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Abstract

clonality for known cancer genes.

Intra-tumor heterogeneity reflects cancer genome evolution and provides key information for diagnosis and
treatment. When bulk tumor tissues are profiled for somatic copy number alterations (sCNA) and point mutations, it
may be difficult to estimate their cellular fractions when a mutation falls within a SCNA. We present the Clonal
Heterogeneity Analysis Tool, which estimates cellular fractions for both sSCNAs and mutations, and uses their
distributions to inform macroscopic clonal architecture. In a set of approximately 700 breast tumors, more than half
appear to contain multiple recognizable aneuploid tumor clones, and many show subtype-specific differences in

Background

It has been recognized for nearly 40 years that cancer is
a dynamic disease and its evolution follows a classical
Darwinian process [1,2]. After the proposal of the two-
hit model of oncogenesis [3], and especially after the dis-
covery of the linear progression from benign polyps to
colorectal cancer via a series of mutational events [4,5],
it was briefly envisioned that cancer could be understood
in most cases by simply finding the small number of
events that act sequentially to drive step-wise clonal se-
lection. However, initial efforts to sequence most coding
genes in tumor DNA revealed remarkable heterogeneity
between tumors in each cancer type examined [6-9]: typ-
ically, very few (<10) genes are mutated in >10% of
tumors, but many (40 to 80) are mutated in 1% to 5% of
tumors. Further, heterogeneity in cancer could manifest
on other levels: not just among different patients, but
also among tumors of different grades or organ sites in
the same patient, as well as among different cells within
a tumor [10,11]. Heterogeneity at any of these levels
could confound diagnosis and treatment, and underlie
the inherent evasiveness of this disease. Most genomic
analyses to date, notably those led by the Cancer Gen-
ome Atlas (TCGA) Research Network [12-15] and the
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International Cancer Genome Consortium (ICGC) [16]
have focused on inter-tumor heterogeneity. These studies
analyze hundreds of tumors per cancer type, relying on
bulk tissue samples, usually for one sample per patient.
The data were primarily interpreted by regarding each
tumor as a single population of cells with uniform char-
acter. Despite the inherent limitation of this assump-
tion, as shown by the widely reported tumor-normal
mixing [17-19], large-scale inter-tumor comparisons
have led to important new insights into significantly
mutated genes [12,13], recurrently perturbed pathways
[20], mutation signatures [16,21], tumor subtypes [22,23],
molecular predictors of outcome, and commonalities or
distinctions among different cancer types [24]. However,
these studies are not designed to adequately investigate
intra-tumor heterogeneity. Ultimately, cancer genome
evolution takes place at the single-cell level, and it is the
cellular complexity and its dynamics that give rise to both
intra- and inter-tumor heterogeneity. Currently, cytogen-
etic methods are of low throughput and often cannot
assure representative sampling. And the cost of single-cell
sequencing [25-28] remains prohibitively expensive for all
but the proof-of-concept studies. Under such constraints,
many groups have surveyed intra-tumor heterogeneity
by comparing multiple specimens from the same patient
by longitudinal sampling or spatial sampling (mainly for
solid tumors). Almost invariably, analyses of longitudinal
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samples have uncovered dramatic temporal changes of the
cancer cell population that often correlate with disease
progression, severity, and treatment resistance [29-32].
Similarly, multi-region comparisons have revealed exten-
sive genomic variability across different geographic sectors
of the tumor [33,34], or between the primary and meta-
static tumors [35]. These studies, while using samples
collected with a higher spatial or temporal resolution
than those in TCGA and ICGC, often still contain hetero-
geneous populations of cells [35-37].

Fortunately, while bulk tissue data describe the global
average of multiple subpopulations of cells, it is some-
times possible to statistically infer the number and gen-
omic profile of such subpopulations. For example, when
a sample is sequenced deeply, the somatic mutation fre-
quencies sometimes cluster around a small number of
distinct frequency ‘modes’ [38,39], suggesting that som-
atic mutations of similar frequencies may reside in the
same population of cells and these cells may have des-
cended from the same founder cell. For this reason,
these mutations are said to belong to the same ‘clone’ or
‘subclones; the latter referring to a clonal population of a
relatively small cellular fraction. This inference task,
essentially a deconvolution problem (or Blind Source
Separation Problem), presents many analytical challenges,
since both the number of subclones and the genomic pro-
file of each need to be estimated simultaneously, and som-
atic copy number alterations (SCNAs) and somatic single-
nucleotide variants (SN'Vs) often reside in the same region
yet have unknown phase or genealogical order. Currently
available methods often need to invoke simplifying as-
sumptions and often focus on a subset of the issues. For
example, ABSOLUTE [40] uses sCNA data to estimate the
global mixing ratio of aneuploid and euploid cells, but
only under a tumor-normal, two-population assumption,
which involves a single tumor population of full clonality.
When a sCNA or SNV is subclonal, ABSOLUTE makes
the qualitative designation of ‘subclonal’ without quantita-
tively estimating the clonality. Other methods also invoke
other types of compromises, and we will defer the descrip-
tion of these limitations to the Discussion.

In this work, we developed Clonal Heterogeneity Ana-
lysis Tool (CHAT) as a general framework for estimating
the cellular frequencies of both sCNAs and SNVs. It is
suitable for analyzing genomewide SNP genotyping and
DNA sequencing data for tumor-normal pairs (Figure 1).
CHAT begins by identifying regions of sCNA or by parti-
tioning the genome into bins; and for each sCNA or bin,
it estimates a local mixing ratio, called segmental aneu-
ploid genome proportion (SAGP), between a euploid
population and a single aneuploid population carrying
the local CNA. The assumption of local two-way mixing
does not imply there are only two cell populations glo-
bally. It is akin to the infinite-site model in population

Page 2 of 23

Tumor and Normal DNA

= SNP genotyping or * DNA sequencing
sequencing v
Allele- .
. somatic
specific copy .
mutation
number
bins v
somatic
allele
frequency

sAGP, n,, n,
]

CCF

\ 4

macroscopic structure,
joint distribution of SAGP and CCF,
clinical subtype difference,

Figure 1 Schematics of CHAT pipeline. Tumor and Normal DNA
samples are profiled for allele-specific copy number alterations by
SNP arrays and somatic mutations by DNA sequencing. Gray texts
and broken arrows (in the upper portion of the figure) indicate input
data. CHAT offers two options to partitions the genome: by naturally
identified sSCNAs or by predefined bins. It then estimates sAGP for
each partition (left side). Inference of CCF and timing-phase scenarios
relies on sAGP of sCNA, copy number configuration (np, ny), and SAF of
the mutation (right side). CCF and sAGP can be used in a wide range
of downstream analyses (bottom).

genetics, stating that each locus experienced only one
copy number alteration, without a second over-riding
alteration or the reversal to the original germline state
(that is, back mutation). After calculating SAGP for every
sCNA in the tumor, CHAT estimates the cellular preva-
lence of SNVs (also called cancer cell fraction, or CCF,
as in [32]) by adjusting the observed somatic allele
frequency (SAF) from sequencing data according to the
background copy number status, while also considering
the sCNA clonality (sAGP), the relative order of occur-
rence between the SNV and its associated sCNA, and
their cis- or trans-relationship. Through simulation we
show that CHAT performs well in quantitatively recover-
ing sSAGP, CCEF, and the underlying evolutionary scenario.
We also show that it estimates CCF more accurately than
EXPANDS and PyClone in most scenarios and CNA
states. We have applied CHAT to calculate sAGP for
sCNAs, and CCF for SNVs, across 732 human breast
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tumor samples previously analyzed for inter-tumor di-
versity by TCGA [14] (Materials and methods, Data ac-
cess and sCNA identification), and we will present two
vignettes of the results. Lastly, we discuss the model
identifiability issue and compare the theoretical features of
CHAT with that of several similar methods.

Results

Estimation of sAGP for sCNAs

The simplest form of intra-tumor heterogeneity is normal
cell ‘contamination; that is, mixture of aneuploid cells in
the tumor with euploid cells in the surrounding normal
tissue, the latter carrying the full and balanced set of chro-
mosomes found in germline DNA. In our previous work
[18], we developed a method to calculate the overall frac-
tion of the tumor cells, termed Aneuploid Genomic Pro-
portion (AGP), assuming the global mixing of a tumor
and a normal population. In brief, allelic intensity data
from SNP genotyping arrays (or DNA sequencing) pro-
vide copy number information of the two parental chro-
mosomes: n, and n,. Since n, and n;, are both integers,
the logarithm of total intensity ratio, LRR ~ log(n, + ny),
and the observed B allele frequency, BAF = n,/(n, + ny,),
adopt a finite number of discrete BAF- LRR combinations
for different CNAs, and reside in ‘canonical positions’ in
the BAF-LRR plot. When aneuploid cells are mixed with
euploid cells, logR-BAF positions of tumor sCNAs ‘con-
tract’ towards the euploid position; and different mixing
ratios result in different degrees of contraction. Based on
this feature we can quantitatively estimate a genome-wide
tumor mixing ratio [18]. Our algorithm relies on the same
type of information, and shares the same goal, as several
other methods (for example, ASCAT and ABSOLUTE)
[17,40]. All of these methods assume that there is a single
tumor population and use the combined information from
all CNAs.

