted FIC in-

teractome is above six other interactomes, indicating its
superior quality in grouping functionally associated
genes together. Compared to others, only the curve of
FIC reaches the high-recall region, and it still maintains
the highest precision. Although WormBase, mentha,
MIST, and ComPPI have similar high-precision regions,
none of these curves reached high-recall regions. Alter-
natively, STRING and WormNet reached the high-recall
region, but their precision did not increase considerably
and always stayed in the low-recall region. This observa-
tion suggested that a high proportion of STRING and
WormNet interactions were weak functional gene asso-
ciations, which may raise the false positive rates during
function prediction. In general, FIC showed balanced
coverage and accuracy, and its quality exceeds those of
other compared interactomes.

Web interface of FIC/GSLA
We developed a user-friendly interface for FIC, which
provides two search modes, a single gene search mode
and a multiple gene search mode (Fig. 3a). Both gene
name and WormBase ID are acceptable means of
searching for a gene. The single gene search option re-
ports putative functional gene-associated interactions in-
volving the query gene, while the multiple search option
reports the functional associations between query genes.
The functionally associated interactions reported by FIC
are provided in a tabular form (Fig. 3b). A graphical view
of these reported interactions is also provided at the
right side of the query interface. Users can check for fea-
ture values for the interaction prediction in our model if
they click the edges in the graphical view of their func-
tional associations. Moreover, users can click the nodes
in the graphical view to obtain gene information that
provides more detailed information about a gene. A full
dump of the FIC database is available for download. We
also provide a help section on the FIC/GSLA website
with more details for users.
The GSLA web tool was first developed for the Pre-

dicted Arabidopsis Interactome Resource (PAIR) to
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interpret potential functional impacts of observed SDEG
in Arabidopsis [14]. Two testing hypotheses (Q1 and
Q2) are used in GSLA to ensure that the reported asso-
ciations between two C. elegans gene sets are significant
(Fig. 4). Q1 examines whether the gene association dens-
ity of inter-gene-sets between two functionally associated
gene sets is higher than the background random gene
sets. Q2 examines whether the observed high-density
gene associations between two gene sets can only be ob-
served in the biologically correct functional gene associ-
ation network. In other words, the density observed in
FIC is higher than the densities observed in random
gene association networks consisting of the same genes,
with each gene having the same number of neighbours.
From a biological perspective, Q1 tests the strength of a
functional association between two gene sets. Q2 con-
firms that the observed strong inter-gene-set functional
interaction is the result of a biologically correct func-
tional interactome (i.e., our knowledge of the molecular
mechanisms), rather than the result of the gene set com-
positions. As is well-known, in an interactome, some
hub genes have substantially more neighbours than
others. Gene sets that include a number of hubs may
easily have many inter-gene-set functional interactions
with other gene sets. Therefore, Q2 is used to control
this confounding factor of gene set composition. Q1 and
Q2 are different but complementary tests, both of which
can increase the sensitivity and specificity of GSLA and
can ensure the biological significance of the functional
associations detected between gene sets. The default sig-
nificance cut-offs for GSLA to report a gene set inter-
action are density > 0.01 (Q1) and p < 0.001 (Q2).

The link for GSLA online service is provided in the
web interface of FIC, the functional gene association net-
work of which is used to interpret the functional impacts
of observed SDEG in C. elegans. The main interface is
shown in Fig. 3c. In this instance, we provide five types
of C. elegans gene IDs for users to query SDEG, includ-
ing WormBase ID, gene name, UniProt ID, Ensembl
gene ID, Ensembl protein ID, and NCBI Entrez ID. We
suggest providing SDEG directly in WormBase IDs be-
cause WormBase ID is only recognized by the internal
server. Therefore, all of the submitted IDs will be auto-
matically mapped to WormBase ID before further com-
putation (Fig. 3d). To avoid loss of information during
ID mapping processes, submitting SDEG lists to Worm-
Base ID is better. The criteria of GSLA to report signifi-
cant functional gene associations (Q1 and Q2 tests,
described above) can be optimized by users (Fig. 3c). Be-
fore submission, an email address is needed for the re-
sults. Utilizing the top 50–200 changed genes is
recommended when querying the observed SDEG to ob-
tain optimal functional impact interactions. The analysis
parameters are provided at the top ten lines in the result
file (Fig. 3e). Below these parameters, a table is presented
to show the functionally associated biological processes,
functional associations between genes in reported bio-
logical processes, and the genes in the query SDEG.

