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Targeting few to help hundreds: JAK, MAPK
and ROCK pathways as druggable targets
in atypical chronic myeloid leukemia
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Abstract: Atypical Chronic Myeloid Leukemia (aCML) is a myeloproliferative neoplasm characterized by neutrophilic
leukocytosis and dysgranulopoiesis. From a genetic point of view, aCML shows a heterogeneous mutational landscape
with mutations affecting signal transduction proteins but also broad genetic modifiers and chromatin remodelers,
making difficult to understand the molecular mechanisms causing the onset of the disease. The JAK-STAT, MAPK and
ROCK pathways are known to be responsible for myeloproliferation in physiological conditions and to be aberrantly
activated in myeloproliferative diseases. Furthermore, experimental evidences suggest the efficacy of inhibitors
targeting these pathways in repressing myeloproliferation, opening the way to deep clinical investigations.
However, the activation status of these pathways is rarely analyzed when genetic mutations do not occur in a
component of the signaling cascade. Given that mutations in functionally unrelated genes give rise to the same
pathology, it is tempting to speculate that alteration in the few signaling pathways mentioned above might be a
common feature of pathological myeloproliferation. If so, targeted therapy would be an option to be considered
for aCML patients.
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Background
Atypical Chronic Myeloid Leukemia (aCML) is an ag-
gressive and genetically heterogeneous disease for which
no standard of care exists. The classification of aCML,
which is included in the group of Philadelphia-negative
myeloid neoplasms, has been a matter of debate for
years. While the identification of the translocation
t(9;22)(q34;q11) in a patient with accumulation of ma-
ture granulocytes and their precursors is sufficient for
the diagnosis of Chronic Myeloid Leukemia (CML) [1, 2],
the absence of this translocation is pathognomonic of
Philadelphia-negative Myeloproliferative Neoplasms. Given
the concomitant presence of myeloproliferation and mye-
lodysplasia, the 2002 World Health Organization (WHO)
classification of myeloid neoplasms places aCML under
the category called myelodysplastic/myeloproliferative neo-
plasms (MDS/MPN) [3] and the 2008 and 2016 revisions
of WHO criteria did not change the classification [4, 5].
The MDS/MPN group includes chronic myelomonocytic

leukemia (CMML), aCML, juvenile myelomonocytic
leukemia (JMML), MDS/MPN with ring sideroblasts and
thrombocytosis and MDS/MPN unclassifiable (MDS/
MPN-U). According to the 2008 WHO classification of
myeloid neoplasms and acute leukemia, the absence of
BCR-ABL and PDGFRA, PDGFRB or FGFR1 rearrange-
ments are minimal diagnostic criteria for aCML [4, 6].
However, the main feature characterizing aCML is the
presence of neutrophilic leukocytosis and marked dysgra-
nulopoiesis. Moreover, to fulfil the diagnostic criteria, the
white blood count (WBC) should be ≥13 × 109/L with
≥10% of immature granulocytes and ≤20% blasts in the
blood and the bone marrow [4, 6]. These diagnostic guide-
lines have been then applied in different studies that
analyzed histopathological features and clinical data
available for similar types of myeloid neoplasia like
Chronic Neutrophilic Leukemia (CNL) and MDS/MPN-U.
These reports confirmed that WHO criteria were really
suitable to distinguish aCML from similar diseases [7–11].
For what concern patients’ treatment, no standard of care
exists. Hematopoietic stem cell (HSC) transplantation is al-
ways the best option when a matching donor is available.
Without this possibility, patients can be considered for
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treatment with general drugs like hypomethylating agents,
pegylated-interferon-α, hydroxyurea, and/or erythropoiesis
stimulating agents or for enrollment in clinical trials with
specific inhibitors (the case of ruxolitinib and trametinib
will be discussed later in this review) [12]. However, pa-
tients’ survival, which has been analyzed in different studies
with some differences, remains dismal. In an Italian cohort
of 55 aCML cases respecting the WHO criteria, the median
overall survival was 25 months [13], while in an US study
of 65 patients it was found to be 12.4 months [11].