However, intra-tumor heterogeneity may also manifest
as the co-existence of multiple tumor cell populations,
each with its own copy number profile [41]. One ex-
ample is shown in Figure 2A, where the sCNA segments
marked in red show stronger contractions to the diploid
track, for both LRR and BAF, than those marked in
black; whereas those marked in green show even stron-
ger contractions (Figure 2A and B). As mentioned above,
since all the sCNAs in black have similar cellular frac-
tion values, we may infer the existence of a subclone, de-
fined as a subpopulation of cells carrying the same set of
events (the ‘black’ sCNAs) due to their descent from a
common ancestor tumor cell. This is the most parsimoni-
ous explanation why different somatic events in the gen-
ome could reach the same frequency. Meanwhile, another
set of events, such as those in red, show a different cellular
fraction values, suggesting the existence of a second sub-
clone. Note that a subclone may be nested in a parental
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clone, and carry the events that are ‘older’ and of higher
frequency. These ‘parental events’ may be shared between
two sibling clones, each carrying its own unique set of
newer events. Thus the sibling clones are disjoint (that is,
non-overlapping) population of cells even when they share
some events by common descent. Since the sCNA seg-
ments with different mixing ratios are interspersed along
the genome, this regional variation of clonality motivates
us to extend the earlier concept of genome-wide AGP to a
new, segment-specific measure: SAGP.

A previous method [41] has attempted to simultan-
eously estimate the number of subpopulations, the copy
number profile for each, and their mixing ratios. This
deconvolution problem can be solved, in principle, via
a general convex optimization algorithm, but in prac-
tice it is limited by computation burden, which in-
creases quickly for more than several dozen events or
more than three to four populations. Our method takes
an alternative approach: CHAT estimates the mixing
ratio for each sCNA (or bin) separately, postponing the
question as to which events might belong to the same
subclone by virtue of clustering around a similar sAGP,
and how many subclones there might be. Thus, CHAT
decouples the inference of local sAGPs from the subse-
quent clustering of SAGP, and is vastly more efficient:
its computation time scales linearly with the number
of sCNA events and there is nearly no time penalty
when needing to consider an increasing number of
subpopulations.

The estimation of sAGP follows a similar approach as
estimating the global AGP [18], relying on the degree of
contraction of each sCNA (Figure 2B, Materials and
methods, sAGP inference). The method has the implicit
assumption that at each sCNA the mixing involves only
two populations, one of which is euploid. This assump-
tion is largely satisfied when the somatic genome has
experienced relatively sparse copy number changes,
without global doubling or multiple rounds of complex
local aberration. In effect, it assumes that, even though
different sSCNAs in the genome may belong to multiple
populations of aneuploid cells, at each sCNA region
there is only one aneuploid state that is mixed with the
euploid state. As such, sAGP is a local quantity inferred
for each sCNA, and is naturally assigned zero in regions
with no sCNA. The input can be either SNP array data or
sequencing data as long as there is a sufficient density of
sites with allele-specific copy number data. At this step
there is no need to determine if a SCNA is clonal or sub-
clonal. Also of note is that in ABSOLUTE [40], subclones
CNA events were described by a global purity value and a
real-valued copy fraction (not an integer copy number). In
contrast, CHAT explicitly models the mixing of a euploid
population and an aneuploid population, involving a real-
valued local mixing ratio and integer copy numbers.
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Figure 2 Example of intra-tumor heterogeneity (breast tumor sample TCGA-A1-A0SD). (A) BAF and LRR tracks for binned segments,
showing different levels of contraction along the genome. Segments shown in the same color (black, red, green) have similar cellular fractions,
and each may represent events in the same clonal population. (B) BAF-LRR plot for the same sample, showing different levels of contraction
for segments of different colors. (C) MCMC fitting of sAGP distribution supports three modes, with peaks around sAGP =0.5, 0.4, and 0.2. The
distribution of SAGP is indicated by the light blue histogram, while the fitted three-Gaussian density is shown in dark green.

Macroscopic clonal structure
Before describing the next step in CHAT - using sAGP and
the observed SAF values to estimate CCF - we introduce
an important downstream inference based on the genome-
wide distribution of SAGP values. When there are a suffi-
cient number of sCNAs or bins covered by sCNA, CHAT
produces a sufficient number of SAGP values; and their
distribution could inform the clonal structure of the tumor.
First, for some tumors the sSAGP histogram may contain a
single peak, potentially accompanied by a flat (nearly uni-
form) background distribution. This pattern can arise in a
tumor containing a single clone that cover a large fraction
of the sCNA-bearing portion of the genome, potentially
with many other clones that cover much smaller portions
of the genome and they are undiscernible in the sAGP
spectrum. Second, for other tumors the histogram may
follow a multi-modal distribution, representing a num-
ber of distinct clusters of somatic events, each with a
different SAGP, with each cluster covering a comparable
portion of the genome as to be recognizable in the
histogram (an example is shown in Figure 2C).

In all, there are three attributes of each sSAGP histogram.
(1) The number of the identifiable modes corresponds to

the number of identifiable cell populations. (2) The pos-
ition of each mode denotes the cellular frequency of the
sCNAs in each cluster, and reflects the clonality of the cell
populations carrying these sCNAs. The right-most peak
represents the sSCNAs with the highest sAGP values; and
they suggest the existence of a population of cells with the
highest cellular fraction in the tumor. This population is
typically called the dominant clone. The peaks to the left
represent SCNAs with lower sAGP values and they are
carried by populations of cells with lower cellular frac-
tions. These populations are often called subclone 1, sub-
clone 2, and so on, but they may be nested within the
dominant clone, and also carry the sCNAs in the right-
most peak. (3) The areas under the peaks reflect the num-
ber of the sSCNAs, or the regularly spaced bins, that belong
to each peak. Note that the right-most peak may not have
the largest area, thus the dominant clone may not carry
sCNAs that cover the widest portion of the genome.
There are at least two ways to define the spatial unit
in the sAGP analysis, and CHAT provides both options
(Materials and methods, Data access and sCNA identifica-
tion). The first is to calculate SAGP for regularly spaced
bins, either for a fixed window width or for a fixed number
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of SNPs. The resulting SAGP values resemble the conven-
tional genetic ‘markers’; and each tumor has a guaranteed
number and density of such markers to construct the sSAGP
histogram, which is interpreted analogously to the allele
frequency spectrum in population genetics studies. How-
ever, the bins do not match the naturally occurring sCNAs,
which are highly variable in lengths, from tens of kb to en-
tire chromosome arms. The sCNAs shorter than the bin
width would have their true sAGP values ‘diluted’ by flank-
ing euploid segments in the same bin; whereas those longer
than the bin width would generated a string of correlated
sAGP values as the same sCNA is artificially divided into
multiple adjacent bins, thus violating the assumption that
sAGPs are independent. In the second option, CHAT will
apply the identified SCNA as the naturally occurring spatial
unit for sSAGP calculation. While this has the advantage that
all SAGPs are truly independent, there are two disadvan-
tages. First, the longer (or shorter) sSCNAs provide more (or
less) precise estimates of SAGP, but this information of con-
fidence was discarded, as it is also the case in [41]. Two,
there will be large tumor-tumor variations in the number
of sCNAs, and some tumors may not have enough sCNAs
to construct an informative histogram for estimating clonal
composition. In short, the per-bin sAGPs (option 1) are de-
rived from segments of similar length and have similar con-
fidence intervals - they are identically distributed but not
independent random variables. Conversely, the per-sCNA
sAGPs (option 2) are independent, but are not identically
distributed due to varying lengths. Rigorously speaking,
neither is suited for analyzing macroscopic clonal archi-
tecture but can be applied in exploratory analysis, espe-
cially when there is no other data type such as the SNVs
(see below).

When the primary goal of using CHAT is to accurately
estimate CCEF, which relies on accurate sAGP values, the
user is advised to calculate sAGP using sCNAs as the
spatial unit rather than the bins. Alternatively, when the
primary goal is to explore clonal composition of a tumor,
and if there are too few sCNAs and if most of them are
very large, it is beneficial to increase the number of in-
formative features, just as the detection of population
stratification requires many ancestry informative markers.
Here the user may choose regularly spaced bins to in-
crease the number of available sAGPs. In fact, when
sCNAs are few and large, it is more advisable to collect se-
quencing data; and if the mutation rate is high and/or the
entire genome is sequenced (as opposed to small tar-
geted regions), the number of SNVs may exceed that of
sCNAs, and it is better to rely on the CCF histogram to
estimate clonal structure. CCF distributions have the
important advantage of meeting the condition of inde-
pendent and identically distributed variable. Ultimately,
the best approach is to integrate the sAGP and CCF dis-
tributions in estimating clonal structure.
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CHAT fits the uni-modal pattern with a maximal likeli-
hood framework, and the multi-modal pattern using a
Bayesian Monte-Carlo Markov Chain (MCMC) approach,
with Dirichlet Process prior to estimate a hierarchical
Gaussian mixture model [42]. The approach is similar to
those introduced in [32,38,39,43]. Details are provided in
Materials and methods, Statistical modeling to infer
macroscopic clonal structure. Model selection is based
on the Bayesian Information Criterion (BIC) [44]. In
Discussion we will further interpret the uni-modal and
multi-modal patterns in terms of the likely evolutionary
dynamics and the relationship to classic concepts such
as punctuated equilibrium [45] and episodic evolution.

