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Traumatic brain injury (TBI) is a leading cause of injury-related disability and death around the world, but the clinical
stratification, diagnosis, and treatment of complex TBI are limited. Due to their unique properties, extracellular vesicles
(EVs) are emerging candidates for being biomarkers of traumatic brain injury as well as serving as potential thera-
peutic targets. However, the effects of different extracellular vesicle subtypes on the pathophysiology of traumatic
brain injury are very different, or potentially even opposite. Before extracellular vesicles can be used as targets for TBI
therapy, it is necessary to classify different extracellular vesicle subtypes according to their functions to clarify different
strategies for EV-based TBI therapy. The purpose of this review is to discuss contradictory effects of different EV sub-
types on TBI, and to propose treatment ideas based on different EV subtypes to maximize their benefits for the recov-
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Introduction

Traumatic brain injury (TBI) is the leading cause of death
and disability at all ages, but especially among young peo-
ple. There are more than 50 million new TBI cases world-
wide every year with approximately 1 million deaths.
Most survivors, even from mild TBI, will have signifi-
cantly increased risk of neurodegenerative diseases later
in life (e.g., dementia and Parkinson’s disease), which will
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bring serious pain to patients and families and imposing
a great public health burden on the society [1]. In recent
years, the increasing research on extracellular vesicles
has provided new ideas for identifying different TBI
types, monitoring the dynamic evolution of the disease,
evaluating efficacies of treatments including surgery, and
predicting outcomes of the patients [2].

Extracellular vesicles (EVs) are bilayer vesicles
secreted by cells or released from injured cells or those
undergoing active microvesiculation and they may
contain DNA, RNA, intracellular granules, and cyto-
plasmic proteins of parent cells. Their membrane is
enriched in receptors from the transmembrane 4 super-
family, such as CD63 » CD9 » and CD81 [3] and lipids
such as phosphatidylserine, gangliosides, cholesterol,
glycosphingolipids and ceramides [4]. These EVs are
increasingly recognized as an important class of bio-
logical effectors for facilitating intercellular communi-
cation, maintaining system homeostasis, and mediating
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the pathogenesis of neurological diseases, cardiovas-
cular diseases, and cancers [5, 6]. EVs are typically cat-
egorized into exosomes, membrane microvesicles,
and apoptotic bodies on the basis of their secretion
pathway and particle sizes [7-9]. Exosomes measured
30-150 nm in diameter are derived from intraluminal
vesicles (ILVs) of multivesicular endosomes (MVEs).
Membrane vesicles measure 100-1000 nm in diameter
and could be produced by cell budding. Apoptotic bod-
ies are 50-500 nm in diameter and are produced by cells
undergoing apoptosis. However, this EV classification
has significant limitations. First, the boundaries of this
classification are ambiguous, especially as exosomes
and microvesicles overlap in size, and current technolo-
gies cannot clearly distinguish and identify them solely
based on particle size [5]. Second, this classification
does consider the structural and functional characteris-
tics of EV subtypes, thus causing confusion in literature
reports [10]. Since there are no clear cellular markers
and functional characteristics that will clearly separate
different types of EVs, traditional markers such as CD9
» CD63 » CD81 » TSG101 ~ Alix » Flotillin-1 » HSC70
» Actin » MHC I and MHC II are used to identify EV
subtypes [9]. A standardized classification of EVs is
therefore needed for more comprehensive studies of
EVs. In this regard, the MISEV2018 guidelines have
proposed the use of the term "extracellular vesicles"
and fully explained the size and structure of EVs as well
as methods of isolating and identifying them [11]. In
this review, we use the term "extracellular vesicles" to
include exosomes, membrane vesicles, and apoptotic
bodies.

Almost all brain cells can secrete or generate EVs that
can cross the blood—brain barrier and enter the circula-
tion [12], so real-time sampling of peripheral blood may
offer a convenient means of measuring changes in the
brain [2, 13]. Signatures of these EVs can potentially be
used to identify the type and severity of TBI evaluation
[14], measure clinical efficacies of treatments, evaluate
prognosis [2], and predict the risk of long-term sequelae
(such as post-traumatic epilepsy, Alzheimer’s disease)
[13, 15, 16]. More importantly, EVs released into the
circulation not only carry the original biological infor-
mation of the parental cells but also protect their cargo
contents, such as nucleic acids and proteins from enzy-
matic degradation in the blood [17]. They can be trans-
formed into drug carriers for the treatment of TBI and
its complications as well [18]. Because of their complex-
ity, the question is whether EVs as a whole are beneficial
or detrimental to TBI patients. Answering this question
proves challenging for several reasons. First, experimen-
tal studies in vitro and in animal models find that differ-
ent types of EVs can have different or opposite effects on
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TBI [18, 19]. Second, the same EV subtype may have dif-
ferent effects on various diseases and pathological stages
of TBI [20].

This review links the biology of EVs to the pathogenesis
of TBI. To more clearly distinguish the subtypes of extra-
cellular vesicles with differential effects on TBI and facili-
tate the selection of appropriate EV-based therapeutic
strategies, we divided EVs into three categories: patho-
logical EVs (PEV), biological EVs (BEV), and drug-loaded
engineered special purpose EVs (EEV). PEV mediate the
pathophysiological process of secondary damage from
TBIL, and BEV inhibit the progression of TBI second-
ary damage and participates in tissue repair and body
rehabilitation, and EEV can treat TBI in a targeted and
specific manner. This classification does not refer to a
specific type of EV, but a collection of many types of EVs
with the same function. Furthermore, it is relative, in that
specific EVs can be PEV under certain conditions but fall
into another class under different circumstances such
as different pathological stages of TBI. When EEV are
improperly modified to carry drugs to treat TBI patients,
unexpected complications may occur, and EEV thus
become PEV.

