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Abstract

pathology with emphasis on future directions.

Digital pathology (DP) is being increasingly employed in cancer diagnostics, providing additional tools for

faster, higher-quality, accurate diagnosis. The practice of diagnostic pathology has gone through a staggering
transformation wherein new tools such as digital imaging, advanced artificial intelligence (Al) algorithms,

and computer-aided diagnostic techniques are being used for assisting, augmenting and empowering the
computational histopathology and Al-enabled diagnostics. This is paving the way for advancement in precision
medicine in cancer. Automated whole slide imaging (WSI) scanners are now rendering diagnostic quality, high-
resolution images of entire glass slides and combining these images with innovative digital pathology tools is
making it possible to integrate imaging into all aspects of pathology reporting including anatomical, clinical,

and molecular pathology. The recent approvals of WSI scanners for primary diagnosis by the FDA as well as the
approval of prostate Al algorithm has paved the way for starting to incorporate this exciting technology for use in
primary diagnosis. Al tools can provide a unique platform for innovations and advances in anatomical and clinical
pathology workflows. In this review, we describe the milestones and landmark trials in the use of Al in clinical
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Background
Milestones and landmark trials in computational
pathology (Figure 1 and Figure 2)
Some important milestones in computational pathology
are as follows:

1950: Alan Turing conceived the idea of using comput-
ers to mimic intelligent behavior and critical thinking [1].

1956: John McCarthy coined the term artificial intelli-
gence (AI) [2, 3].

1959: Arthur Samuel coined the term machine learning
(ML) as “the ability to learn without being explicitly pro-
grammed” [4].
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1960: Prewitt and Mendelsohn scanned images from
blood smear and reported a method to convert optical
data into optical density values [5-7].

1965: Computerized image analysis of microscopy
images of cells and chromosomes by Judith Prewitt and
Mortimer Mendelsohn [8].

1986: Term deep learning (DL) coined by Rina Dechter
[9].

1988: Convolutional neural network (CNN) invented
by Yann LeCun [10].

1990: Whole slide scanners introduced [11, 12].

1998: Tripath becomes the first company with an auto-
mated PAP smear screening product to receive FDA
approval [13-15].

2003: Cytyc received FDA approval for their ThinPrep
Imaging System [13-15].

2013: Development of photoacoustic microscopy imag-
ing technique [16].
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2014 Ian Goodfellow introduced generative adversarial
network [17].

2016: MUSE microscopy technique invented to enable
high resolution imaging without tissue consumption [18].

2017: Philips receives approval for a digital pathology
whole-slide scanning solution (IntelliSite) [19].

2018: FDA permits first medical device using Al to
detect diabetic retinopathy in adults (IDx DR) [20].

2021: FDA authorizes the first Al-based software to
detect prostate cancer (Paige Prostate) [21].

Role of Al in pathology: a brief overview

Machine learning (ML)-based approaches are based on
the machine “learning” to make predictions based on
the input data and algorithms and falls within the broad
ambit of Al [22, 23]. Deep learning (DL) network consists
of an input layer, multiple hidden layers, and an output
layer, recapitulating the human neural architecture. The
hidden layers can recreate newer visualizations of the
image and with appropriate number of repeats which
can identify representations allow for the differentia-
tion between interesting features [24, 25]. Al methods
are increasingly being applied in pathology practice for a
wide variety of image analysis and segmentation type of
tasks [26, 27]. These include trivial tasks, such as object
recognition of cells etc., as well as more complex actions
such as using image pattern recognitions for predicting
disease diagnosis, prognosis, and therapeutics [28-50].
The main underlying principle of these Al approaches
is to extract image patches which can be used to provid-
ing training to algorithms [28-35]. AI has helped with
creating morphometric analysis methods which can
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facilitate quantitative histomorphometry (QH) analysis
approaches for detailed spatial interrogation (e.g., cap-
turing nuclear orientation, texture, shape, architecture)
of the entire tumor histologic landscape from a stan-
dard hematoxylin and eosin (H&E) slide [51]. These Al
applications primarily aim to automate tasks that are
time-consuming for the pathologist, thereby aiding fast
and reliable diagnoses by utilizing the time saved on
high-level decision-making tasks [28, 29, 33-35, 52-56].
Thus, Al technology can be used to support the overall
reporting system, speed up reporting time and measure
morpho-biological features more objectively. Al-aided
reporting of certain features or lesions will also enable
pathologists to focus on challenging cases and meet the
increasing workload demands. Implementation of such
technology in the workflow of pathology service is not to
replace the human resources including pathologists, and
laboratory technicians, but to provide support for them,
assist them and augment diagnostic and performance
efficiency with better allocation of resources, increased
cost-effectiveness of the service and more consistent
pathology reviews (Figs. 1 and 2) [57].