Estimating cell fractions of somatic mutations

Nature of the problem

The next step of CHAT turns from estimating sAGP
of sCNAs to estimating the frequency of cells carrying
a specific mutation, that is, single nucleotide variant
(SNV) or small insertion/deletion (indel). Here the method
addresses the case where the tumor DNA has been se-
quenced, either for the whole genome or for a targeted
subset, such as the exome. The input of the analysis is the
observed number of reads in the sequence data containing
the mutation as well as those containing the un-mutated
allele. The relative fraction of mutation-bearing reads is
termed somatic allele frequency (SAF). Following [32], we
adopt CCF to denote the percentage of cells in the tumor
sample carrying a specific somatic mutation. CCF is also
termed cellular prevalence in [43]. The task is to use the
observed SAF to estimate the unknown CCF.

If the mutation resides in a normal diploid region, it
typically occurs on the background of one of the two
parental chromosomes, contributing to about half the
sequence reads in this region. In this simple case, as
the fraction of cells carrying the mutation is CCF, the
expected fraction of sequence reads carrying the muta-
tion, SAF, is simply a binomial variable with an expected
value of CCF/2. We therefore can estimate CCF by
SAF x 2. However, if the mutation resides in a sCNA,
the relationship between CCF and SAF depends on the
copy number configuration (for example, copy neutral
loss of heterozygosity (CN-LOH), deletion, amplification,
and so on) and its SAGP. Further, it also depends on the
chromosomal background in which the mutation occurs.
For example, in a region of heterozygous amplification
where one of the chromosomes has been duplicated,
if the mutation occurs on the duplicated chromosome,
it will contribute twice the number of sequence reads
than the case where it occurs on the un-duplicated
chromosome. Lastly, if the mutation occurs after the du-
plication has happened and the duplication-bearing
clone is undergoing expansion, only a subset of the
duplication-bearing cells will carry the mutation, and the
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relative size of this subpopulation can be any value in 0
to 100% and will also affect the relationship between
CCF and SAF. In the following we systematically con-
sider these possible scenarios. We will make the parsi-
monious assumption that each mutation only occurred
once in the evolutionary history of the tumor cell popu-
lation, therefore we will ignore the possibility of recur-
rent mutation at the same position, or simultaneous
emergence of the same mutation is different subpopula-
tions of cells. We will treat SN'Vs and indels equally, and
use the term ‘mutation’ to denote both.

Order-phase scenarios between sCNA and SNV

For a somatic mutation revealed by tumor DNA sequen-
cing, with an observed SAF value, we consider the task
of estimating CCF if this mutation resides in an sCNA,
and the sCNA has been discovered by either SNP array
genotyping data [17,40] or by sequencing data [32,38].
We assume that the SCNA has been well characterized,
such that we already know n, and n;, the copy number
of its major and minor alleles, respectively, that is, n, > ny,
and n¢ = n, + ny, is the total copy number. We also assume
that its SAGP has been calculated using the method de-
scribed above, and that SAF has been corrected for known
sequencing errors and local biases [21,46]. Below we
present the CCF estimation procedure for the case of
heterozygous amplification (n, =2, n, =1). The two other
common sCNA types, heterozygous deletion (n, =1, n;, =0)
and CN-LOH (n, =2, n, =0), are described in Materials
and methods, CCF estimation and scenario identifiability
for CN-LOH and deletion.

When a mutation resides in a sCNA region, there are
three main scenarios that describe the possible mutation-
sCNA combinations in terms of their relative temporal
order and the chromosomal background of the mutation
(Figure 3):

A. The mutation and sCNA emerged sequentially, with
the mutation occurring first, and the sCNA
occurring in a subset of mutation-bearing cells
(Figure 3A). This led to the co-existence of three
subpopulations: the original euploid mutation-free
cells, with the population fraction of r¢; cells carrying
the mutation only, with a fraction of ry; and cells
carrying both the mutation and the sCNA (r,). The
last subpopulation has two alternative outcomes:
A;: the duplication occurred on the mutation-bearing
chromosome, and A,: the duplication occurred on the
mutation-free chromosome. Intuitively, A; will have
higher SAF than A, with the same (ro, 13, r5) fractions.

B. Like A, the mutation and sCNA emerged
sequentially; but unlike A, the sSCNA occurred
first, with the mutation occurring in a subset of
sCNA-bearing cells (Figure 3B). Again we have three
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Figure 3 Lineage scenarios for a mutation that fall in a region
of heterozygous amplification. In scenario A;, the mutation
(yellow star) occurred before the amplification, which doubled
the mutation-bearing chromosome (shown in green). The three
illustrated populations have fractions of ro, ry and r,, which sum up
to 1. Ay is similar to A,, except that the un-mutated chromosome
(in orange) was doubled. For scenario B, the amplification happened
first, and the mutation occurred either on the amplified (B4) or
the unamplified (B,) allele. For scenario C, the mutation and the
sCNA occurred on independent lineages, and the amplification
affects either the same (C4) or the opposite chromosome (C5) as
the mutation. Blue arrow: mutation occurrence; red arrow: SCNA
occurrence.

subpopulations: the original cells (r), cells carrying
only the sCNA (r;) and those carrying both (ry). The
last subpopulation has two alternatives: mutation
occurring on one of the duplicated chromosome
(By) or the un-duplicated chromosome (B,).

C. The mutation and sCNA emerged independently,
that is, appearing in non-overlapping populations of
cells (Figure 3C). This also led to three subpopulations:
the original cells (ro), cells carrying only the mutation
(r1) and those carrying only the SCNA (r,). Note that
we do not consider the fourth population that carries
both the mutation and the sCNA. This outcome would
require that the mutation occurred twice, once in the
original cells and again in the sSCNA-bearing cells. Or it
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requires the SCNA to occur twice. Under the Maximal
Parsimonious assumption, recurrent appearance of the
same mutation or the same sCNA is highly unlikely in
the same tumor.

The three scenarios outlined above covered all the pos-
sible mutation-sCNA combinations for one-copy amplifica-
tion without recurrence. In Additional file 1: Figure S1 and
Materials and methods, CCF estimation and scenario iden-
tifiability for CN-LOH and deletion, we show that hetero-
zygous deletion and CN-LOH involve similar scenarios A,
B and C, and each leads to a similar set of three subpopu-
lations as described by rg, ry, and ry, with rg + 11 + 1, = 1.

CCF as a function of sAGP, SAF and the underlying scenario
When the (n,, n,) configuration and evolutionary scenario
is known, CCF can be estimated from: (1) the pre-
estimated sAGP of the sCNA (denoted p hereafter for
simplicity) on which the mutation occurs; and (2) the ob-
served allele frequency, SAF, of the somatic mutation (de-
noted f hereafter). In the following we derive the CCF
estimation procedure for heterozygous duplication (n, =2,
n, =1), and leave CN-LOH (n, =2, n, =0), and deletion
(ny =1, n, =0) to Materials and methods, CCF estimation
and scenario identifiability for CN-LOH and deletion.

For amplification, in scenario Aj, n, =3, the average total
copy number 1, =2 x (1 - p) + n,x p =2 + p. The SAGP p =r.
The SAF f= (ry + 2r,)/(2 + p). This led to the expression
r1=fx (2 + p) - 2r,. Since CCF =r; + rp, we have

CCFA] (f, nbyntap) :f X (2+p)—}"2
=fx(2+p)-p (1)

In A,, the situation is similar to A; except that f=
(ry+12)/(2+p). This led to r; =fx (2 + p) - ry, and

CCF(f, np, e, p) = f % (2+p) (2)

In B, and B,, the SAGP: p = r; + 1. The SAF: f=r,/(2 + p).
This led to 7, = fx (2 + p). Since CCF = r,, we have

CCFB(f? nbantvp) =fx (2+p) (3)

In C; and C,, the SAGP: p = r,. The SAF: f=r1/(2 + p).
This led to r; =fx (2 + p). Since CCF =ry, we have

CCFC(fa I’lb,”lt,p) =f x (2 +p) (4')

Note that equations (2), (3), and (4) are identical. Thus
even if we do not know how to distinguish among scenarios
A,, B, and C, CCEF still has the same dependency on sAGP
and SAF, and can be estimated as long as we can recognize
A; and A,/B/C. Thus CCF identifiability is easier to achieve
than scenario identifiability.

Similar expressions for CN-LOH and deletion are pre-
sented in Materials and methods, CCF estimation and
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scenario identifiability for CN-LOH and deletion. In
the general copy number configuration of n, and ny,
for scenarios A;, Ay, B, and C we have

CCFAl(f7 Hp, B, p) = Ny X f—p X Hy +p (5)
CCFAZ(f, Hp, By, p) = N X f-p X np+p (6)
CCFB/C(f7 Hp B, p) = 1 X f (7)

with 1, =2 x (1 - p) + n, x p, is the averaged copy number
at the locus.

Thus, for a given pair of mutation and sCNA, with
known SAF and sAGP values, once we know which
scenario applies we can use Equations (1), (2), (3),
(4), (5), (6), and (7) to estimate CCF. The variance of
CCF estimates can be calculated as in Materials and
methods, Variance of CCF. In the following we turn
to the question of how to determine which scenario
applies.