PEV, BEV and EEV in TBI

PEV mediate secondary damages from TBI

We summarize the reports on the pathological role
of PEV in the current literature (Table 1). It should be
pointed out that the difference between membrane vesi-
cles and exosomes highlighted in the early literature not
only pertains their size and biogenesis, but also to that
the surface of the membrane vesicles is enriched with
anionic phospholipid phosphatidylserine (PS). Recent
studies have shown that exosome membranes also con-
tain PS [21], but it is not known whether there is a dif-
ference in PS contents between exosomes and membrane
vesicles. PS is primarily located on the inner membrane
of cells, but it becomes exposed on the surface of EVs
when the asymmetric distribution of phospholipids is
remodeled [8]. However, the biological effects of PS
exposed on EVs remains poorly understood except for its
procoagulant activity [22]. PS-enriched membrane vesi-
cles and exosomes are closely associated with primary or
secondary injury induced by TBIL. We have shown that PS
exposed on the surface of EVs contributes to the develop-
ment of consumptive coagulopathy in mice subjected to
TBI [23-25]. PS-enriched EVs are therefore collectively
considered to be PEV.

PEV and TBl-induced coagulopathy

TBI-induced coagulopathy (TBI-IC) is a common and
serious complication of TBI [48, 49], manifested as sys-
temic coagulation disorder and secondary or delayed
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intracranial or intracerebral hemorrhage, which often
results in severe neurological dysfunction and death
[25]. The incidence of coagulopathy after TBI is reported
to be 32.7-35.2% according to two meta-analyses [50,
51], and most patients with severe TBI have abnormal
coagulation tests indicating hypercoagulation [48, 52].
Patients with TBI-IC have a ninefold higher risk of death
compared with TBI patients without coagulopathy, lead-
ing to a mortality of 35-50% [48, 49, 52]. Despite its
high mortality rate, the pathogenesis of TBI-IC remains
poorly understood. Our recent studies in mouse models
suggest that EVs have multiple roles in triggering TBI-IC
[23-25, 37, 53].

We demonstrated that mice subjected to TBI release
significant amounts of brain-derived extracellular vesi-
cles (BDEVs) into the circulation, where these BDEVs
induce a systemic hypercoagulable state that rapidly
develops into consumptive coagulopathy [53]. Key mol-
ecules involved in this BDEV-induced systemic hyper-
coagulation include anionic phospholipids such as PS,
which is highly enriched in brain cells [25], and tis-
sue factor (TF) exposed on the membrane surface of
BDEVs [23]. The membrane-bound PS and TF allow
for the assembly of the tenase complex in the extrin-
sic coagulation cascade, thus consuming a substan-
tial amount of coagulation factors. In addition, BDEVs,
especially extracellular mitochondria (exMT) that are a
key component of them [24], can activate platelets and
endothelial cells to release platelet-derived EVs (pEVs)
and endothelial cell-derived EVs (eEVs) to propagate the
intravascular coagulation initiated by BDEVs [25, 27, 37].
These exMTs promote coagulation through the surface
exposed anionic phospholipid cardiolipin (CL) [24] and
are also metabolically active in generating reactive oxy-
gen species (ROS), which activate platelets through the
interaction between the lipid scavenging receptor CD36
on platelets and CL on exMTs [27]. Consistent with our
results, Nekludov et al. [54] found that EV counts in cer-
ebral venous blood (regardless of cell origin) were higher
in TBI patients than in healthy individuals and that TE-
exposed eEVs and P-selectin-exposed pEVs had higher
concentrations in cerebral vein samples than in arterial
samples. These clinical data further support the notion
that PEV mediates the development of coagulopathy
after TBI [38, 55-57](Fig. 1b&c).

PEV and TBI-induced inflammation

Neuroinflammation is a process of immune activation
that mediates the development of secondary cerebral
injures during acute TBI [58]. Upon exposure to trau-
matic injury, damaged meninges, glial cells, and brain
parenchyma rapidly release molecules that are collec-
tively termed damage-associated molecular patterns
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(DAMPs), which release ATP, high-mobility group box
protein 1(HMGB1) and other related factors [59-61].
These molecules bind to pathogen-associated molecu-
lar patterns (PAMP) and DAMP sensors (such as TLR
and purinergic receptors) [62] to assemble inflamma-
some [63, 64] and activate microglia [65], which produce
IL-1b, IL-6, IL-12, TNF-a, metalloproteinases, nitro
oxide, and ROS to promote inflammatory responses
[66, 67]. As immune cells first to infiltrate the CNS dur-
ing acute inflammation, neutrophils are recruited to and
become activated at the injury site [68], and they prop-
agate the injury-induced local cerebral inflammation
through their interaction with microglia and astrocytes
[68, 69]. Monocytes and T cells are then recruited to the
damaged area, where monocytes are transformed into
macrophages to clean up debris and damaged cells [70]
and T cells produce neuroprotective cytokines involved
in neuroinflammation [71]. The TBI-induced neuroin-
flammation can either subside over time or become a
persistent chronic inflammatory state [72]. While neu-
roinflammation is critical for debris clearance, tissue
repair, and nerve regeneration after TBI, dysregulated
inflammation can lead to additional acute and chronic
damages to the brain [58].