Main text

Hand-crafted feature-based approaches

ML algorithms can be developed either using intrin-
sic domain knowledge of pathologists and oncologists
(domain-inspired features) or without this inherent
domain knowledge (domain-agnostic features). This pro-
cess is called feature engineering [33, 58, 59]. An exam-
ple of domain inspired feature is the co-occurring gland
angularity feature presented by Lee et al. which involved
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Fig. 2 Schematic representation of the how artificial intelligence (Al) can be applied in the practice of pathology

computing the entropy of gland directions within local
neighborhoods on tissue sections. Aggressive risk pros-
tate cancer had more chaotically arranged glands com-
pared to low to intermediate risk cancer. Consequently,
the entropy associated with these “gland angularity fea-
tures” (GAF) was found to be higher in aggressive and
lower in indolent disease [39].

Image characterization across several disease and tis-
sue types can be better depicted using domain-agnostic
features. Examples include nuclear and gland shape and
size, tissue texture and architecture. Automated Gleason
grading of prostate pathology images has been arrived
at using a series of wavelet and tissue texture features
enabling machine-based separation of low and high
Gleason grade prostate pathology images. Hence both
domain-agnostic and domain-specific hand-crafted fea-
ture-based approaches have been used for the diagnosis,
prognosis, grading, and prediction of response to therapy
for various cancers such as breast, prostate and brain
tumors [60].

Handcrafted and unsupervised features have sev-
eral advantages and limitations. Handcrafted features
are more transparent and intuitive to the pathologist or
oncologist. Domain-inspired features require a strong
foundational knowledge of the pathological process and
its manifestation within the tissue and thus are more
challenging to develop. The unsupervised feature genera-
tion-based approach of deep learning strategies lacks fea-
ture interpretability though it can be applied quickly and

seamlessly to any domain or problem [33, 40, 41, 51, 58,
59, 61, 62] (Fig. 3).

Implementation of Al tools in clinical pathology practice
Applications of Al in diagnostics

Recently, promising strides in Al have opened new vis-
tas for significantly altering the way cancer is diagnosed
and classified [63]. Several advances have been made in
incorporating Al tools to the diagnostic workflow in
pathology practice. Al approaches have been used in a
variety of tasks such as object recognition, detection, and
segmentation [28—38]. WSIs can be used to extract sev-
eral features using computer vision algorithms, thereby
enabling diagnostic predictions [64—69]. Several Al tools
are increasingly being used to provide information that
is gleaned difficult for the pathologist to identify [66, 68,
69]. Examples include accurate objective assessment of
immunohistochemical biomarkers such as Ki67, PD-L1,
quantification of cells, evaluation of spatial arrangement
of cells, expression, density, and pattern of distribution
[32, 70]. AI can also be used to detect isolated tumor
cells in lymph nodes suspicious for metastatic carcinoma,
increasing sensitivity of detection in a time-efficient man-
ner. Additionally, AI tools can help standardize scoring
criteria in several tumors, such as Gleason score for pros-
tatic cancers or breast cancer grading, where the mor-
phological features are represented on a spectrum of a
continuous biological process [26, 71, 72]. Another strik-
ing application of AI search tools is the content-based
image retrieval (CBIR) which enables pathologists to
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search for images similar to the image-in-question from a
repository of large histopathology database. This is espe-
cially important in guiding pathologists to diagnose rare
and complex cases which they might occasionally come
across in their clinical practice The images retrieved from
the database reflect similarities in associated histopatho-
logical features rather than mere image similarity. Hence,
CBIR makes it easier to render a correct diagnosis in a
timely fashion for seemingly difficult cases [73, 74].
Diagnostic algorithms can be incorporated into digi-
tal pathology workflow as independent reporting algo-
rithms, as diagnosis-aided tools, and as automated
quantifiers of specific features. Independent reporting
algorithms can provide diagnosis and automated reports
without any input from the pathologists. Screening algo-
rithms can identify normal tissue like colonic, gastric,
breast etc. from biopsies. However, it is important to
consider the wide varieties of normal tissue during the
algorithm development pathway, to avoid missing rare
microlesions (such as benign mimickers of cancer) or
focal lesions which are rare variants of cancer. Diagno-
sis-aided tools include algorithms that assess one of the
various histological features such as tumor grade, type,
and extent. Accurate pathological diagnoses involve
assessment and combination of multiple features by the
trained human eye. The utility of these Al algorithms is
determined by its ease of incorporation into the diagnos-
tic workflow and the added value it brings to the pathol-
ogists’ diagnoses. This can be assessed based on the
features assessed and the time required to provide results
as well as on its accuracy. As an example, breast cancer