Joint distribution of (p, f) and scenario identifiability

By definition, f and p are both bounded by (0,1). In any
tumor, however, the possible range of f is constrained
by p as well as by the sCNA type and the individual sce-
narios. For example, in scenario B of amplification, the
mutation occurs in a subset of sSCNA-bearing cells, thus
fis always less than p (in this case it is always less than
0.5 p). As we show below, the attainable joint distribu-
tions of (p, f) differs among different scenarios and, im-
portantly, this offers the possibility to infer the most
likely scenario for a given sCNA-mutation pair based
on their observed (p, f) values. Further, some ‘zones’ of
the (p, f) space overlap with multiple scenarios, thus if
the observed (p, f) fall into these zones, it is impossible
to unambiguously identify the exact evolutionary sce-
narios. Even then, however, because different scenarios
sometimes have the same expression of CCF as a func-
tion of (p, f), CCF may still be uniquely estimated. In
the following we derive the scenario-dependent (p, f)
joint distributions using heterozygous amplification as
example.

In A;, for a given p, the observed f of the mutation
depends on the relative abundance of the ro and r;
populations (Figure 3). When ry =0, the mutation oc-
curred so early that all the diploid cells carry the muta-
tion and belong to the r; subpopulation. r; =1 - p, and
freaches its upper limit:

Alzl—p+2xp:1+p
L ny 24+p

(8)

where 1, =2 x (1 - p) +3 x p, is the averaged total copy
number for the sSCNA. On the opposite end of the situ-
ation is r; =0, when the sCNA occurred immediately
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after the mutation such that none of the diploid cells
carries the mutation. The lower limit of SAF is reached:

%
= (9)

If we plot the possible (p, f) combinations in an p-f
plot with f on the vertical axis, under scenario A;, the
observed f is bounded by (2p/(2+p), (1+p)/(2+Dp)),
where p € (0, 1), forming the zone marked A; in
Figure 4A.

For A,, we similarly obtain:

4 l-p+p 1

— = 10
h n, 2+p (10)
A2 p

L o4p (11)

The observed ffor A2 is bounded by (p/(2 + p),1/(2 + p)).
For B, f depends on the relative abundance of the r;
and r, populations, and the expressions are
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For C, the upper limit of f is reached when ry=0,
ri=1-p, and

1-p  1-p

C

S m 24p (14)
fi =0 (15)

The f'is bounded by [0, (1-p)/(2 + p)].

The results for CN-LOH and deletion are described in
Materials and methods, CCF estimation and scenario
identifiability for CN-LOH and deletion, and shown in
Figure 4B and C.

To state the full estimation procedure: when (f, 1, n;, p)
are known for a mutation-sCNA pair, if the (p, /) combin-
ation identifies a unique scenario according to Figure 4,
CCEF is calculated using Equations (5), (6), and (7). If the
(p, f) combination overlaps with multiple scenarios, CCF
may still be calculated if the expressions are the same
across the undistinguishable scenarios. Lastly, when the
CCF expressions are different among the applicable sce-
narios, CCF cannot be uniquely determined, however its
two or more possible values can still be obtained as valid
alternatives. In implementation, as SAF is a random vari-

B_P _ P
fn= 2+ » (12)  able with confidence level depending on read depth, there
is always uncertainty as to which scenario the observed
ff -0 (13) (p, /) belongs. We formally calculate the probability of
each scenario as described in Materials and methods,
Thus fis bounded by [0, p/(2 + p)]. Probabilistic scenario identification.
N
A B C
n=3,n,=1 n=2,n,=0 n=1,n,=0
o | = e
— A
—_ A
— 8
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o o o
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Figure 4 Identifiability zones in sSAGP-CCF space, for amplification (A), CN-LOH (B) and deletion (C), with up to four scenarios described
in the main text. Theoretically permissible areas of SAGP-CCF for different scenarios are marked by borders of different colors, and labeled with a
single letter (such as ‘A;") for uniquely occupied zones, and by two or more letters (‘A;/C’) for overlapping zones. Regions of light gray support a
unique CCF expression, whereas the regions of dark gray cannot unambiguously estimate CCF. The density contours (in orange) depict the
distribution of 3,382 mutations in amplification regions (A), 2,008 in CN-LOH, and 4,662 in deletions representing 201 breast tumor samples with
least data loss in SAGP estimation. Variants with coverage lower than 20 or SAF smaller than 0.05 were discarded. Only a very small portion of the
mutations fall outside the theoretically predicted zones. Among the rest, approximately 48% belong to a unique scenario, but approximately 93%
have a unique CCF estimation.
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Validation, implementation, and performance

To assess the performance of CHAT we simulated sCNA
and SNV data for a range of copy number configurations,
sAGP values, evolutionary scenarios, and CCF values.
Details of the simulation procedures were described in
Materials and methods, In silico validation and compu-
tation performance. For sCNAs, we evaluated the per-
formance by reporting: (1) percent of cases of mistaken
estimation of SCNA configuration (error in either ny or
n,) (Figure 5A, top row) for dominant and minor clonal
events; and (2) the median absolute deviation of the esti-
mated sAGPs from the known sAGP values for the dom-
inant and minor clones, for either the segments with
correct (ng, ny) identification (Figure 5A, middle row),
or all segments (Figure 5A, bottom row). With all of
these performance metrics, the errors are the largest
when the clonal or subclonal sAGPs are small. The
overall errors are small in most situations, suggesting
that CHAT worked well in recovering the sAGP, ny, and
n, values. For SN'Vs, we compared the estimated and the
true CCF values in Figure 5B. Across all cases with dif-
ferent coverage and sCNA subclonal parameter settings,
the Spearman’s rank correlation coefficient between the
known and the estimated CCF values was in the range
of 0.946 to 0.97, indicating that CHAT makes accuracy
CCF inference. To compare performance among SNVs
in different sub-categories, we separated those falling in
euploid regions from those in sCNAs, and for the latter,
separated those in the major and minor subclone
events, and those in different copy number status. As
shown in Figure 5C, the error rates are similar across
these sub-categories, not affected by dominant/minor
clonal events or different SCNA types.

CHAT is written in R [47] and available as a CRAN
package. It can use SNP array-based copy number
data and sequencing-derived mutation data, or can
use sequencing data as a single input source. It
is computationally efficient, taking approximately 1
CPU-hour to analyze every five tumor-normal sam-
ples profiled with 850 K SNPs genotying and exome
sequencing at 30x (Materials and methods, Computa-
tional requirements).

Comparison with previous methods

We compared CHAT with two other methods, EX-
PANDS and PyClone, that also estimate cellular frequen-
cies for somatic mutations. We simulated 488 mutations
that reside in sCNA regions and correspond to different
linear scenarios and copy number states (details de-
scribed in Materials and methods, Comparison with EX-
PANDS and PyClone). Figure 6A, B, andC plots the CCF
estimated by the three methods against the true CCF
used to simulate the observed read counts. CHAT-based
estimates have the highest correlation with the true CCF
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(Pearson’s r =0.96), followed by PyClone (r =0.94) and
EXPANDS (r =0.70). As the four lineage scenarios were
distinguished by different symbol colors, it can be seen
that PyClone underestimates CCF in scenarios A; and
A, (Figure 6B), likely due to the assumption that muta-
tion and sCNA always co-occur. PyClone performs simi-
larly to CHAT in scenarios B and C. Like PyClone,
EXPANDS also fails to consider the sCNA-free cells
carrying the mutation, thus underestimates CCF in sce-
narios A; and A,. EXPANDS overestimates CCF in B
and C (Figure 6C) because it ignores B and C by apply-
ing A; or A, instead. To assess the impact of CNA sta-
tus we further stratified the simulated mutations by
individual combinations of lineage scenarios and CNA
states, including deletion (genotype A/B), copy-neutral
LOH (AA/BB) and amplification (AAB/ABB) (Figure 6D).
PyClone actually has a slight underestimation in scenario
B for CN-LOH and amplifications. The overestimation
by EXPANDS in scenario C only occurs for deletions
and amplifications. Overall, CHAT has the least bias and
least variance in most combinations. Moreover, CHAT is
the most efficient. It took CHAT approximately 1 s to
analyze the 488 somatic mutations. EXPANDS needed
732 s, and PyClone took 4,320 s.

Application to human breast cancer

We applied CHAT to estimate sAGP for sCNAs identi-
fied using Affymetrix 6.0 single nucleotide polymorph-
ism (SNP) array data for tumor and germline DNA
samples from 732 breast cancer patients [14]. Of these,
445 also have whole-exome sequencing data available,
and we estimated CCF for SN'Vs.

sAGP distribution

We detected sCNAs using circular binary segmentation
[48] of LRR and BAF data [18], resulting in the identifi-
cation of an average of 261 sCNAs per tumor (range: 1
to 3,537). The median size of all sCNAs is 1.7 Mb
(range: 2.5 Kb to 245 Mb). On average, each tumor car-
ries 125 sCNAs larger than 5 Mb, a size corresponding
to approximately 1,500 SNP markers in the 850 K SNP
array. Given this sCNA size range, we re-calculated
SAGP for genomic bins containing 500 heterozygous
SNPs in the germline DNA, a bin size that is approxi-
mately 5 Mb, resulting in 502 bins per sample (range:
404 to 794) and constructed the sAGP histogram for
every tumor. Eighty-seven tumors (12%) had sCNAs
for <50 bins, too few for analyzing the sAGP distribution
patterns. For the remaining 645 tumors we fit the
sCNAs distribution to either a uni-modal + uniform dis-
tribution or a multi-modal distribution using methods
described in Materials and methods, Statistical modeling
to infer macroscopic clonal structure. In the example
in Figure 2C, a three-mode distribution provides the
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(See figure on previous page.)