Several lines of evidence suggest that PEV contribute to
dysregulated inflammation associated with TBI (Fig. 1a).
First, PEV act as a mediator for the development of exces-
sive or persistent inflammation in TBI [19]. The levels of
circulating EVs in mice subjected to TBI are significantly
increased, and these EVs exacerbate and propagate the
inflammatory response after TBI [29], whereas neuroin-
flammation is effectively suppressed and the neurologi-
cal function is significantly improved with the removal
of plasma EVs [30]. Second, PEV are reported to regu-
late glial cells to propagate and amplify the inflammatory
response after TBI by delivering a large number of pro-
inflammatory mediators and specific miRNAs [31-33].
As the first responder and a major player in TBI-induced
inflammation, microglia (similar to macrophages) are
traditionally divided into a pro-inflammatory M1-like
phenotype and an anti-inflammatory M2-like pheno-
type [58, 73], even though new classifications based on
RNA-sequencing at the single-cell level are increasingly
recognized for establishing a clear map of microglia and
macrophages at different stages of TBI [72]. We rec-
ognize that the term M1 and M2 microphages are also
called pro-inflammatory (M1) and pro-regenerative (M2)
glia cells and macrophages in recent report. To avoid
confusion, both terms are included in this review. The
neuron-derived PEV carrying microRNA-21-5p induce
pro-inflammatory microglia (M1 microglia) to exacer-
bate neuroinflammatory cytokine release, inhibit neur-
ite regeneration, and promote neuronal apoptosis, thus
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causing a cyclic cumulative damage [33]. Furthermore,
more EV-associated miR142 exists in the cerebral cortex
surrounding the traumatic lesion in rats 2 weeks after TBI
and may further enhance the pro-inflammatory response
of activated astrocytes in the region [32]. There are three
possible mechanisms through which EVs affect target
cells. First, membrane EVs directly fuse with the mem-
brane of target cells or with the endosomal membrane if
EVs are endocytosed to release their miRNAs into target
cells [74], or alternatively EV-carried microRNA spe-
cies bind to target mRNAs to reduce their translation
[75]. Second, miRNAs carried by EVs bind to pattern
recognition receptors in the endosomal compartment,
such as Toll-like receptors 7/8 (TLR7/8) [76], to trigger

pro-inflammatory responses [77]. Third, neuron- or glial
cell-derived PEV directly participate in central nervous
system (CNS) inflammatory responses and exacerbate
secondary damage after TBI. Kumar et al. [31] found that
PEV released by microglia after TBI are rich in the pro-
inflammatory mediators IL-13 and miR155 and further
propagate the inflammatory response within the cer-
ebral cortex of mice subjected to severe TBI. EVs released
from primary human astrocytes activated by IL-1 express
a specific subset of miRNAs [34], in which MiR-30d
upregulates pro-inflammatory cytokines including IL-1
to promote autophagy and apoptosis in these cells [78].
Similarly, Harrison et al. [35] found that miR-21-en-
riched EVs were pro-inflammatory and induced neuronal
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necroptosis in mouse models of TBI. The signaling path-
ways and molecular mechanisms of PEV carrying differ-
ent miRNAs and pro-inflammatory mediators directly
involved in the inflammatory response after TBI remains
to be further studied. Finally, PEV may mediate inflam-
mation crosstalk between CNS and systemic organs. In
other words, PEV-mediated inflammatory injury after
TBI involves both circulating PEV crossing the damaged
blood-brain barrier (BBB) and exacerbating CNS inflam-
mation and injury [29], and CNS-derived PEV crossing
the damaged BBB into the peripheral circulation, result-
ing in acute organ damage [36].

PEV and brain edema after TBI

Cerebral edema during the acute state of TBI can increase
intracranial pressure, resulting in secondary ischemic
cerebral tissue injuries, brain herniation, and death [79,
80]. The disruption of the BBB is the most common cause
of vasogenic edema [80]. In addition to traumatic injury,
secondary neuroinflammation and oxidative stress fur-
ther damage the BBB, significantly increasing its per-
meability and perivascular fluid accumulation [81]. The
permeability of BBB increases through two intercon-
nected processes: increasing paracellular transport and
causing transcytosis across endothelial cells. For the for-
mer, mechanical injury, neuroinflammation, and oxida-
tive stress disrupt the tight junction structure between
endothelial cells, leaking normally inadmissible compo-
nents into the extravascular space, such as immune cells
that intensify the local inflammatory reaction to propa-
gate BBB damage in a vicious circle [79, 82, 83]. For the
latter, the number of endothelial cell caveolae increases
rapidly shortly after TBI to allow the diffusion of proteins
across endothelial cells via liquid-phase transcytosis and
transendothelial channels, leading to transport and accu-
mulation of macromolecules and serum proteins in the
interstitial space of the brain [79, 82, 83].

We have shown in mouse models that PEV enhance
BBB permeability to promote cerebral edema and a sys-
temic hypercoagulable state during the acute phase of
TBI [25, 37] (Fig. 1d). BDEVs released by injured brains
also stimulate endothelial cells to secrete the hyperad-
hesive von Willebrand factor (VWF), which activates
platelets to generate procoagulant and proinflammatory
pEVs in fluid phase. These VWEF-bound EVs adhere to
endothelial cells of the BBB through the interaction with
CD62p [84] and integrin avp3 [85] to activate endothelial
cells and generate procoagulant eEVs [37]. Reducing the
hyperadhesive activity of VWF by enhancing VWF pro-
teolysis or blocking its active site prevented EV-induced
endothelial injury, coagulopathy, and neurological defi-
cits associated with severe TBI [26, 37, 86]. Consist-
ent with our results, Andrews et al. found that the brain
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endothelial cells of TBI mice release eEVs containing
claudin and endothelial markers to increase BBB permea-
bility [38]. Because of the high heterogeneity of PEV from
different types of cells, efforts are needed to differentially
identify specific components responsible for causing BBB
permeability, neuroinflammation, oxidative stress, and
coagulopathy and their underlying mechanisms.