Recurrent signaling pathways involved in
myeloproliferation
A big effort has been made in the last decades to elucidate
the molecular mechanisms leading to myeloproliferation.
The identification of oncogenic mutations in signal trans-
duction proteins pointed to the role of specific pathways
in inducing excessive proliferation of myeloid lineages
[14]. The subsequent development of mouse models
carrying mutations found in patients and, conversely,
the analysis of unexpected myeloproliferative pheno-
types in genetically modified mice proved that the aber-
rant activation of these specific pathways plays a causal
role in the onset of the pathology [15]. It came out that
pathological myeloid proliferation is supported by few
signaling pathways known to induce myelopoiesis by
transducing signals from cytokines and growth factor
receptors [16–19]. In this review we will primarily focus
on three signal transduction pathways, the Janus kinase
2/signal transducers and activators of transcription
(JAK2/STAT), the mitogen-activated protein kinase
(MAPK) and the Rho associated coiled-coil containing
protein kinase 1/2 (ROCK1/2) pathways. For all of them a
role in myeloproliferation has been demonstrated by in
vitro and in vivo studies and their involvement in human
myeloproliferative diseases, including aCML, has been de-
scribed [6, 14, 20, 21]. Moreover, inhibitors targeting sig-
nal transduction components of these pathways are
already in clinical use and have the potential to be used
for personalized treatment of aCML patients.

The JAK2/STAT pathway
JAK2 is a tyrosine kinase that plays an essential role in
myelopoiesis by transducing cytokine signals from several
receptors, like receptors for erythropoietin (EPO-R), throm-
bopoietin (TPO-R) and granulocyte colony-stimulating fac-
tor (G-CSF-R). JAKs associate with cytoplasmic domains of
different cytokine and growth factor receptors. The binding
of extracellular ligands causes changes in the receptors that
permit the associated intracellular JAKs to phosphorylate
one another. Trans-phosphorylated JAKs then phosphoryl-
ate downstream substrates, including STATs. Activated
STATs enter the nucleus and bind to specific enhancer

sequences in target genes, thus regulating their tran-
scription [22].
The mutation that causes the substitution V617F results

in the activation of JAK2 signaling even without receptor
stimulation, leading to ligand-independent granulocyte
proliferation [20]. The JAK2 V617F mutation is found
rarely in aCML cases [23, 24], while it is frequent in Poly-
cythaemia Vera (PV), Essential Thrombocythemia (ET)
and Myelofibrosis (MF) [5]. Although infrequent, JAK2
V617F mutated cases could benefit of the JAK2 inhibitor
ruxolitinib, already in clinical use for the treatment of
intermediate or high-risk MF [24, 25]. There are no stand-
ard treatment options for MF patients except for HSC
transplantation or palliative cures. Of note, JAK2 is found
activated in the majority of them, even in absence of the
JAK2 V617F mutation, which is present in 50% of the pa-
tients [26]. JAK2 mutational status or allele burden have
been related to clinical signs of the disease like spleno-
megaly, transformation to Acute Myeloid Leukemia
(AML) and overall survival [27–29], thus pointing to
JAK2 inhibition as a promising strategy to treat MF.
After a first study which evaluated the efficacy of ruxo-
litinib in preclinical models of JAK2 V617F positive
MPN [28], a phase I-II [30] and two phase III clinical
trials (COMFORT I and II) were carried out with posi-
tive results [31, 32]. In the first case, 153 patients with
JAK2 V617F positive or JAK2 V617F negative primary
MF, post–essential thrombocythemia MF, or post–PV
MF were enrolled. 44% of them showed reduction of
splenomegaly and the majority of them, who received
the drug at a dose of 10 mg twice daily to 25 mg twice
daily, had more than 50% improvement in total or individ-
ual symptom scores according to the Myelofibrosis Symp-
tom Assessment Form (MFSAF) [30]. In both COMFORT
I (ruxolitinib vs. placebo) [29] and COMFORTII (ruxoliti-
nib vs best available therapy) studies [33], patients receiv-
ing oral ruxolitinib showed reduced splenomegaly at week
48 and an improvement of debilitating symptoms and
quality of life [30, 32, 34–37]. 5-years follow up analysis
showed an advantage in terms of overall survival for both
COMFORTI and COMFORTII studies: medium overall
survival was not reached for ruxolitinib, while it was
3.8 years for placebo group [36] and 4.1 years for the
group receiving the best available treatments [37].
Moreover, ruxolitinib has also been used in phase III
clinical trials with patients affected by PV intolerant or
resistant to hydroxyurea demonstrating an effectiveness
in reducing splenomegaly and clinical symptoms [38–41].
However, ruxolitinib treatment induces a complete re-
sponse only in a small percentage of patients [40, 41].
Concerning ET patients intolerant or resistant to hydroxy-
carbamide, ruxolitinib did not improve treatment efficacy
in comparison with the best available therapy [42–44].
This result suggests that the effectiveness of targeted
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treatments depends not only on the presence of specific
mutations, but also on the peculiar features of the
pathology.
The lack of a complete response in MPN patients