Figure 5 In silico validation of CHAT performance. (A) Performance of SAGP inferences. Upper row: percent of error in estimated ny, or n,, for
the dominant (left) and subclonal sCNAs (right), as described in Materials and methods, Performance of sAGP inference. Middle row: the median
absolute difference (MAD) between estimated and simulated sAGP values for sCNAs with correctly identified (ny,, ny), or for all SCNAs (Bottom
row). The psu» =0 row of the lower-right and middle-right panels had zero error because when pgy, =0 there is only one clone in the tumor
population and all subclonal SCNA segments have correctly estimated sAGP =0. (B) Performance of CCF inference. Shown are scatter plot of
simulated and estimated CCF for four pyom - Psup Cases and two coverage values: Cov =50 (upper panels) and 100 (lower panels). (C) Comparison
of CCF inference accuracy among different SNV categories: euploid vs. aneuploidy regions; and in the latter, between the dominant and the
minor clones. Lastly, SNVs were divided by sSCNA types. The tested case has the following parameter settings: Pyom =0.9, psup =0.6, coverage =50,
number of SNV sampled =4,000, number of sSCNA sampled =200. p, Spearman’s correlation coefficient between the true and the estimated CCF
values. MAD: median absolution difference between the true and the estimated CCF values.

best fit, with SAGP peaks around 0.5, 0.4, and 0.2. The
highest peak corresponds to the black-colored sCNAs in
Figure 2A and B, while the second and third peaks
correspond to the red- and green-colored sCNAs, re-
spectively. In total we observed 392 samples (61%) with
best fit by the multi-modal distribution, while 253 (39%)
follow the uni-model + uniform distribution. This shows
that a majority of the breast tumors analyzed by TCGA
contain more than one recognizable aneuploid population,

suggesting that the co-existence of more than one sub-
clone is very common.

SAGP-CCF joint distribution for known cancer genes

The 445 tumors with both SNP array and sequencing
data have an average of 311 somatic mutations per
tumor with CCF values (range: from 15 to 4,235, after
counting the 8.8% loss due to sCNAs with un-estimable
sAGP). While 48% of these mutations fall into a zone
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with overlapping scenarios, 93% of them have a unique
mathematical expression and can produce a valid CCF
estimate (Additional file 1: Figure S2). The remaining 7%
are assigned missing CCF values due to scenarios with
conflicting CCF estimates.

The calculation of sSAGP for most sSCNAs and CCF for
most SNVs makes it possible to examine the joint distri-
bution of clonality for these two types of genome aberra-
tions. A ‘CCF vs. sAGP’ plot can be created for all copy
number and mutation events in a single tumor, or for
events affecting a single gene of interest across many tu-
mors. For a given gene, if a sample does not have any
somatic mutation in the gene, we assign CCF = 0. Like-
wise if the copy number of the gene is normal, we assign
sAGP = 0. Figure 7A shows a heatmap depicting the
density of CCF and sAGP joint distribution for all events
in a hypothetical sample (or for a hypothetical gene across
all samples). In this two-dimension space, the ‘hot’ peak
near the origin (0,0) is typical for most genes, affected by
neither somatic mutation nor sCNA. The peak in the
upper left (near the sAGP-axis) contains genes with highly
clonal CNAs but carrying either no mutation or mutations
of low clonality. A plausible interpretation is that for some
of these genes, sCNA is a possible driver event. Similarly,
the peak at the lower left (near the CCF-axis) contains
genes with highly clonal somatic mutations and low-
clonality sCNAs. Lastly, genes in the upper-right peak
have both high sAGP and high CCF values, suggesting
that both copy number changes and somatic mutations
may have occurred at very early stages of tumor develop-
ment, and their joint appearance may be necessary to act
as a driver event.

Figure 7B allows close inspection of relative clonality
between sCNA and mutations for four genes known to
be related to breast cancer [14]: TP53, PIK3CA, and
GATA3, which occurred in >10% of analyzed breast tu-
mors, and MAP3KI, which had mutations enriched in
the luminal A subtype. For TP53, there are two notice-
able high-density ‘zones’ in the heatmap: one along the
sAGP-axis, the other at the upper right, indicating two
groups of tumor samples: TP53 CNA-only and TP53
CNA/mutation, respectively. This pattern, when strati-
fied by the four PAMS50 subtypes [14,49] (Figure 7C),
shows that the P53 CNA/mutation group is enriched
in the Basal and HER2 subtypes (accounting for 72
of 94 Basal and HER2 tumors), whereas the TP53 CNA-
only group is enriched in the Luminal-A (94 of 105),
and to a lesser degree, the Luminal-B subtypes (44
of 67). In comparison, the other three genes have not
only the CNA-only and CNA/mutation groups, but
also a third, mutation-only group near the CCF-axis.
Figure 7D shows that for PIK3CA, the mutation-only
group occurs almost exclusively in the Luminal-A and
-B subtypes.
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The CCF-sAGP plot can also be used to compare
the clonality distribution between a pair of genes. In
Figure 8, TP53 and PIK3CA are shown in red and blue
symbols, respectively, with the lines linking the two
genes for the same samples. There are three notable
patterns of TP53-PIK3CA clonality. First, samples
marked by the black lines have both sSCNA and muta-
tion in TP53 but no aberration in PIK3CA. Second,
samples marked by the red and green lines tend to
have sCNA for both 7P53 and PIK3CA and at compar-
able sAGP, but only mutation in 7P53 (red lines) or
PIK3CA (green). Third, samples marked by the blue
lines had high clonality for TP53 CNA, but not its
mutation, and high clonality for PIK3CA mutation,
but not its CNA, suggesting co-occurrence of aberra-
tions of these two genes but involving different variant
types. These patterns are subtype-specific: Pattern 1 is
enriched in the Basal subtype (OR = 4.6 compared to
the other three subtypes, P = 0.0001 by Fisher’s exact
test, for red; OR = 1.2, P = 0.67, for green), so is Pat-
tern 2 (OR = 5.3, P = 6.4e-8,). Most remarkably, Pat-
tern 3 is almost exclusively found in the Luminal A
subtype (OR = 56, P = 4.4e-9).

Discussion

In this work, we developed a computational framework
to estimate clonality for both sCNAs and SNVs. It is
built on previous methods both by us [18] and by
others [32,38,41,43,50]. While CHAT does not solve all
the issues facing the cancer genome deconvolution
problem, it attempts to overcome several important
compromises or simplifying assumptions that underlie
other methods. First, oncoSNP [51] and THetA [41]
are designed to estimate sCNA clonality, but they
do not address the clonality of somatic mutations. Sec-
ond, Ding et al. [52] used a kernel density estimation
method to characterize somatic mutations, but only fo-
cused on those in the euploid regions of genome, stay-
ing clear of the complicated relationship between SNV
and sCNAs. Third, ABSOLUTE infers clonality for both
sCNA and mutations but only designate subclonal sta-
tus of the events, stopping short of quantitative estima-
tion. This method was extended in Landau et al. [32] to
estimate CCF for somatic mutations even if they are
subclonal, but the algorithm only considers the case
where sCNA occurred before SNV, equivalent to our
scenario B (Figure 3 and Additional file 1: Figure S1),
and further assumes that the copy number was altered
by only one in the sCNA. In this regard, CHAT con-
siders a wider array of possible scenarios. Fourth, EX-
PANDS [50] works with next-generation sequencing
data and jointly estimates the absolute DNA copy num-
ber, clonality of somatic mutations, and that of sCNAs.
However, this method only considers scenario A, and
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stratified by PAM50 gene expression subtypes. Groups with interacting co-occurrence patterns are shown by different line colors. Black: high
CCF and sAGP in TP53, low in PIK3CA. Red and green: high sAGP for both genes, high CCR for TP53 (red) or high CCF for PIK3CA (green). Blue: high
SAGP for TP53 and high CCF for PIK3CA.

without the r; population. In effect, it assumes that the
mutation and sCNA occur at the same instance and are
in phase. These assumptions explained its underestima-
tion of CCF in scenario A and overestimation in B and
C (Figure 6). Fifth, PyClone [43] infers clonality of som-
atic mutations and performs phylogenetic analysis. It
receives as input the integer copy number profiles esti-
mated from other methods, but only considers scenar-
ios A and B, disregarding the possibility of a branching
lineage (scenario C). Furthermore, for scenario A, it as-
sumes co-occurrence of SNV and sCNA, thus ignoring
the r; population. In sum, the first key contribution of
CHAT is in providing a general mathematical frame-
work that enumerates the complete set of scenarios
covering the possible order and phase of the sCNA and
the mutation.