PEV and systemic complications after TBI

Systemic complications of TBI are common and con-
tribute to the high mortality of patients [1]. These com-
plications involve the lungs, heart, coagulation system,
kidneys, and liver [87, 88], but how a relatively localized
injury to the brain is disseminated systemically remains
poorly understood. Several factors may collectively con-
tribute to the systemic effects of TBI. The first is the "cat-
echolamine surge’; which refers to the massive release
of epinephrine and norepinephrine from the hypotha-
lamic-pituitary axis during acute TBI, resulting in the
constriction of peripheral blood vessels [89]. The second
is TBI-induced inflammation. The third is PEV-induced
systemic inflammation, immune dysregulation, and intra-
vascular coagulation. The lungs are the most common
organ that develops secondary injury post TBI [87, 88],
usually manifesting as acute lung injury, acute respira-
tory distress syndrome, pneumonia, pleural effusion, pul-
monary edema, and pulmonary thromboembolism [25,
90]. Kerr et al. found that EVs carrying proinflamma-
tory cytokines were released into the peripheral circula-
tion after TBI in experimental mice, and these EVs were
endocytosed by pulmonary cells including endothelial
cells to trigger inflammasome activation and resultant
lung injury [36, 91]. Hazelton and Couch et al. reported
that PEV serve as communication mediators between
the nervous system and liver, to trigger systemic inflam-
mation and exacerbate injuries to the nervous system
and the liver during acute TBI [29, 39]. PEV are also the
key mediator of TBI-IC and trigger secondary injuries to
other organs [23, 25, 26].

PEV and neurological disorders associated with TBI

Increasing evidence supports TBI as a major risk factor
for long-term neurological diseases, especially neurode-
generative diseases such as Alzheimer’s and Parkinson’s
disease, further strengthening the argument that acute
TBI can evolve into chronic diseases [1, 92]. A meta-
analysis of samples from 4,639 patients by Fleminger
et al. [93] found that a history of TBI was associated with
a 2—fourfold increased risk of Alzheimer’s disease (AD)
late in life and that the more severe the injury, the higher
the risk for AD will be. Similarly, repeated TBI after age
55 increases the risk of Parkinson’s disease (PD) by 44%
over the following 5-7 years, and that risk is positively
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associated with the severity of TBI [94]. However, we
would like to point out that, while TBI as a long term
risk for neurodegenerative disease has been extensively
studied in clinical settings and in animal models, the
vast majority of these studies have been conducted on
patients with mild to moderate TBI, with very limited
information regarding the risk of patients with severe
TBI for neurodegenerative diseases [95]. In animal stud-
ies, the long-term effects on cognitive function have also
been investigated with mice or rats exposed to mild to
moderate TBI. Findings from limited reports on severe
TBI patients are not consistent. For example, in a study
of the working-age population, a history of moderate-to-
severe TBI is associated with an increased risk for future
dementia but not for Parkinson disease or amyotrophic
lateral sclerosis [96]. In contrast, a study of pooled clini-
cal and neuropathology data from three prospective
cohort studies shows that TBI with loss of conciseness
(TBI severity was not defined by common measurements
such as GCS or ISS in this study) has increased risks for
Lewy body accumulation, progression of Parkinsonism,
and Parkinson’s disease, but not dementia, Alzheimer’s
disease, neuritic plaques, or neurofibrillary tangle [94].
More importantly, we were unable to find any studies in
the literature that have evaluated the effects of TBI treat-
ments (e.g., decompressive craniectomy) on the devel-
opment of neurodegenerative diseases. Since surgery
and other TBI resuscitation measures can be significant
confounding variables for the long-term outcomes of
patients, it proves very challenging to accurately esti-
mate risk for neurodegenerative diseases in patients with
severe TBI, who will undergo extensive surgical and non-
surgical treatments.

The typical pathology of TBl-associated AD is simi-
lar to that of other causes, ie., amyloid p-peptide (Ap)
aggregates into extracellular amyloid plaques and hyper-
phosphorylated tau accumulates intracellularly to form
neurofibrillary tangles [97], and Lewy bodies (LBs)
and Lewy neurites (LNs) in PD contain oligomerized
a-synuclein (a-syn) [98].

Evidence also shows that PEV play an important role
in developing TBI-associated neurodegenerative diseases
[99] (Fig. 1e). EV biogenesis is an important complemen-
tary pathway for clearance of misfolded proteins, espe-
cially when lysosomal function is compromised [100].
When lysosomes are impaired in their ability to remove
toxic proteins, cells initiate or upregulate EV biogenesis
to achieve the same effect as the intracellular degrada-
tion of harmful components by secreting EVs containing
toxic proteins [101]. Furthermore, EVs carry pathogenic
protein aggregates and are able to spread neurodegen-
eration-associated protein aggregates throughout the
brain [100], such as AP [40] and tau in AD [41, 102],
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a-synuclein in PD [42, 44], TAR DNA-binding protein
of 43 kDa (TDP-43) in amyotrophic lateral sclerosis [43],
and huntingtin protein in Huntington’s disease [103].
Finally, cells have a higher rate of endocytosing misfolded
proteins packed in EVs than free misfolded proteins. As
such, EVs carrying misfolded proteins are likely to be
more toxic to neurons [41, 45, 46]. In addition, RNAs
packed in EVs also contribute to the development of
neurodegenerative diseases after TBI [47]. For example,
miRNA-9, miRNA-29a and b, and miRNA-146a in blood
and cerebrospinal fluid are involved in the formation of
misfolded proteins and related inflammatory processes in
AD [104-106]. Estes et al. reported that the lipid compo-
nent of EVs plays an important role in the progression of
neurodegeneration [100] by promoting the aggregation
and spread of pathogenic protein aggregates. In conclu-
sion, increasing evidence supports the involvement of
PEV in the development of chronic neurological disease
long after TBI, but their specific activities remains to be
further defined.