grading algorithms have the potential advantage of objec-
tivity, inter-reader reliability and prognostic clarity com-
pared to the inter-observer variability seen in clinical
practice. Hence in this case, the added value of such an
AT algorithm would be better reproducibility rather than
efficiency [56, 72]. Therefore, it is essential to not merely
use Al algorithms, but to use them intelligently [27].
For instance, for the detection of lymph node metasta-
ses, Al can have superior performance when serving as
a pathologist assistive tool, underscoring the importance
of the context of intended clinical use. Automated quan-
tification of immunohistochemical markers has gener-
ated considerable interest as increasing efforts are being
made to not only provide an objective estimation of these
markers but also give an estimate of their predictive and
prognostic value. While the manual estimation of breast
cancer receptors might take only a few minutes by an
experienced pathologist, it can be made more efficient
and reproducible by an automated method [72].

Many digital image analysis (DIA) platforms have been
adopted to aid pathologist assessments especially for
quantitative biomarker evaluations [75]. Amongst the
first open-source tools for image analysis was Image],
developed in 1997 by the National Institute of Health
(Bethesda, Maryland, USA). In 2006, CellProfiler soft-
ware was published which provided supervised machine
learning-based classification to perform imaging-based
diagnoses. Another accessible platform being increas-
ingly used for image analyses is QuPath, first published
in 2017. The software functions to provide unsupervised
machine learning-based cell detection and supervised
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classification of whole slide images, tumor identification
and quantitative biomarker assessment. Ventana Com-
panion Algorithm image analysis software has received
approval from CE and US IVD for Roche IHC assays
in breast cancers for the assessment of breast biomark-
ers (ER, PR, HER2, Ki67 and p53). The Tissue Phenom-
ics software was created by AstraZenecain 2014 and
applied to clinical programs in immune oncology for
identifying biomarkers. HALO (Indica laboratories)
has developed modules for quantitative immunofluo-
rescence analysis primarily for research purposes. Scor-
ing of Ki67, ER, PR, CD3/4/8/15/20 and TILs has been
made possible using Cognition Master Professional Suite
platform developed by VMscope. QuantCenter, a frame-
work for 3DHISTECH image analysis applications, pro-
vides modules for tissue classification, IHC quantification
and molecular pathology. The rapid emergence of digital
image analysis solutions and integrated platforms has
resulted in the need for validation and standardization of
these tools before they can be approved in the diagnostic
setting [76-78].

A milestone study in computational pathology is The
CAMYLEONI16 challenge, the first major challenge on
computer-aided diagnosis in histopathology using whole
slide images. H&E images from sentinel lymph nodes of
breast cancer patients were used with the aim of iden-
tifying metastasis. With no time constraint, DL algo-
rithms showed comparable performance to a pathologist
in detection of micrometastasis. To simulate a clinical
practice setting, time constraint was imposed, which
demonstrated an outperformance by algorithm over
manual evaluation by 11 pathologists [28]. Differentiation
between benign and malignant tumors using a super-
vised ML model trained on whole slide images obtained
by fine-needle biopsy has been made possible [79]. Veta
et al. highlighted the prognostic value of features such
as nuclear shape or texture in male breast tumors using
tissue microarray (TMA) [80]. In their study, Lee et al.
used WSIs from prostate cancers to describe gland angu-
larity feature (GAF) which was related to the degree of
disarray of the glandular architecture. GAF demonstrated
high association with advanced stage prostate cancers.
Nuclear pleomorphism, orientation and architecture
have been employed to develop hand-crafted features in
the tumor and benign tumor-microenvironment. These
features used in tandem with a ML model was designed
to predict the chance of recurrence within the 5 years of
post-operative period [39]. Similarly, variations in nuclear
shape and texture were used in oral cavity squamous cell
carcinomas to stratify patients into risk categories pre-
dictive of disease-free survival (DFS). It was further elu-
cidated that patients with estrogen receptor (ER)-positive
breast cancer with short-term survival (<10 years) could
be distinguished from those with long-term survival (>10
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years) based on a combination of nuclear shape and ori-
entation features [62].