Like many of the previous methods, CHAT has its
own limitations, primarily in being unable to resolve

extremely complex events such as three-way mixing or
above. It models two-population mixing at each genomic
region (a gene, a SCNA, or a bin) and works best when
the tumor has not experienced extensive and repeated
copy number alterations. In the TCGA breast tumor
dataset we found that 9.3% of sCNAs do not follow the
regional two-way mixing model and preclude sAGP esti-
mation. For the other, permissible sCNAs, CHAT can
proceed, and is able to infer the co-existence of two
or more subpopulations by analyzing the distribution
of SAGP or CCF values. We wish to re-emphasize that
while CHAT invokes two-way mixing for each individual
genomic region, it is not limited to infer the presence of
only two populations of cells. Globally, the number of
peaks in the sAGP or CCF distribution has no restric-
tion, and can be very high when the signal-to-noise ratio
is improved, such as with ultra-deep sequencing data,
for example, [39].



Li and Li Genome Biology 2014, 15:473
http://genomebiology.com/2014/15/9/473

A second contribution of CHAT is in systematically
assessing the input data combinations that leads to
‘unidentifiable zones) in which the CCEF, or ‘scenarios’
(that is, the evolutionary order and phase of the sSCNA
and SNV), cannot be resolved even with perfect data.
Importantly, we found that in many situations, even
if the evolution scenario is undetermined, CCF can
still be estimated. The ability to objectively evaluate
the power of inference in any given dataset is an im-
portant part of method development. Our treatment of
this topic therefore sets useful constraints for future
development of similar analysis tools. We found that,
with the TCGA breast tumor data, about 9.3% of the
identified sCNAs cannot be explained by local two-way
mixing and were assigned missing SAGP values. In the
second step, about 7% of the SN'Vs have unidentifiable
CCF because they fall in either an inadmissible sAGP-
SAF zone or a region with conflicting CCF estimates.
Thus 93% of SNVs are suitable for CCF estimation,
despite the fact that 48% of them involve ambiguous
scenarios.

When applying CHAT to the breast tumor dataset,
we found that approximately 61% of the breast tu-
mors in the TCGA cohort contain more than one
recognizable sAGP peaks, suggesting that even in a
tumor cohort collected for studying inter-tumor di-
versity there is opportunity to detect intra-tumor
mixing of multiple populations of aneuploid cells.
And the results show that extensive intra-tumor het-
erogeneity does exist. This observation expands the
earlier view that tumor-normal mixing contributes to
intra-tumor heterogeneity, and confirms the results
from single-cell and multi-region analyses in other
solid tumors, for example, [25,33]. We wish to point
out that the estimate of 61% was based on a specific
analysis approach, and would vary with alternative
parameter choices. For example, by using regularly
spaced bins we found that 392 of 645 samples (61%)
were multi-modal, yet by using the naturally occur-
ring sCNAs, only 635 samples had sufficient number
of events, and 373 of them, or 59%, were multi-
modal. More notably, of the 392 multi-modal samples
called with bins, and the 373 multi-modal samples
called with sCNAs, the overlap is 235, or about 60%
for either method. This level of concordance is re-
lated to the inherent shortage of observations for
many samples: when the number of sSCNAs or bins is
in the 50 to 100 range, and if the primary peak is far
larger than the secondary peak, the inference is less
stable. These data-derived limitations can be over-
come in the future when more samples are analyzed
with whole-genome sequencing, which will likely
yield a far greater number of genealogically inform-
ative markers.
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A useful downstream analysis of the inferred clonal-
ity measures is to assess the distribution patterns of
cellular frequencies of somatic aberrations, and to de-
tect frequency clusters when they do exist for a given
tumor. CHAT provides the option of characterizing
the macroscopic clonal structure by a cluster-based
approach (Figure 1). It is important to emphasize
that these frequency clusters, despite their many valid
interpretations, cannot be equated to individual sub-
clones. A subclone may carry somatic events in mul-
tiple clusters, and may share some events with
another subclone if they are descendants of the same
parental clone. The full deconvolution of the ob-
served aggregate pattern into those contributed by in-
dividual subclones requires further mathematical
modeling and involves additional challenges. Several
methods have recently appeared to address this ‘Blind
Source Separation Problem, or synonymously, ‘Feature
Allocation Problem’ [53-56]. CHAT can be applied
in tandem with these methods, that is, the sAGP
and CCF output from CHAT can serve as the input
data for further feature allocation to component
subclones.

The co-existence of multiple clonal populations in
bulk tissues could be explained by several population
genomics models that are not mutually exclusive.
First, in a multi-region parallel-evolution model, the
tumor tissue might contain geographically segregated
‘pure’ populations, reflecting branched evolution of
multiple clones of homogeneous tumor cells, each
developing a different genomic profile that reflects its
cell type of origin and adaptation to the local tissue
habitat. This model can only be tested by spatially re-
stricted sampling. Second, even in the absence of
spatial segregation, the non-spatial, sequential expan-
sion model could still lead to multiple nested popula-
tions. In some episodes, a burst of mutations or copy
number variants might occur in one cell, which sub-
sequently expands to a detectable clonal size driven
by its unusually high selective advantage [57-59]. Al-
ternatively, even in the absence of such disruptive
genomic crisis, the slow, successive replacement of
mildly advantageous clones could also result in a
series of partial sweeps, leading to co-existence of
multiple clones at any given time [60,61]. In other
words, episodic acceleration of cancer genome evolu-
tion can take place either via mutation rate ‘spikes’ or
simply through variabilities of selective advantage
among driven events within a constant mutation re-
gime. There are many routes that could lead from gradual
evolution to punctuated equilibrium [62] in the history of
each cell population; and this temporal heterogeneity is
often further compounded in solid tumors by their spatial
heterogeneity.
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Conclusion

We developed an automated pipeline that estimates
cellular fractions for both sCNAs and mutations, and
uses their distributions to inform macroscopic clonal
architecture. It considers a wider range of evolutionary
scenarios than existing methods concerning the timing
and phase relationship between a sCNA and a muta-
tion it contains. Our method also explicitly evaluates
model- and parameter- identifiability. When applied to
a previously analyzed set of >700 breast tumors we
found more than half of the tumors appear to contain
multiple recognizable aneuploid tumor clones, and
many show subtype-specific differences in clonality be-
tween sCNA and mutation in known cancer genes. This
method adds to the available toolkit for examining
intra-tumor heterogeneity using bulk tumor genomic
data.

Materials and methods

Data access and sCNA identification

From the Cancer Genome Atlas Data Portal [63] we
downloaded: (1) the Level-2 copy number data derived
from the Affymetrix Genome-Wide Human SNP Array
6.0 (the ‘XX-byallele.copynumber.data.txt’ files) for 732
breast tumor DNA and their paired normal tissue
DNA; and (2) the VCF files for whole-exome sequen-
cing data for a subset of 522 tumor-normal samples
analyzed by TCGA [14]. The IDs of the 732 samples
are in Additional file 2. Of these, 445 samples have
both SNP array and DNA sequencing available. The
SNP array data were downloaded on 12 December
2012, while the sequencing data were downloaded on
22 March 2013. Each VCF file contains variant infor-
mation for both the tumor and the paired normal sam-
ple. The procedures for variant calling and identification of
somatic variants can be found in the Online Supplementary
Methods of [14]. Counts for somatic and reference alleles
of both tumor and normal samples were extracted for use
in this study.

In addition, we also downloaded the clinical annotation
file, including the PAM50 designations of all the involved
patients, on 17 December 2012.

SAGP estimation (see below) can be performed on
two types of user-selected spatial units: (1) genomic
bins, predefined for each sample, typically consisting
of 500 heterozygous markers in the germline DNA;
(2) naturally observed sCNA segments, which we de-
tect using the Circular Binary Segmentation (CBS)
method [48], as follows. We independently perform
segmentation on the LRR and the folded BAF (abso-
lute value of BAF minus 0.5) values, using default pa-
rameters in the R package DNAcopy [46], except that
‘minimal markers required’ was set to 5. With CBS
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results for both LRR and BAF, the two sets of change
points are merged as follows: if a BAF change point
falls within 5 markers of an LRR change point, either
upstream or downstream, it is removed, that is, only
the LRR breakpoint is kept, under the assumption
that the two change points capture the same event,
but the BAF change point is less accurately placed
due to the greater sparsity of heterozygous markers.

After merging, the mean of LRR and folded BAF
values are computed for each DNA segment (or the bin)
in each sample, and used as input data for AGP and
SsAGP inference in the next step. For binned files, the
bin length is on average 5.1 Mb, and each sample has an
average of 502 bins.

sAGP inference
As discussed in the main text, we jointly use BAF and
LRR values to estimate sAGP for each sCNA, under the
assumption of regional two-way mixing. The algorithm
has three steps:

i. Data pre-processing

We assume the allele-specific copy number data are
already in bi-allelic format, with the following fields in
the input file: SNP ID, chromosome, position, A allele
count, B allele count. To note, the allele counts may not
be integer numbers, but could be real-numbered values
from the original CEL file. SNP markers are first grouped
into either bins or merged sCNAs as described above. For
each bin/sCNA, the median LRR and median folded BAF
are calculated, and a segmentation file containing the
above information for each segment is generated for each
sample.