Protective and healing effects of BEV in TBI

In addition to their detrimental effects, EVs may also
have protective or healing effects and can call beneficial
EVs (i.e., BEV) derived from either different classes of
EVs or differential components of the same types of EVs
(Table 2). Efforts to identify, characterize, and separate
detrimental from beneficial EVs have been ongoing but
face significant challenges to overcome. Apart from their
intrinsic activities, the same types of EVs can be both det-
rimental and beneficial depending on their targets, envi-
ronments, and times of their actions.

BEV and excessive inflammation after TBI

TBI-induced neuroinflammation plays a key role in
repairing disrupted BBB, clearing cellular debris, and
releasing trophic factors, but its dysregulation could
exacerbate damages to the nervous system, slow the
process of tissue repair, and promote the transition to a
chronic inflammatory state [72]. Because of these para-
doxical post-TBI inflammatory responses, attempts to
suppress the inflammatory response have not only failed
to improve clinical outcomes for patients during the
acute phase of TBI [144, 145] but may increase mortal-
ity [146]. The paradoxical role of post-TBI inflammatory
responses is also reflected in the function of EVs. EVs
released from injured brains are involved in both patho-
logical processes to aggravate nervous system damage as
well as the process of tissue repair and healing.

BEV could inhibit the development of excessive inflam-
mation after TBI (Fig. 1f). Notably, microglia-mediated
inflammation-associated EVs may be the focus of research
to suppress TBI dysregulated inflammation [31]. EVs can
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stimulate the transition of microglia from pro-inflamma-
tory to pro-regenerative (M1 to M2 transition) [107]. For
example, EVs derived from activated astrocytes carrying
miR-873a-5p can serve as BEV to mediate the communi-
cation between astrocytes and microglia, inhibiting the
NF-kB signaling pathway to reduce microglia-mediated
neuroinflammation and improve neurological function
in TBI mice [108]. Microglia-derived EVs carrying miR-
124-3p may also play an anti-inflammatory role by target-
ing the PDE4B gene to inhibit the activity of the mTOR
signaling pathway, thus suppressing neuroinflammation
and promoting neurite outgrowth [109]. Astrocytes, the
most abundant glial cells in the human brain, modulate
neuronal excitability to alter their EV composition to sup-
press inflammation [20, 110]. EVs released from cortical
neurons were protective against ischemic injury to the
brain in rats, as they contain miR-181c-3p that reduces the
expression of CXCL1 and the production of inflammatory
cytokines in astrocytes to suppress excessive inflamma-
tion. It should be noted that this study used a rat model of
ischemic brain injury and not TBI, but ischemia is a major
contributor to the secondary injuries of TBI [111]. Inter-
estingly, neutrophils release potent anti-inflammatory
factors carried by their EVs at the earliest stages of inflam-
mation. Although counterintuitive, these EVs increase the
release of transforming growth factor p1 (TGEp1), the
externalization of PS, and the downregulation of human
macrophage activity to suppress early hyperinflammatory
responses [112]. These reports suggest that the distinction
between PEV and BEV may not necessarily exist in their
parental cells or in the pathological stage of TBI. However,
the complexity and overlap of the "damaging effect” and
"protective effect” of neuroinflammation after TBI hinder
the development of effective strategies for overcoming
detrimental effects of EVs while preserving their benefi-
cial effects [58].

BEV and tissue repair after TBI

BEV can target receptor cells to participate in the repair
and regeneration of neural tissue (Fig. 1g&i). For exam-
ple, EVs derived from mesenchymal stromal cells (MSCs)
significantly increase the number of newly formed neu-
rons and endothelial cells in the dentate gyrus of TBI
rats, thereby promoting functional recovery and neuro-
vascular remodeling [113]. These MSC-derived EVs also
deliver miR-133b to astrocytes to down-regulate the
expression of connective tissue growth factor (CTGF),
reduce the formation of scar tissues (Fig. 1h), and pro-
mote functional recovery in animal models of ischemic
stroke [114]. Astrocyte- and microglia-derived EVs can
modulate the interaction between glia and neurons to
promote neurite outgrowth and neuronal survival, the
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mechanism that is closely related to their enrichment
of neuroprotective and neurotrophic factors, such as
apolipoprotein and synapsin [20, 109, 115]. Consistent
with these observations, Chen et al. [116] found that the
gap junction alpha 1 -20 kDa (GJA1-20 k) in astrocyte-
derived EVs attenuates the phosphorylation of connexin
43 (CX43) to protect mitochondrial function and reduce
cell death, thereby protecting and repairing injured neu-
rons in TBI rats.

Different from the CNS, peripheral nerves with
stronger regenerative capacity can better reflect the
important role played by BEV in tissue repair [117, 147].
Lopez-Leal et al. [118] show that the pro-regenerative
capacity of Schwann cell-derived EVs is attributed to
increased expression of miRNA-21, which downregu-
lates PTEN (a major negative regulator of neuronal
regeneration) and PI3-kinase activation to promote
axonal regeneration in neurons. Multiple studies have
shown that miRNAs in MSC-derived EVs mediate the
expression of Schwann cell activating genes to promote
the proliferation of Schwann cells and improve remy-
elination [119, 120, 148]. In addition, MSC-derived EVs
also act as a key regulator of angiogenesis to increase the
number of endothelial cells and the formation of new
blood vessels [113, 121] as well as suppressing excessive
inflammation [122-125].