treated with ruxolitinib might be due to the activation of
collateral oncogenic pathways, like the one of c-Jun N-
terminal kinase (JNK) or PI 3-kinase (PI3K)/AKT serine/
threonine kinase (AKT)/ mammalian target of rapamy-
cin (mTOR) pathway [45]. Consistent with this, PI3K,
AKT and mTOR inhibitors have been tested alone or in
combination with ruxolitinib demonstrating synergistic
effects in MPN cells [46–50]. STAT5 plays a crucial role
in JAK2-driven myeloproliferation by inducing the ex-
pression of proteins promoting cell division, cytokines
independent growth and cell survival like c-MYC, CYC-
LIN D2, ID1, BCL-XL and MCL-1 [51]. In vivo experi-
ments demonstrated that JAK2 V617F requires STAT5
to induce MPN in mice, while STAT3 was found to be
dispensable [52]. However, STAT5 specific inhibitors are
not yet suitable for clinical applications [53]. It has been
shown that JAK2 and PI3K/AKT/mTOR regulate STAT5
activation by inducing its phosphorylation on different
residues and that ruxolitinib is ineffective in reducing
STAT5 phosphorylation driven by the PI3K pathway
[54]. Indeed, combined inhibition of JAK2, PI3K and
mTOR in JAK2 V617F mutated cells causes reduction of
both JAK2 and PI3K mediated STAT5 phosphorylation,
impairment of the clonogenic potential of JAK2 V617F-
mutated hematopoietic progenitors cells and reduced
splenomegaly and myeloid cells infiltration in Jak2 V617F
knock-in mice [54]. These studies suggest the importance
of PI3K/AKT/mTOR axis in myeloproliferative diseases;
however, the effects of the inhibition of these molecules in
aCML pre-clinical models and patients still need to be
evaluated.
Even in absence of JAK2 mutations, MPN cells use

different strategies to induce JAK2 hyperactivation and
trigger myeloid expansion [15]. It has been shown that
CALR gene, encoding for calreticulin, is mutated in the
vast majority of JAK2 V617F negative MPN patients
[55, 56]. Calreticulin is a Ca++ binding protein with
chaperone activity located in the endoplasmic reticulum
[56, 57]. Mutant calreticulin acquires the ability to bind to
the thrombopoietin receptor (MPL receptor) in the ER
and then on the cell surface, inducing ligand-independent
activation of the JAK2/STAT/PI3K and MAPK pathways
[15]. However, CALR mutations have been found rarely in
aCML patients [11, 55, 56]. Mutations in genes coding for
other JAK2 activators, like the TPO-R [58] and G-CSF-R,
have been found in myeloproliferative disorders. CSF3R
gene encodes for the Granulocyte colony-stimulating fac-
tor receptor (G-CSF-R), the more relevant JAK2-upstream
regulator in aCML. This receptor provides the signal for
growth and differentiation of granulocytes through the