Another key milestone in the field of DP/AI has been
the PANDA challenge, the largest histopathology com-
petition thus far. Nearly 1,290 developers joined hands
and used 10,616 digitized prostate biopsies for the
development of Al algorithms for Gleason grading. The
algorithms submitted were selected based on the level
of accuracy achieved compared to pathologist on inde-
pendent cross-continental cohorts. In United States
and European external validation sets, the algorithms
achieved agreements of 0.862 (quadratically weighted
K, 95% confidence interval (CI), 0.840-0.884) and 0.868
(95% CI, 0.835-0.900) with expert uropathologists. How-
ever, in order for these algorithms to be applied clinically,
across different patient populations, laboratories, and
reference standards, prospective clinical trials evaluating
Al-based Gleason grading is warranted [81].

To date, the most widely used DL algorithms in pathol-
ogy applications is convolutional neural networks
(CNNs). Defined as a type of deep, feedforward network,
CNN consists of multiple sequential layers (convolu-
tional sheets) that can calculate an output from an input
(such as an image), by hierarchically deconstructing the
image into low-level cues. Aggregation of these low-level
cues, such as edges, curves, or shapes results in the con-
struction of a high-order structure to identify features
of interest [29, 30, 82—87]. Araujo et al. used CNN for
the classification of WSI of breast cancers into benign,
malignant, in-situ or invasive. CNN was also shown to
have performance comparable to dermatopathologists
in distinguishing benign lesions such as seborrheic kera-
tosis from keratinocyte carcinoma and benign nevi from
malignant melanoma [83]. Tschandl et al. demonstrated
that CNN had similar diagnostic accuracy as humans in
correctly classifying pigmented skin lesions using digital
dermatoscopic images. These findings, among others,
have established the role of Al based methods in diagnos-
tic practice [88].

Predictive and prognostic applications of Al

Al can be used to predict prognosis and therapeutic
responses based on histological features [89, 90]. Directly
linking images with several features of tumor, surround-
ing microenvironment and genetic profiles with survival
outcomes and treatment response for adjuvant/neoad-
juvant therapy could provide important information in
a concise manner. Integrating myriad morphological
features, such as tumor histological patterns and tumor
microenvironment patterns into a single prognostic index
can be difficult for humans [26, 91]. However, image-
based Al tools can provide a novel classification system
depicting clinical outcome, probability of recurrence
or metastases and therapeutic response by correlating
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important histological features such as tumor morphol-
ogy, stromal architecture, nuclear texture, and lympho-
vascular invasion etc. Prediction of clinical outcome
using graphical approaches for evaluation of architec-
tural organization and spatial configuration of different
types of tissues has resulted in considerable interest [63].
Wang et al. trained a ML model using nuclear orienta-
tion, nuclear shape, texture, and tumor architecture to
predict recurrence in early-stage non-small cell lung can-
cer (NSCLC) from HE stained TMA slides. Their model’s
prediction was shown to be an independent prognostic
factor resulting in 82% and 75% accuracy for prediction
of recurrence in two validation cohorts [61] (Fig. 3).

The prognostic implications of Al based tools were
also highlighted in 2018 by Saltz et al. who used a con-
volutional neural network (CNN) to augment pathologist
feedback for the automatic detection of spatial organiza-
tion of tumor-infiltrating lymphocytes (TILs) in images
from The Cancer Genome Atlas. Their findings revealed
this feature to be prognostic of outcome in 13 cancer
subtypes [92]. A similar study conducted by Yuan et al.
described a model to analyze the spatial distribution of
lymphocytes with respect to tumor cells on triple-nega-
tive breast cancer WSIs. Not only did they identify three
different categories of lymphocytes, so did they find a
direct correlation between late recurrence and the spatial
distribution of immune cells in ER-positive breast can-
cers [93]. CNN has also applied to breast cancer TMAs
for histological and molecular characterization. Auto-
mated detection of mitotic figures in breast cancer WSIs
using CNN has revealed a significant difference between
a high versus a low Oncotype DX-defined risk of disease
recurrence [72]. Similar prognostication study in colorec-
tal cancers using CNN-based approaches was performed
by Geessink et al. Employing pathologist-defined ‘stro-
mal hotspots;, CNN enabled quantification of ‘tumor-
to-stroma’ was seen to be independently prognostic for
disease free survival [94].

A seminal multi-institutional study published by Beck
et al. used a staggering number of morphological and
spatial features (6642) to train a prognostic model in
breast cancers and demonstrated these features to be
associated with overall survival (OS) [95]. A similar study
in human papillomavirus-positive oropharyngeal can-
cers showed that combining nuclear features of the stro-
mal and the epithelial compartments enabled prediction
of the likelihood of progression of these cancers [96]. A
related study in prostate cancers indicated the need for
population-specific features while designing models, as
significant differences in nuclear features of the stromal
compartment were noted between Caucasians and Afri-
can cohorts. The importance of such population-specific
models was also highlighted by greater accuracy in cal-
culating recurrence in a validation cohort of African

Page 6 of 12

American population by using an algorithm trained in a
cohort of similar racial demographics compared to that
trained in a mixed population [97].