BEV and recovery of neurological function after TBI

The neural function recovery from TBI-induced injury is
a multi-step process [1] in which BEV play a critical role
[108]. First, motor coordination injured by TBI has been
shown to be significantly improved in TBI mice treated
with EVs overexpressing miR-5121 [126]. Furthermore,
spinal cord injury induced in rats can be repaired by miR-
133b carried by MSC-derived EVs through the activation
of the ERK1/2, STAT3, and CREB-participating path-
ways and the inhibition of RhoA expression [127]. BEV
can also improve sensory, cognitive, and learning func-
tions [113, 128, 129] by, at least in part, improving hip-
pocampal function after brain injury [130]. In addition
to TBI, BEV have also been reported to improve neuro-
logical function in models of stroke [131], status epilep-
ticus [132], autistic behavior [133], and peripheral nerve
injury [134, 135]. However, more studies are needed to
clarify which parts of the brain repaired by BEV lead to
these neurological improvements. Moreover, it appears
more promising to research means of manipulating EVs
into driving the immune reaction in a direction that
favors wound repair and functional recovery, instead of
completely eliminating neuroinflammation after TBI, as
a new pathway for improving outcomes of patients with
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TBI. One such approach is to use EVs as a vehicle for tar-
geted delivery of therapeutic or regulatory agents.

EEV as a drug carrier to treat TBl in a targeted manner

The unique physicochemical properties of EVs make
them an ideal drug carriers because they offer several
distinct advantages. First, they can be readily made
from parental cells or synthetic materials and are
immune-tolerant and easy to store [7, 149, 150]. Sec-
ond, they can be selectively packed with DNA, RNA,
protein, lipid and small molecule drugs that are deliv-
ered to targeted cells [17, 151]. Third, the lipid bilayer
ensures that these membrane EVs are resistant to enzy-
matic digestion in the blood and thus ensure sufficient
delivery of their cargo loads [17]. Finally, their small
sizes allow them to pass through the BBB to the brain
parenchyma [150]. For these reasons, research on EEV
drug-loaded therapy has increased exponentially, espe-
cially in relation to cancer therapies, wound healing,
and cardiac remodeling [17, 152—-154].

At present, there are two main sources of EEV: directly
modifying natural EVs and imitating EVs to produce bio-
mimetic EVs [155]. Current research on EEV in the field
of TBI is far less than that of cancer or other areas. For
example, EVs loaded with curcumin or a signal trans-
ducer and activator of transcription 3 (Stat3) inhibitor
induce microglial apoptosis and suppress brain tumor
growth [156]. Modified EVs and siRNA together promote
the transformation of microglia and macrophages from
pro-inflammatory to pro-regenerative (M1-M2 transi-
tion) as well as reduction of inflammatory responses and
neuronal damage, thereby promoting functional recovery
in spinal cord injury in mice [157]. We will discuss poten-
tial therapeutic uses of EEV for TBI by referring to recent
reports of EEV usage in cancer or other research fields.

Modified EVs

Direct modification of natural EVs (modified EVs) can
significantly improve their delivery, ability to target, and
therapeutic efficacies. Researchers have used DNA, RNA,
and proteins as well as small-molecule drugs to modify
EV membranes or cargo in order to achieve targeted
therapeutics [17] (Fig. 2A and 3). To prevent the second-
ary damage induced by ischemic stroke, Tian et al. [158]
conjugated c(RGDyK)-peptide to the membrane surface
of EVs to target EVs specifically to ischemic brain tis-
sue. They found that the membrane-modified EVs car-
rying curcumin strongly inhibited the inflammatory
response and apoptosis in the ischemic area in a mouse
model. Liang et al. [159] introduced miR-26a, which
inhibits the migration and proliferation of liver cancer
cells, into EVs by electroporation. Sonication and extru-
sion may serve as more efficient methods of delivering
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drugs into EVs than electroporation, as shown by Haney
et al. [160]. They introduced catalase into EVs using dif-
ferent methods such as room temperature incubation,
saponin permeabilization, cyclic freeze—thaw, sonica-
tion or extrusion, and found that catalase-carrying EVs
efficiently accumulated in neurons and microglia in the
brains of PD mice and exerted a potent form of neuro-
protection [160]. However, these mechanical manipu-
lations that allow for passive introduction of drugs into
EVs may destroy the integrity of EV membranes and
thus reduce their therapeutic effects. Therefore, inducing
donor cells to actively uptake and carry drugs is a highly
viable option for protecting the integrity of a drug-car-
rying EV membrane. In their research, Haney et al. gen-
erated drug-loaded MSC-derived EVs by co-incubating
MSCs with paclitaxel [161]. This method is simple and
feasible, and preserves the original information of EV
structure, but it is not perfect either. It is only suitable
for specific small-molecule drugs, and the efficiency of
their introduction into EVs is low, so it cannot be used for
large-scale production of drug-loaded EVs. In conclusion,
further research is needed to elucidate the drug-loading
capabilities of different EVs, enrich the catalog of loaded
drugs, and standardize EV drug-loading protocols.