Using the FIC/GSLA system to re-analyse the E. coli HT115
diet dataset
E. coli OP50 and E. coli HT115 are two standard labora-
tory diets for C. elegans [31]. E. coli OP50 is the most
commonly used food, while E. coli HT115 is typically

Fig. 2 Assessment of the capabilities of seven interactomes to group functionally associated genes together. The precision-recall curves of gene
function prediction using different interactomes are illustrated. Precision estimates the proportion of correct annotations identified by an
interactome. Recall estimates the proportion of new annotations that is identified by an interactome
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reared in RNAi-mediated gene knockdown experiments.
However, some studies have discovered that E. coli
OP50, as the most common lab diet for C. elegans, will
cause a mild, chronic vitamin B12 deficiency [31, 46,
47]. Therefore, Revtovich et al. performed a variety of
assays and confirmed a diet of E. coli OP50 results in
vitamin B12 deficiency, which disrupts mitochondrial
homeostasis and decreases the host resistance [31].
Feeding C. elegans E. coli HT115 or overexpression of
the B12 transporter improved mitochondrial homeosta-
sis and increased resistance. To further explore the mo-
lecular mechanisms underlying the diet-induced
difference in stress resistance, these researchers per-
formed a genetic analysis to map this phenotype to the

methylmalonyl/succinyl-CoA breakdown pathway, where
vitamin B12 serves as a cofactor for MMCM-1/MUT.
The authors compared the transcriptomic profiles of C.
elegans with different diets, E. coli OP50 and E. coli
HT115 (GEO database, GSE97678). The results of the
microarray analysis showed that the number of differen-
tially regulated genes was relatively small. Only 22 genes
were upregulated in E. coli OP50 (between 2- and 20-
fold). Interestingly, more than half (12 genes) of these 22
upregulated gene-encoded proteins were localized on
mitochondria.
In this study, we used the FIC/GSLA system to reana-

lyse the functional impacts of different diet-induced gene
changes. To evaluate whether the prediction tools can

Fig. 3 Interface of FIC and GSLA. a Two search options in FIC. b Search result page. A right click on the edge and node will show interaction
details. c Interface of GSLA. d Results of a GSLA analysis job
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obtain biological insights from these changed genes of
the microarray data (GEO database, GSE97678) [31], we
performed FIC/GSLA, DAVID [12], and GO enrichment
analysis [44, 45]. As shown in Fig. 5, GO enrichment
analysis reported immune response- and defence
response-related pathways (Additional file 6: Table S5).
Defence response-related GO terms were consistent with
the original publication; however, the authors have
clearly documented that diet-mediated sensitivity is in-
dependent of innate immunity [31]. The term clustering
technology-based tool DAVID reported a total of 43
terms in 7 clusters. Among them, there are 22 GO
terms. The top 5 GO terms (ranked by PValue) included
the biological processes of mitochondrial and acyl-CoA
dehydrogenase-related metabolism that are consistent
with those reported in the original article (Additional file
7: Table S6). For comparison, we also used FIC/GSLA to
annotate the SDEGs (Additional file 8: Table S7). Eight-
een terms covered defence response, mitochondria, and
propionyl-CoA pathways (Fig. 5), which are known to be
the “functional impact” of the E. coli OP50 diet. More-
over, both the DAVID and FIC/GSLA systems reported
fatty acid metabolic processes that are consistent with

the discoveries by Brooks et al. [48]. In addition, GSLA
also found SUMOylation-related biological processes
(Fig. 5). In an independent study, Benedetti et al. indeed
observed that ubiquitin-like protein 5 (UBL-5) positively
regulates chaperone gene expression in response to
mitochondrial unfolded proteins [49]. In this case study,
the interpretation provided by FIC/GSLA is broader and
more accurate, providing new insights for experimental
researchers to explore molecular mechanisms, while
other widely used enrichment-based tools did not pro-
vide similar insights.