In the initial normalization of SNP array data the ab-
solute LRR values depend on the genome-wide average
ploidy, which is affected by the relative abundance of
different copy number states in the genome. For ex-
ample, in a tumor with a high fraction of cells under-
gone genome-wide doubling, the DNA segment located
near the origin of the BAF-LRR plot are AABB, instead of
the normal diploid configuration AB, and the global ploidy
can be well above 2. The first step of SAGP estimation is
therefore to ascertain the genotype of the sSCNAs near the
origin, following the procedures described in [18]. This al-
lows unambiguous assignment (when possible) of copy
number states for other sCNAs in the genome and the
calculation of average ploidy. The deviation of BAF and
LRR values of the baseline sSCNAs from (xo,yp) is also used
to quantify sd,; and sd;,, for use in downstream
analysis.

ii. Estimate sAGP and absolute copy numbers
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The method we used to estimate sAGP is extended
from our AGP inference algorithm. For a sCNA with
copy number configuration (ny,n,), where ny, is number
of minor allele, and n, number of total alleles, when
mixed with a balanced diploid population its theoretical
BAF and LRR values are:

pXxXny,+1-p

BAF =
p xn,+2x (1-p)

-0.5 + X0

LRR = log,(p x n; +2 x (1-p))-1+y,

where p is SAGP, and xq, yo are the coordinates of the
(n, =2, n, =1) state. When p changes, the points (BAF,
LRR) follow a family of curved lines on the BAF-LRR
plot, starting from the origin (xq,yo). Each line corre-
sponds to a unique combination of (n;,, n;) and is called
a canonical line; and each point on this line uniquely
corresponds to an sAGP value. The main task is to as-
sign each observed segment to a canonical line. Due to
noise, a SCNA does not locate precisely on a canonical
line. Thus for each sCNA, we scan all possible canon-
ical lines to find the one satisfying the following
criteria:

a. Distance to the closest canonical line <2
sdéAF + sdiRR; where sd? g5 and sd? ) gr are the

estimated standard errors of BAF and LRR values.

Sometimes multiple lines satisfy (a) and result in mul-
tiple SAGP and n, estimates. In such cases we apply

b. Choose sAGP = argmin(F = n, - ploidy + |ps - p|);
where p; is sample-wide AGP and ploidy is the
estimated global average ploidy from step ii). This
criterion chooses the most probable canonical line
as the one that results in a total copy number close
to the genome-wide ploidy and an sAGP close to
the global AGP.

If no canonical line can be found in (a), that is, the de-
viation is greater than the specified 2x scale of the
standard deviations of BAF and LRR markers, we con-
sider the sCNA not meeting the regional two-way mix-
ing hypothesis, and its SAGP is assigned NA, its n;, and
n, are also treated as missing values in downstream
analysis.

Statistical modeling to infer macroscopic clonal structure

As explained in the main text, SAGP values can be cal-
culated for either predefined genomic bins or identified
sCNAs. In the per-bin analysis, the user can choose to
filter out the non-sCNA bins or those with very small
sAGP values, as true sCNAs with length shorter than
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the bin width tend to have reduced sAGP estimates due
to the flanking euploid regions. In our analysis of the
breast tumor data we applied two filtering steps. First,
we considered bins with median folded BAF <0.04 and
absolute median LRR <0.16 to be euploid, and assigned
SAGP =0. Second, before sAGP clustering, we removed
bins with SAGP <0.05 to remove the contribution of the
small sAGP values. At this step there is an average of
n =224 bins left per sample. The two models described
in the main text are evaluated in a maximal likelihood
framework. For Model-1, the log likelihood has a uni-
form and a normal component:

g A
a ;ln <W + (1-A) x Norm(y;, u, 0))

where Y is the observed sAGP vector for a given sample,
with components y;, i =1,2,...,n, where n is the number
of DNA segments after filtering. A is a scalar so that A/
range provides the scaled uniform distribution. p and o
are the mean and standard deviation of the single peak
in the model following the normal distribution. We con-
strain A and p in the range (0, 1). The parameters A, y,
and o are estimated using the maximum likelihood
approach, implemented in customized scripts (part of
CHAT) written in the R statistical programming lan-
guage [45].

Model-2 is fitted using a Dirichlet process Gaussian
mixture model to infer the uncertain number of peaks
and their relative abundances. The parameterization is
as follows:

¥; |4, 0:~ Norm(u;, 04), i =1,2....n
/"ivai|G~G
G|0(, Go~ DP(O(GQ)

Go = Norm(p|py,0/ko)InvWishart(o |v1, ;)
Go = Norm(p|p,,0/ko)InvWishart(o|v1,y,)
k() ‘ 71, TZNF(TI /27 T2/2)

Together these expressions describe a standard Dirichlet
process mixture of normal model [40]. The implementa-
tion of the MCMC fitting is via R package DPpackage
[56]. There are different ways to specify the prior parame-
ters for the normal mixture model. The baseline Gaussian
distribution G, relies on three prior parameters, y;, o, and
ko, where o is explicitly modeled by an Inversed Wishart
distribution with priors v; and y,;, and ky follows a
Gamma distribution. In practice, the hyperpriors, vi, ¥,
and k, can also be allowed to be random variables with a
given prior distribution, and the model will have higher
power to fit minor peaks in the data. In this work we used
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a conservative setting of prior parameters in terms of peak
discovery sensitivity.

Model-1 cannot be included as a special case of Model-2,
since when y is truly uniformly distributed, Dirichlet
process tends to call multiple peaks instead of one peak,
even with current conservative prior setting. Our solution
is to fit both models, then numerically compute the likeli-
hood of each model, and use Bayesian Information Criter-
ion (BIC) to select the better model. Model-1 has three
free parameters: A, y, and o, while Model-2 has seven: aq,
by, ko, V1, Y1, Ty, and To.

CCF estimation and scenario identifiability for CN-LOH
and deletion

In the main text we presented how CHAT performs CCF
estimation for the case of hemizygous amplifications
(n, =1, n; =3). While this sCNA type has all four sce-
narios, Scenario B is not available for some other types
of sCNAs, including LOH (n;, =0, n, >1) and balanced
allelic gains (n, >1, n, =2n,). Below we will describe
the cases of copy neutral LOH (CN-LOH) and hemizy-
gous deletion.

CN-LOH
In Scenario A; (Additional file 1: Figure S1A)

Vo+rl+7'2:1

7'2:]9

ri4n, Xry ri+2xr
f: = 2

ny

where 1, =2 x (1 - p) + n; x p =2 and CCF = r; + ry. Using
the above equations it is easy to show that

CCFAI(f,”b’”taP):”lt Xf-pxn,+p=2xf-p

Scenarios A,, B, and C have the same expression:

CCF* = CCF? = CCF® = 2f

Note that A, and C not only have the same expression
for CCE, they also have the same three-population
composition, although the three populations emerge
by different evolutionary routes. A previous study [32]
failed to take A, into consideration and could have
overestimated CCF under A;, thus could have desig-
nated subclonal mutations as clonal when A; is the
true evolutionary scenario.

The lower and upper limits of SAF in each scenario
can be derived using the same process as in the main
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text. In scenario A;, f reaches its upper limit when ry =0,
and r, = 1-['2.

a4 _1p+2xp 1+p
h Ny 2

On the opposite side is r; is zero, when f reaches its
minimum value:

2p
‘141:7:p

With p takes values from (0,1), the areas defined by
these limits are shown in Figure 4B.
For scenario B:

B_P _P
fh_Nt 2
fi=0

And scenario C:

h_Nt_

fi =0

1-p 1-p
(ORI A
S 2

Hemizygous deletion
All four scenarios have the same expression:

CCFY = CCF* = CCF®? = CCF® = f(2-p)

Similar to CN-LOH, A, and C not only have the same
expression for CCEF, they also have the same three-
population composition.

The upper and lower limits for this SCNA type are:

a _1lptp 1
h Nt 2—p
A _ P

1 2_P
B_P _ P
fh_Nt 2_P
fi=0
c_lp_lvp
"N, 2-p
fi =0

The areas defined by these limits are shown in
Figure 4C.
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Variance of CCF

We use the same approach as described in [32] to esti-
mate the standard deviation of CCF. The distribution of
CCF is modeled as Binomial:

Pr(CCF = x)=Binomi(S|N, G(x,p, ®))

where S is the read count for the somatic allele and
N is the total read depth. G(+) is expected value of
SAF given CCF value x, sAGP value p, and lineage
scenario ®. G is simply obtained by reversing the CCF
expressions described in the main text (Equations (1),
(2), (3), (4), (5), (6), and (7)). We assume a uniform prior
on x and the expectation and variance of CCF can be
calculated as:

1
/ Binom(S|N, G)xdx
0

EXP(CCF) = 2%

/ Binom(S|N, G)dx
0

1
/Binom(S|N, G)x’dx
Var(CCF) = ——20

Binom(S|N, G)dx-EXP(CCF)*
0
To note, the expectations of CCF are identical to the
expressions in the main text (Equations (1), (2), (3), (4),

(5), (6), and (7)).