Biomimetic EVs

To solve the problems of low yield, complex and diverse
preparation procedures, and poorly defined synthesis
mechanisms of natural EVs, researchers have synthesized
biomimetic EVs such as synthetic nanoparticles wrapped
by EV membrane (Fig. 2B), natural-artificial hybrid EVs
(combining natural EVs with other synthetic or biologi-
cal components; Fig. 2C), EV-mimicking nanoparticles
(using proteins and lipids to imitate the structure of natu-
ral EVs, Fig. 2D) [155]. In addition to the advantages of
controllable preparation conditions, simple production
procedures, high yield, and homogeneity, these bio-
mimetic EVs also retain similar physical and chemical
properties to natural EVs [17]. Furthermore, synthesized
biomimetic EVs have also shown high drug loading [162,
163], more precise cell targeting properties [164—166]
and fewer safety hazards [162] in preclinical studies.
In conclusion, the successful production and applica-
tion of biomimetic EVs have improved the drug-loading
efficiency, targeting accuracy, and applicability of EEV,
reduced the safety hazards of natural EVs, and paved the
way for drug-loaded treatments that use EEV (Fig. 3).

EVs are an emerging class of diagnostic markers
for TBI and associated complications

The diagnosis and evaluation of TBI depend primar-
ily on conventional neuroimaging techniques, such as
Computer Tomography (CT) and Magnetic Resonance
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of natural EVs). Abbreviations: EV: extracellular vesicles. Figure created with BioRender.com

Imaging (MRI). These imaging techniques cannot iden-
tify microstructural damages [167] and provide less
real-time information on the brain and other changes
such as coagulation dysfunction, neuroinflammation,
blood—brain barrier disruption, and excitotoxicity [168,
169]. A variety of emerging biomarker candidates to
define TBI at cellular levels have been recently inves-
tigated [23, 24, 170], among them are EVs of different
cells of origin (Table 3).

EVs can be evaluated quickly and cost effectively in
body fluids such as peripheral blood samples because
they can be released through BBB [174] to the circula-
tion and remain relatively stable over a long period of
time in storage [175]. The analysis of EV cargo can pro-
vide pathophysiological information on cells, tissues, and
organs (Table 3), regarding issues such as coagulopa-
thy, neuroinflammation, immune responses, and tissue
repairs, which together provide a more comprehensive
picture of short and long term outcomes of patients with

TBI [2, 13], including mild TBI that cannot be defined as
accurately using conventional neuroimaging techniques
[171]. EVs generated either from injured cells or pro-
duced through synthetic means could serve as delivery
vehicles for the treatment of TBI-related neurological
diseases [101]. Interestingly, as more and more proteins
or nucleic acids are identified as potential biomarkers for
the diagnosis, treatments, and prognosis of TBI, EVs can
also provide a valuable platform for detecting and evalu-
ating existing and new biomarkers [176]. Ko et al. [172]
developed a microchip diagnostic technique to more
comprehensively characterize TBI by detecting miR-
NAs in brain-derived EVs to delineate the heterogeneity
of TBI injury and recovery more accurately in patients.
Puffer et al. [173] demonstrated that GFAP, a glial cell-
specific biomarker, significantly increases in plasma EVs
of patients with altered consciousness after TBI. A key
issue is the lack of standardized protocols for EV extrac-
tion, characterization, and classification in the literature,
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making comparison among different studies challenging
[170, 177] due to the high heterogeneity of EVs [172].
Furthermore, the development of machine learning algo-
rithms will prove critical to more efficient use of EVs in
understanding the pathogenesis, severity, treatments,
and outcome predictions of patients with TBI [13].

EV-based treatment of TBI

EV-based therapy is increasingly recognized as a new
approach in addition to the surgical and non-surgical
treatments of TBI for their intrinsic biological activities
and for being used as drug delivery vehicles (Fig. 3). As
reported by Khan et al., EVs, especially exosomes, which
are very small EVs secreted from activated cells, will not
only contribute to the diagnosis of TBI, but will also play
an important role in the personalized treatment of TBI
patients [12].

Eliminates the detrimental effects of PEV on TBI

Since PEV are released by parental cells at the time of
TBI, potentially resulting in local and systemic patholo-
gies [23, 24], removing or blocking pathological activi-
ties of these PEV is a primary therapeutic goal (Fig. 3).
For example, EV-induced systemic coagulopathy can be
prevented by preventing the assembly of tenase com-
plex on the surface of EVs that express anionic phospho-
lipids [25], removing EVs from the circulation [26], or
blocking their adhesion to endothelial cells [37, 86]. Our
study shows that the fusion protein ANV-6L15, which
is a recombinant fusion protein that fuses the Kunitz
protease inhibitor module 6L15 into a variant ANV of
annexin V [178], blocks tenase assembly on EVs to pre-
vent TBI- induced coagulopathy and improve outcomes
of TBI in mouse models [25]. Furthermore, lactadherin
(milk fat globule—epidermal growth factor 8 [MFGE-
8]), which is a 41 to 46 kDa glycoprotein containing an
N-terminal epidermal growth factor-like domain and two
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C-terminal discoidin domains (C1&C2) [179], can bind
PS on EVs to remove them from the circulation by facili-
tating EV phagocytosis [26]. In addition, our previous
work has also demonstrated that blocking the adhesion
of PEV to endothelial cells can be achieved by enhancing
VWF proteolysis or blocking its active site [37, 86]. Inter-
estingly, Kerr et al. [91] reported that the anticoagulant
enoxaparin (Lovenox) inhibits the uptake of PEV by tar-
get cells and thereby reduces EV-mediated activation of
inflammasome in the brain and lungs of mice subjected
to severe TBI, potentially by suppressing the internaliza-
tion of EVs by target cells [180] (Fig. 3). Enoxaparin has
also been shown to reduce the cerebral edema and pro-
mote neurological recovery of TBI mice [181], but it car-
ries a high risk for secondary bleeding, especially in the
brain [182, 183].