Discussion
Before this work, numerous efforts have been made to
build reference interactomes for C. elegans. An accurate
and comprehensive reference interactome may facilitate
the interpretation of gene transcriptional changes to
higher-level biological process changes. To date, many
C. elegans interactome databases have emerged. Some of
these interactome databases, e.g., WormBase [16], Bio-
GRID [24], and IntAct [25], collect experimentally re-
ported molecular interactions. Others, such as
WormNet [17] and STRING [20], provide predicted

Fig. 4 Two hypothesis tests that GSLA used to identify significant functional associations between two gene sets that are biologically meaningful.
Q1 tests whether the density of functional associations between two biologically meaningful gene sets is higher than random gene pairs, while
Q2 tests whether the strong functional associations observed between two gene sets can only be observed from the biologically correct
network, rather than any random interactomes
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molecular interactions. In general, although experimen-
tally reported molecular interactions are considered to
be more accurate than predicted molecular interactions,
the number of molecular interactions reported by exper-
iments is too low. Based on our estimated size of the C.
elegans interactome, which is 1.42 × 105, the WormBase
interactome database that provides experimental mo-
lecular interactions shows the highest coverage with
sizes up to 10.35%, which represents 17.15% of the C.
elegans protein interactome. In fact, due to the false
positive experimental molecular interactions, the cover-
age of the WormBase database will be lower than
10.35%. Such a low coverage may provide limited sup-
port for researchers to explain molecular mechanisms
during their research. In contrast to the databases with
experimental interactions, the databases with predicted
molecular interactions may present a high coverage of
the true C. elegans protein interactomes. STRING is a
widely used interactome that contains a large number of
predicted interactions. In C. elegans, STRING presents
31.89% of predicted interactions, which cover 31.89% of
the protein interactome. However, these predicted inter-
actions often have a very high false positive rate, and
only 3.46% of them are expected to represent protein in-
teractions. Compared to the currently widely used inter-
actome databases, our newly developed FIC interactome
shows better performance with balanced coverage and
reliability (21.42% coverage and 29.25% reliability if eval-
uated as a protein interaction network). In conclusion,
FIC is a high-quality reference protein interaction net-
work used to analyse functional gene interactions.
Our high-quality FIC enables GSLA for the interpret-

ation of the observed SDEG in C. elegans. FIC has both

a high-precision and high-coverage functional interac-
tome, which helps GSLA to report significant functional
associations between gene sets. The assessment of GSLA
evaluates the density of functional gene associations be-
tween individual genes in two gene sets. The interac-
tome of FIC with balanced accuracy will facilitate the
successful application of this strategy, while previous
interactomes did not satisfy this requirement. We
assessed the GSLA interpretation of FIC compared to
other interactomes, and FIC showed the best perform-
ance (data not shown). The same observation was made
when we previously developed high-quality functional
interactomes for humans and Arabidopsis.
As mentioned in the introduction, the FIC/GSLA sys-

tem can interpret the potential functional impacts of the
observed SDEG of C. elegans. Therefore, the FIC/GSLA
system extends the availability of current enrichment-
based tools to summarize SDEG into known biological
processes. In some cases, even when no established bio-
logical concept can accurately explain the observed
SDEG, the FIC/GSLA system may still be able to inter-
pret the observed gene transcriptional changes and to
connect the related physiologies. Moreover, the func-
tional association resource provided in FIC is a useful
reference for researchers to elucidate the molecular
mechanisms of their genes of interest.

Conclusions
Thus, predicted FIC is a reliable and high-quality re-
source for querying functional associations between
genes of C. elegans, as it can help researchers understand
the molecular mechanisms of certain genes. Based on
the functional gene association network of FIC, GSLA

Fig. 5 Functional interpretations produced by FIC/GSLA. Compared to GO enrichment analysis and DAVID, the annotations produced by GSLA
are more comprehensive and more accurate
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was developed to facilitate the interpretation of potential
functional impacts from the observed differentially
expressed genes, especially when no established bio-
logical concept is available to describe the observed
SDEG. A case study of the FIC/GSLA system shows that
the reported annotations are more comprehensive and
concise annotations compared to the other widely used
annotation tools, including PANTHER and DAVID.
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