Al as predictor of molecular and genomic profile

Recent advancements entail using H&E images to predict
genetic alterations by deep learning algorithms. Al tools
can be used to derive information about tumor genet-
ics/genomic profiles from morphology and thus help in
understanding underlying cancer biology [98]. Molecu-
lar-based testing for prognostic purposes that incorpo-
rates information from multiple parameters are already
available, e.g., the mRNA-based oncotype test [91]. Scha-
umberg et al. devised a model to predict the speckle-type
POZ protein (SPOP) mutation status in prostate can-
cers which showed an area under curve (AUC of 0.74
and AUC of 0.86 in two independent cohorts. Similar
attempts have been made to predict commonly mutated
genes in other tumor types [99]. Coudray et al. were able
to generate a CNN model that could predict mutations
in KRAS, EGFR, TP53, FAT1, STK11 and SETBP1, with
high accuracy (AUC between 0.733 and 0.856). Similar
approaches have been used for obtaining information
regarding microsatellite instability from H&E images in
colorectal and gastric cancers [100]. One such study by
Kather and colleagues used a deep learning approach
for elucidating microsatellite instability in a total of
1616 H&E images of both frozen and formalin fixed spec-
imens with high accuracy (AUCs between 0.69 and 0.84
in five cohorts) [101].

While the identification of association between mor-
phological patterns and tumor genetics seems to be
straightforward, integrating mega volumes of genomic
data such as next-generation sequencing (NGS) can be
challenging. Studies highlighting the impact of combin-
ing NGS data with other features are warranted before
implementing such algorithms in clinical diagnostic prac-
tice. What further complicates the picture is the lack of
in-depth knowledge about the interaction between imag-
ing and genomic features. Although integrating the imag-
ing and molecular features can provide a comprehensive
view of individual tumors, however, development, train-
ing, and validation of models capable of tackling such
sophisticated multidimensional data remains a challenge
[57].

Utility of Al in research, training, and education

Al tools provides critical tools to enhance pathologists’
training, provide helpful annotations and other interac-
tive functions to create a dynamic teaching environment
for trainees. This can help integrate a strong knowledge
of morphology with the use of novel approaches and
advanced technologies in enabling the practice of high-
quality personalized and precision medicine. Whole-slide
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imaging is already used for teaching at conferences, vir-
tual workshops, presentations, and tumor boards [26,
102]. The Ohio State University Wexner Medical Center
has incorporated the use of a “digital cockpit” for fully
digital sign-outs. Residents regularly preview digital
slides using the Philips integrated management system
(IMS). The annotation tools enable viewing, panning,
and zooming enhanced digital slides, encircling regions
of interest, including a single cell under question, thereby
creating a more interactive learning interface. The clini-
cal and research registries, the organ-based databases,
our exceptional laboratory information system (LIS, col-
loquially called “beaker”) as well as the synoptic report-
ing templates are excellent examples of bioinformatics
driven tools used in the everyday practice of pathology.
The university also leverages several of its add-on com-
ponents to enable integration of WSI into the LIS. This
underscores the state-of-the-art incorporation of digital

Table 1 An overview of the challenges and roadblocks
encountered during various steps of using artificial intelligence
(Al) tools in pathology workflow

Process involved in Challenges and roadblocks
integration of Al tools in
pathology

Identification of needs

- Incorrection assessment of end-user
and demands

- Small market size of Al usage

- Lack of awareness of possibilities of use
- Lack of coordination between different
players

- Discordance in goals of participants

- Scientific background/rationale

« Funding

- Ethical approval

- Pre-analytical and analytical factors

- Lack of objective ground truth

Collaborative inter-disciplin-
ary efforts

Study concept, design

Development of algorithmic
models

Optimization, validation, and
standardization

- Lack of appropriate validation dataset
- Overfitting

- Lack of interpretability and
generalizability

« Black-box issue

Interpretability

Data curation - Difficulty in obtaining well-curated,

annotated data
Regulation/approval
Installation

- Lack of clear-cut regulatory guidelines
- Pathologists' resistance to changes in
old workflow

- ITinfrastructure investment and over-
head costs

- No external quality assurance scheme
« Unestablished audit cycles

Accreditation

Reimbursement - Lack of dedicated procedure codes
« Lack of FDA approval for use of Al