Infusing BEV has beneficial effects on TBI
Use of BEV as therapeutic agents remains small in scale,
including the use of MSC-derived EVs in a TBI setting
[184]. MSCs are multipotent stem cells with self-renewal
ability and differentiation potential [185]. They have
emerged as TBI therapeutics [186, 187] to regulate neu-
roinflammation [188] and repair damaged nerves [189].
However, recent studies show that MSC-associated
regeneration and repair are mediated by bioactive factors
released by them [184, 190]. These bioactive factors can
be packed in MSC-derived EVs [113, 128, 136—138]. The
neuroinflammation-regulating activity of MSC-derived
EVs is likely mediated through immune regulation to
reduce the activation of microglia and macrophages and
to increase anti-inflammatory cytokines while reduc-
ing pro-inflammatory cytokines in traumatically injured
cerebral tissues [139, 140]. Micro RNAs packed in MSC-
derived EVs are widely considered the key factors for
these regulatory processes [141], including those inhib-
iting macrophages through Toll-like receptor signaling
[191] and hypoxic inflammation by inhibiting hyper-
proliferative pathways such as hypoxia-induced STAT3-
mediated signaling [142]. The miRNAs in MSC-derived
EVs may also promote neurogenesis and angiogenesis. As
key regulators of synaptic plasticity [192], miRNAs tar-
get transcription factors to regulate neurogenesis [193].
In vitro studies have shown that MSC-derived EVs deliver
miR-124 and miR-145 to human neural progenitor cells
and astrocytes, altering gene expressions in recipient
neurons to increase neuronal differentiation [194], even
though the delivery pathway remains to be mechanically
defined.

As a classic subset of BEV, MSCs are the main player
used by researchers to generate target EVs, which have
achieved promising results in animal models (Fig. 3).
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The study of other potential cells still needs to be inves-
tigated to determine the most suitable source of BEV.
Since the cargo of MSC-derived EVs is highly dependent
on the type of MSCs as well as the surrounding micro-
environment [143, 195], standardization of MSC sources
and production conditions is necessary. In addition, it is
important to achieve standardization of the isolation and
characterization of MSC-derived EVs, as this involves
screening for specific EVs. More importantly, the molec-
ular mechanism by which MSC-derived EVs improve
tissue repair remains poorly understood, and filling this
knowledge gap may provide more definitive guidance to
the therapeutic use of MSC-derived EVs in TBL

Design and clinical application of EEV in TBI in the future
The design and clinical application of EEV must take into
account the potential effects of its structure and contents
on recipients. As we have previously reported [23], infu-
sion of PST/TF*EV into uninjured mice has been shown
to result in severe coagulopathy and severe vasospasm
[28]. EVs carrying large amounts of PS and/or TF on
their surface result in higher mortality in mice, regardless
of whether the EVs contain any therapeutically valuable
factors.

In addition, possible problems in the clinical transla-
tion of EEV in TBI should be considered. For example,
how drug-loaded EEV be infused in the acute phase of
TBI? One of the challenges here involves how to develop
an appropriate and realistic EEV treatment plan in the
short post-injury period. Further, what is the relationship
between EEV treatment and neurosurgical treatment?
The answers to these questions will determine the indica-
tions for EEV therapy.

Conclusion

In summary, EV-based TBI treatment strategies should
be based on several principles: eliminating or inhibiting
the pathological effect of PEV to minimize their activi-
ties in causing secondary damage to TBI patients, while
promoting the repair function of BEV or infusion of
drug-loaded EEV to improve the prognosis of patients
with TBI in a targeted manner. Clarifying the difference
between PEV and BEV will pave the way for the con-
struction of EEV and the diagnosis and treatment of TBIL.
Therefore, accelerating the proteome analysis of PEV and
BEV is an urgent task. Enriching the database of PEV and
BEV is helpful to identify the specific types and patholog-
ical processes of TBI, and the identification of the patho-
genesis as well as structure and function of PEV and BEV
will prove helpful for the clinical translation of EVs. This
work will depend on more in vitro and in vivo experi-
ments and multi-center clinical studies.
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Abbreviations

AB Amyloid B-peptide

AD Alzheimer's disease

a-syn a-Synuclein

BBB Blood-brain barrier

BDEVs Brain-derived extracellular vesicles

BEV Biological extracellular vesicles

CcL Cardiolipin

CNS Central nervous system

cT Computer Tomography

CTGF Connective tissue growth factor

CX43 Connexin 43

DAMPs Damage-associated molecular patterns
EEV Engineered special purpose extracellular vesicles
eEVs Endothelial cell-derived EVs

EVs Extracellular vesicles

exMTs Extracellular mitochondria

GJA1-20k Gap junction alpha 1-20 kDa

HMGB1 High-mobility group box protein 1

ILVs Intraluminal vesicles

LBs Lewy bodies

LNs Lewy neurites

MFGE-8  Milk fat globule—epidermal growth factor 8
MRI Magnetic Resonance Imaging

MSCs Mesenchymal stromal cells

MVEs multivesicular endosomes

PAMP pathogen-associated molecular patterns
PD Parkinson’s disease

PEV Pathological extracellular vesicles

pEVs platelet-derived EVs

PS phosphatidylserine

ROS reactive oxygen species

TBI Traumatic brain injury

TBI-IC traumatic brain injury induced coagulopathy
TDP-43 TAR DNA-binding protein of 43 kDa

TF tissue factor

TGFpR1 transforming growth factor 1
TLR7/8 toll-like receptors 7/8
VWF von Willebrand factor
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