Probabilistic scenario identification

The task is to use the observed somatic allele frequency
(f) and sAGP value to determine the most likely scenario
among the four scenarios described in the main text. We
assume that f has a uniform prior, U(0,1), and we are
interested in calculating the likelihood that the sSNV
occurred before the sCNA, given the copy number
configuration (ny, n,), known sAGP (p), and the observed
allele counts. Let fy denote the true f. The probability of
observing S count of the somatic allele is model by Bino-
mial(fy, N) and the likelihood of each scenario is the prob-
ability of observing S given the scenario is true, integrated
over all the possible values of f

px = L(Scenario X|p, ny, n;,N, S)
= Pr{S|X, p,np,n;,N}
= [ PelSIFo ) X Pelf =folX, pos )
fi
— [eetsir Ny,
1

where X is A;, Axc scenarios, and fi, i are computed
according to Equations (8), (9), (10), (11), (12), (13), (14),
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and (15) in the main text and those in the section (CCF
estimation and scenario identifiability for CN-LOH and
deletion) above. We then compute the summation of py:

P =pa +partpstrc
and normalize each likelihood using P:

—
pX_P

We calculate the normalized probability for each sce-
nario, as well as all the possible combinations of mul-
tiple scenarios. For example, the probability of either
scenario Al or Cis p,c = pa; + Pc. There are in total
2* - 1=15 possible combinations. If the normalized
probability of any of the four scenarios is greater than
0.95, the SNV is assigned to the corresponding scenario.
If none of the single-scenario probability exceeds 0.95,
we ask if any of the six two-scenario combinations have
probability >0.95. If this step fails, we next examine the
four possible three-scenario combinations, and so forth.
If all the above steps fail, we report the SNV scenario
A,/A,/B/C, and no unique CCF can be estimated in this
case.

In silico validation and computation performance
Performance of sAGP inference

We first tested the performance of CHAT in sAGP esti-
mation. We simulated LRR and BAF values for a series
of sCNA datasets with two aneuploid tumor popula-
tions, which are mixed with the euploid population. The
first population is the dominant clone, with an assigned
SAGP value of pgom ~ [0.1,0.2,...,1.0]. The second popu-
lation is a minor clone, with an assigned sAGP value of
Psub ~ [0,0.1,...pgom-0.1]. The fraction of the euploid
population is 1- pgom - Psub- In all, there are 55 paom - Psub
combinations; and for each, we simulated 200 euploid seg-
ments (n, =1, n; =2, SAGP =0) and 200 sCNA segments,
of which 133 (about 2/3) were assigned to the dominant
clone (SAGP = pgom), and the remaining 67 were assigned
to the minor clone (SAGP = py,). Within each clone, the
sCNAs were assigned to one of four copy number config-
urations with the following ratios: 2/7 for deletion (n}, =0,
n, =1), 2/7 for CN-LOH (n, =0, n; =2), 2/7 for amplifica-
tion (n, =1, n; =3), and 1/7 for balanced doubling (n;, =2,
n, =4). The BAF and LRR values were generated using the
assigned sAGP and copy number configuration with the
following formula:

1-
0.[5—197>< 1P
ne

BAF = + Normal(0,0p4r) (16)

LRR = log,n;—-1 + Normal(0, o1zr) (17)

where p stands for sAGP, and n, is the averaged total
copy number for the local segment: 2 (1-p) + n; x p. Oar
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and orrr are the standard deviation values of the per-
segment BAF and LRR, respectively. For the Affymetrix
6.0 platform, the per-SNP standard deviation for BAF is
about 0.05, and for LRR is about 0.25 (our observation).
Thus the choice of ogar =0.01 and o7 g =0.04 is equiva-
lent to the standard error of an sCNA of approximately
36 SNP markers. For a 1 million SNP platform, 36 SNPs
cover approximately 110 kb, therefore ours are conser-
vative choices for sSCNAs 110 kb or longer, profiled by 1
million SNPs or more.

After generating the BAF and LRR values using
Equations (16) and (17) for the 400 segments for each
of the 55 pgom - Psup Combinations, we applied CHAT
to estimate sAGP, np,, and n; for each simulated seg-
ment and reported the results in Figure 5A.

Performance of CCF estimation

Of the 55 pgom - Psum Combinations described above
we selectively tested CCF inference in four cases: pgom -
Psum ~ (0.9,0.8), (0.9,0.4), (0.5,0.3), and (0.3,0.1). For each
case, we simulated 4,000 SNVs, of which approximately
2,000 fall in the 200 euploid segments, and the other ap-
proximately 2,000 fall in the 200 sCNA regions, with the
(sAGP, np,,n,) assignment implemented as described above.
In effect we assume that the euploid intervals account for
50% of the genome. To make the test realistic, we used
the sAGP, ny, and n, estimated by CHAT rather than the
true values used in the initial simulation of the LRR and
BAF data. If the SNV falls in a euploid region, the assigned
SAF was randomly drawn from uniform(0, 0.5) and the
corresponding ‘true’ CCF = SAF x 2. If it falls in an aneu-
ploid region, we randomly choose the lineage scenario
from (A;, Ay, B, C) according to the local copy number
configuration. If the sCNA is a CN-LOH or balanced
doubling region, we limit the scenarios to (A;, B, C). The
upper and lower limits of the chosen scenario were deter-
mined using Equations (8) to (15) in the main text and the
equations in Materials and methods, CCF estimation and
scenario identifiability for CN-LOH and deletion. SAF
values were then randomly drawn from within this per-
missible range: uniform(f;, f,), where f; and f;, were the
lower and upper limits. “True’ CCF values were computed
using Equations (1) to (7) in the main text. Lastly, from
the ‘true’ CCF we simulated the allele counts in two steps.
For a mean read depth k, the actual coverage at a given
SNV, N, was sampled from N ~ Poisson(k). With N and f
(that is, CCF) thus assigned, the count of the somatic mu-
tation allele was sampled from Binomial(f, N). Based on
the estimated sAGP, copy number configuration and the
simulated somatic allele counts we used CHAT to esti-
mate CCF. The estimated values were compared with the
‘true’ CCF for both k =50 and k =100. For all eight cases
(four pgom - Psup combinations and two k values) we cal-
culated the Spearman’s rank correlation coefficient and/or
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the median absolute deviation (MAD) between the known
and estimated CCF values (Figure 5B and C).

Computational requirements

We estimated the time and memory requirement of
CHAT using the TCGA dataset for breast tumors. The
time estimate below is based on allele-specific copy
number data with 850 K SNPs for tumor-normal pairs
and whole-exome sequencing data with approximately
30x average coverage. For binned segmentation (ap-
proximately 500 heterozygous SNPs per bin), it takes 2
min to complete the SAGP and CCF estimation for one
tumor/normal pair, and it requires about 10 MB mem-
ory. For detected sCNAs, the computational time in-
creases to an average of 12 min per sample pair. The
above estimation is based on running R scripts with a
single processor (AMD Opteron 6136, 2.4GHz with 4G
RAM) and counting input file reading time. In CHAT,
the user can apply the R package parallel to enable
multi-thread processing. This allows the use of as many
processors as available. On our server (32 AMD Opteron
6136 CPUs and 128G RAM), our test run used 14 proces-
sors on average, and it took 10 h (140 CPU-hours) to
complete the CBS segmentation, SAGP estimation for 732
breast tumor-normal samples and CCF estimation for 445
samples with downloaded VCF files.

Comparison with EXPANDS and PyClone

We simulated 200 CNA regions, with sAGP values ran-
domly drawn from U(0,1), and copy number configurations
assigned by the ratio of 2/7 for deletion, 2/7 for CN-LOH,
2/7 for amplification, and 1/7 for balanced doubling, as de-
scribed in Performance of sAGP inference. For each CNA,
the LRR and BAF values were simulated as in Performance
of sSAGP inference. We then simulated 1,000 somatic mu-
tations evenly across the ‘genome, with 488 that happened
to fall in an sCNA region (with the rest falling in euploid
regions). For these 488 somatic mutations, we assigned
them to lineage scenarios with similar ratios across Aj,
A,-when possible, B, and C. The actual number assigned
to each combination was shown in Figure 6D. For each
mutation thus assigned, we sampled the somatic allele fre-
quency (f) uniformly from its permissible range as de-
scribed in Performance of CCF estimation, calculate the
corresponding true CCF value, and simulated the sequen-
cing read counts at the average coverage of k =50, as de-
scribed in Performance of CCF estimation. We applied
CHAT to estimate (sAGP, n,, np) from the simulated LRR
and BAF data, then estimated CCF from the simulated
read counts, SAGP and the estimated lineage scenarios
and (n,, np) status. In parallel, we applied PyClone to the
same dataset, using the simulated read counts and the
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true (ny, np,) as input to estimate CCF. The choice of true
(ng, np) rather than the CHAT-estimated (n;, n;) should
slightly favor PyClone as the errors in estimating (n,, ny,)
are not incorporated. Lastly, we applied EXPANDS to esti-
mate CCE using the simulated LRR and the observed
somatic allele frequency as input. We compared the es-
timated CCF of the three tools with the known CCF in
Figure 6. To make Figure 6D less cluttered we omitted
balanced amplifications, thus only showing 423 muta-
tions for the other CNA types.

Data availability

CHAT source package is available at https://sourceforge.
net/projects/clonalhetanalysistool/files/?. It is released under
fully open source license, GPL (>2.0). It is also available
as a CRAN-R package. The breast tumor data were
downloaded from the Cancer Genome Atlas Data Portal
as described in Data access and sCNA identification.
The TCGA IDs for the 732 tumors are in Additional file
2. The simulated data are available at http://sourceforge.
net/projects/clonalhetanalysistool/files/simulations/ and
as Additional file 3.

Additional files

Additional file 1: Supplementary figures (Figure S1-S3) and legends
describing additional information.

Additional file 2: TCGA Sample IDs for the 732 breast tumors we
analyzed in this study.

Additional file 3: Simulated data used to compare CHAT, PyClone,
and EXPANDS.
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