- Skepticism among pathologists and

Clinical adoption

oncologists
Computation system and - Need for powerful, high specification
data storage hardware

- Cost-benefit ratio considerations
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pathology tools in clinical workflow [103, 104]. The use
of Visopharm Al tools enables swift detection of isolated
tumor cell metastases in lymph nodes in difficult cases.
Integrating such Al tools in the daily sign-out workflow
can supplement key information for the trainees to come
up with a list of differential diagnosis and potential aux-
iliary tests that can be subsequently ordered, thereby
honing their diagnostic skills. It also provides relevant
educational resources which can potentially improve
resident training. Such educational models can be com-
plementary to the conventional educational processes
provided by the pathologists and can be adopted by other
institutions. Not only has it improved the in-house train-
ing and inter-subspecialty consults, so has it made it a lot
easier to collaborate with other institutions and provide
efficient consults and second opinions on challenging
cases [26, 103, 104].

Role of Al in drug discovery and development

Immune checkpoint inhibitors (ICIs) have led to a para-
digm shift in treatment of various cancers over the past
few years. However, many patients receiving ICIs do
not respond to this therapy, and this has resulted in the
potential need for combining Al with digital pathology
to stratify patients based on likely therapeutic benefit
[105]. A study on recurrence risk stratification of early-
stage non-small cell lung cancers (NSCLC) based on
nuclear and perinuclear features (shape, orientation, and
spatial arrangement) was conducted by Wang and col-
leagues. High-risk patients were potential candidates for
adjuvant chemotherapy. Al tools, such as hand-crafted
ML approaches, can also be used to predict therapeutic
response to targeted agents, ICIs, and chemotherapeutic
drugs. One such study by Wang et al. described the pre-
diction of response to anti programmed cell death 1 (PD-
1) antibody nivolumab in late-stage NSCLC using spatial
orientation of nuclei and TILs [44, 61, 106].

Roadblocks and challenges preventing Al application
Ethical principles and Al

In 2016, Wilkinson et al. highlighted the need to improve
the infrastructure supporting the reuse of scholarly data
and came up with the FAIR guiding principle for scien-
tific data management and stewardship. Data should be
easily accessible, operator-independent, and reusable to
ensure stringent data management. This is essential for
knowledge discovery and innovation, and ensures reus-
ability of data by the community after publication (Table
1) [107].

Validation of algorithms and overfitting

AT algorithms need rigorous multi-institutional valida-
tion before they can be clinical implementation. This
usually requires application of the algorithmic approach/
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model on a training/learning discovery set, followed
by confirmation of results on validation set. Current Al
algorithms are mainly established on small-scale data and
images from single center, augmented by random rota-
tion and flipping, color jittering, and Gaussian blur. The
training set should be well balanced in terms of equal
representation from all categories of interest. Once the
algorithm is trained after several iterations on the dis-
covery dataset, further optimization is performed on the
validation dataset. This process can be quite laborious
and challenging and acquisition of pertinent datasets/
cohorts might be cumbersome [91]. In a study performed
by Zech et al. it was shown that a CNN algorithm for
detection of pneumonia performed significantly poorer
when it was trained using data from one institution and
validated independently using data from two other insti-
tutions than when it was trained using data from all three
institutions, thereby highlighting the need for robust
validation of Al algorithms using multi-institutional data
before clinical adoption [108]. ‘Overfitting” is when Al
algorithms, trained on one dataset, have limited appli-
cability to other datasets [109]. It can be difficult to find
well-curated, accurate WSI reference datasets across
cancer subtypes with annotated cancerous regions for
algorithmic standardization. Furthermore, differences in
pre-analytical and analytical factors, such as slide prepa-
ration techniques, scanner models and digitization pro-
cesses, between different centers must be considered
while using applying these Al tools. To ensure the gener-
alizability and robustness of the AI algorithms, stringent
quality assurance and standardization needs to be done
at regular intervals. This requires development of large
databases and repositories of annotated WSIs validated,
corrected, and updated by a team of expert pathologists
(Table 1) [91, 110].

Interpretability and the ‘black box’ problem

The ‘black box’ problem is the inability of deep learn-
ing algorithms to demonstrate how they arrive at their
conclusions [111, 112]. Despite obvious advantages of
accuracy and efficiency, deep neural networks face sharp
criticism due to lack of interpretability, which forms
a huge roadblock in clinical adoption. Several studies
aimed to overcome this skepticism used post hoc meth-
ods to comprehensively analyze the outputs of Al algo-
rithms. However, post hoc analyses of deep learning
methods seem superfluous as additional models should
not be required to explain how an AI model works.
Due to their development in conjunction with domain
experts, hand-crafted AI approaches offer an advan-
tage of better interpretability. To increase interpret-
ability, researchers have integrated DL algorithms and
hand-crafted ML approaches to come up with ‘fusion’
approaches. Be as it may, engineering both these methods
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is challenging and time-consuming and requires both
oncologists’ and pathologists’ inputs. One such ‘fusion’
method to predict disease recurrence was described by
Wang et al. who used a DL approach for nuclear seg-
mentation in H&E images of NSCLC followed by appli-
cation of hand-crafted method based on nuclear shape
and texture. Future strategies are warranted to increase
the interpretability of AI algorithms before they can con-
fidently be used in the clinical setting [51, 111, 113].

Quality of data

For optimal performance of Al-based approaches, it is
highly important that the input data be of optimal quality
and quantity. The highest predictive accuracy is reached
when the training data has optimal signal-to-noise ratio,
is well-curated and comprehensive. The importance of
high-quality data is highlighted in the work of Doyle et
al. that used an Al tool for automatic detection of pros-
tate cancer in WSIs [110]. An increase in magnification
resulted in a decrease in the overall performance of the
model due to loss of granularity at increased resolution.
Majority of existing slide scanners have a maximum
capability to scan at X40. While higher resolution images
(>x20) can be scaled down to be used by an algorithm
trained at a resolution of x20, considerable loss of data
fidelity can occur with the use of an AI approach devel-
oped at x40 when the maximum scanning resolution
available is x20. Hence, ensuring data fidelity is of para-
mount importance in order to standardize the evaluation
of the performance of Al algorithms [52, 110, 114].

Computational system, data storage and cost-benefit ratio

It is essential to have a powerful high specification hard-
ware for processing and analyzing images as well as
ample scalable data storage for storing these large size
files (about 1000 times the size of an X-ray). Buying cloud
storage platforms might be costly as well as have chal-
lenges in in the massive bandwidth required to transmit
gigapixel-sized WSI images into data clouds. Addition-
ally, cloud storage requires uninterrupted fast wi-fi com-
munication between end-users and the cloud. Universal
adoption of 5G would improve speed and address some
of these difficulties in the future [115]. The cost of pro-
curement, implementation, and operational costs of Al
may be a limiting factor, especially for small laboratories.
The high initial cost of the scanners and additional hid-
den costs of training of staff and pathologists, technical
support, digital slide storage systems, and regulatory or
licensing costs incurred may be prohibitive to the adop-
tion of Al in clinical practice [116]. Another cost con-
sideration is the robust IT support for telepathology. A
study found the cost-benefit analysis at a large-volume
academic center with slides in excess of 1.5 million to
be projected $1.3 million savings over a 5-year period.
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Before any meaningful inferences can be drawn, cost-
benefit studies need to be performed in low-resource
settings and small pathology laboratories [117]. In stark
contradistinction to radiology, where digital systems
obviate the need of making films, WSI in pathology does
not reduce the laboratory’s workload since glass slides
still need to be prepared to be scanned, thereby raising
concerns about the justification for this additional step
[118].

Technological issues

Scanning the entire slide is a laborious and time-con-
suming process with variable scanning times ranging
between 1 and 5 min for a small biopsy, 5-20 min for a
surgical specimen and 3-5 min for a liquid-based cytol-
ogy smear. Additionally, most of the current scanners
require massive data storage capacity with 1-mm? at x 40
magnification resulting in a file size of 48 megabytes! To
overcome this, most WSI platforms resort to image com-
pression algorithms (JPEG, JPEG 2000, LZW) to reduce
size significantly. The disadvantage of this compression
is the introduction of image artefacts which can compro-
mise overall pixel quality (Table 1) [118].

Regulation, reimbursement, and clinical adoption

Before an Al algorithm can be used in the clinical set-
ting, it is essential to get clearance by the regulatory
bodies. For getting approved, a clear description of how
the software works must be provided, especially for DL-
based algorithmic approaches that are perceived as a
‘black-box’ lacking interpretability. Depending upon the
country, The Food and Drug Administration (FDA), the
European Medicines Agency (EMA) and other regulatory
agencies lay down stringent guidelines and frameworks
for ensuring scientific rigor of the reported metric. The
FDA approval of medical devices is based on a three-class
system with Class I devices supposed to have the lowest
risk and Class III devices deemed to have the highest risk.
Al-based models fall within class II or III, with class III
requiring a rigorous premarket approval. 510(k)-approval
pathway and De Novo pathway are some other ways of
getting Al algorithms approved. Be as it may, the pro-
cess is highly rigorous and comprehensive [119-121]. In
2017, Phillips got De Novo approval for introducing the
IntelliSite Pathology Solution [19]. This was followed by
PAIGE.Al's FDA approval as Breakthrough Device in
2019 [122]. Interestingly, no FDA approval was sought
for OncotypeDX for breast cancers since it was a Clinical
Laboratory Improvement Amendments (CLIA)-certified
central test assay. Laboratory Developed Tests (LDTs) are
usually complex and due to “black box” issue, the College
of American Pathologists (CAP) has requested for a more
stringent FDA regulation for such high-risk prognostic
and predictive tests. At present, no dedicated procedure
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codes exist for the use of Al approaches in digital pathol-
ogy with diagnostic or prognostic intent. Once Al tools
receive FDA approval, new procedure codes will need
to be established to bill patients [91, 123]. CAP, work-
ing with the American Medical Association (AMA) CPT
Editorial Panel, has successfully advocated for the inclu-
sion of 13 new digital pathology add-on codes to be effec-
tive January 1, 2023. The new codes have been accepted
for Cat III - Digital Pathology: 0751T to 0763T. These
new digital pathology CPT codes will be used to report
additional clinical staff work and service requirements
associated with digitizing glass microscope slides for pri-
mary diagnosis (Table 1) [124].

Pathologists’ dilemma-to use or not to use

A key roadblock for the incorporation of Al in clinical
practice comes from an apprehension about the change
in workflow. This is partly because of lack of interpret-
ability and partly due to the somewhat unclear question
of performance thresholds of Al algorithms. While there
is evidence of decreased error rates and improved per-
formance using a combination of DL-based model pre-
dictions with pathologist diagnoses, replacing human
evaluation entirely by assessment by machine is met with
considerable cynicism [115]. A study published by Wang
have shown that a combined approach can decrease
human error by 85% for detection of breast cancer metas-
tases in sentinel nodes [125]. Another important question
that needs to be addressed is whether there is an actual
decrease in overall turn-around time. Decreased ability
to directly control diagnostic workflow and lack of clar-
ity on amount of responsibility assigned to pathologists
while reporting using Al are some practical issues that
need to be resolved before a meaningful human-machine
cooperation can occur in the clinical setting [91].

Future directions and opportunities

In the past few years, there has been an increase in the
development of Al tools for detection of cancer by vari-
ous companies like Visiopharm, Halo, Proscia, Deep-
Lens, Inspirata and PAIGE.AIL Of these, Inspirata and
PAIGE.AI are actively involved in creating large WSI
repositories for training DL-algorithms [91, 126, 127].
FDA approval of the Philips whole-slide scanner in 2017
marked a watershed moment in the path towards digiti-
zation of clinical workflow [19]. The challenges thrown
by the COVID-19 pandemic necessitated the adoption
of digital workflow in daily clinical practice by some
institutions, including ours at The Ohio State University
Wexner Medical Center. Despite the myriad challenges
and obstacles in the adoption of digital workflow replete
with Al tools, there has been a paradigm shift in the land-
scape of digital pathology [91]. The advent of open-top
light sheet microscopy which generates non-destructive,
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slide-less three-dimensional (3D) images of tissues might
provide a substantially greater degree of spatial and
architectural information needed for application of Al
approaches. Similarly, MUSE microscopy might circum-
vent the need for tissue processing and staining by pro-
viding high-resolution images of tissues using ultraviolet
rays [128]. While current Al applications can recognize
tumor scores and grades, in the future, most of them will
likely continue to be in the narrow Al domain, focusing
on only a single task [129].

Conclusions

The last few years have seen a tremendous growth in
the development of novel AI approaches in pathology.
These tools, when used intelligently, can improve diag-
nostic workflows, eliminate human errors, increase
inter-observer reproducibility, and make prognostic pre-
dictions. While there has been an increase in the devel-
opment of Al tools, the integration into clinical practice
has somewhat lagged owing to several issues related to
interpretability, validation, regulation, generalizabil-
ity, and cost. As the need for personalized cancer care
increases, Al applications may be implemented and used
appropriately in conjunction with human pathologists,
after standardized usage recommendations, and harmo-
nization with current information systems. A multimodal
approach using proteomics, genomics, and Al-based
multiplexed biomarker quantifications, might be neces-
sary for comprehensive patient-specific tumor precision
therapy [91, 130].
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