binding to its ligand: the granulocyte colony-stimulating
factor 3 (G-CSF; CSF3) [59–61]. Two types of mutations
were originally identified in a cohort of 27 patients with
CNL or aCML [62]: membrane proximal mutations
(T615A and T618I), which confer ligand-independent
growth, and nonsense or frameshift mutations, resulting
in the truncation of the cytoplasmic region with conse-
quent alteration of granulocytic differentiation and prolif-
eration [62–64]. Besides the JAK/STAT pathway [65, 66],
G-CSF-R also signals through the tyrosine-protein kinase
SYK and the SRC family kinase (SFK) LYN [67, 68]. When
receptors carry truncating mutations, they signal through
SFKs rendering the cells sensible to the multikinase in-
hibitor dasatinib. In contrast, when carrying the mem-
brane proximal mutations, the receptor signals through
the JAK/STAT pathway and in this case cells are sensi-
tive to ruxolitinib [62]. In a first report, Maxson and
colleagues found CSF3R mutations in 59% of patients
with CNL or aCML, while subsequent analysis indicated
that the activating CSF3R T618I mutation is present in <
10% of cases of aCML [11, 69, 70]. Thanks to these stud-
ies, the identification of CSF3R T618I in the context of
neutrophilic leukocytosis is now strongly associated with a
diagnosis of CNL, where it is present in approximately
80% of patients [69]. In line with this evidence, mice trans-
planted with hematopoietic cells expressing CSF3R T618I
develop a CNL-like disease characterized by neutrophil
expansion in the peripheral blood and bone marrow and
neutrophil infiltration in spleen and liver [71]. Administra-
tion of ruxolitinib to these mice results in reduction of
WBC, decreased spleen weight and increased body weight
[71]. Another report described the acquisition of CSF3R
mutations (both the proximal mutation T618I and a trun-
cating mutation Q739*) in a patient progressing from
MPN unclassifiable to aCML [72]. An alternative mem-
brane proximal mutation, the T640 N, was described in a
patient with MDS progressing to aCML-like disorder. This
mutation confers ligand-independent growth, mimicking
the CSF3R T618I, and sensitivity to ruxolitinib treatment
[73]. The potentiality of ruxolitinib for CSF3R T618I-
mutated patients was demonstrated with two case reports:
a 75-years old man and a 11-years old girl with aCML.
The man, who was refractory to hydroxyurea treatment,
displayed decreased WBC, reduction of the spleen vol-
ume, increased haemoglobin and platelets count after
ruxolitinib treatment [74]. The young girl received rux-
olitinib for 8 weeks and the good response to the treatment
allowed her to be bridged to allogenic HSC transplantation
[75]. Currently, a phase II study (NCT02092324) is evaluat-
ing the efficacy of ruxolitinib treatment in patients with
CNL or aCML. These evidences suggest that the evaluation
of the presence of JAK2 or CSF3R mutations in aCML
patients could open the way for specific therapeutic in-
terventions (Fig. 1).
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The RAS pathway
RAS proteins are small GTPases involved in signal
transduction and frequently mutated in human cancers.
There are three major isoforms (HRAS, KRAS, NRAS)
which, in their GTP-bound form, signal through the
MAPK and the PI3K pathways [76], promoting cancer
cell survival and proliferation. Mutant RAS recruits RAF
to the plasma membrane and activates the downstream
Mitogen-activated protein kinase kinase (MEK)/ Mitogen-
activated protein kinase 3 (ERK) signaling cascade [77].
Mutations in the KRAS and NRAS genes (but rarely in the
HRAS gene) are frequently identified in myeloid disorders
(15%–60%), including AML [78, 79], aCML [11], CMML
[80] and JMML [81]. For decades scientists tried to de-
velop effective strategies to target RAS-mutant cancers
even if targeting RAS itself has proven to be difficult [77].
One of the attempts was to use nucleotide analogs to trap
mutant RAS in an inactive state but this approach failed
because of the high concentrations of GTP that make
competition impossible. Screenings for compounds that
restore GTPase hydrolysis to mutant RAS, in the presence
or absence of GAP, also failed [77]. Given the difficulties

in targeting RAS, many researches focused on inhibiting
downstream effectors in the MAPK pathway. B-RAF has
been tested as molecular target especially in solid tumors,
as melanoma, where it is mutated in 50% of the cases.
Therapies with RAF inhibitors lead to some degree of
tumor regression, but poor response or acquired resist-
ance are also common [82, 83]. Resistance is often due
to a paradoxical activation of ERK, mainly in RAS-mutant
cancers [84–86]. The results obtained with RAF inhibi-
tors, led to the postulation that MEK1/2 are better
therapeutic targets in RAS mutated hematological ma-
lignancies. Oncogenic RAS is sufficient to initiate mye-
loid leukemogenesis in mice: the expression of mutant
K-RasG12D protein from the endogenous murine locus
rapidly induces a fatal myeloproliferative disorder with
100% penetrance [87]. The efficacy of MEK inhibitors
on myeloid NRAS/KRAS mutated leukemic cells have
been tested using two different mouse models: a Mx1-Cre,
KrasLSL-G12D mice, which develop a fatal myeloprolifer-
ative neoplasm [88] and mice transplanted with NRAS
mutated AML cells (NrasG12D AML cells) [89]. In the
first study mice were treated with the MEK inhibitor
PD0325901 [90] which prolonged survival and reduced
leukocyte count, anemia and splenomegaly [88]. In the
second study, mice were treated with two different MEK
inhibitors: PD0325901 and trametinib (also known as
GlaxoSmithKline 1,120,212). Trametinib is an oral, se-
lective and allosteric inhibitor of MEK1/MEK2 ap-
proved by the US Food and Drug Administration as a
single agent or in combination with the B-RAF inhibi-
tor dabrafenib (Tafinlar; GlaxoSmithKline) for the treat-
ment of unresectable or metastatic melanoma with a
BRAF V600E/V600 K mutation [91]. Both MEK inhibi-
tors significantly improved the survival of recipient
mice by inhibiting AML proliferation [89]. Trametinib
efficacy was then tested in an open-label, dose-escalation,
nonrandomized, multicentre phase 1/2 study (GlaxoS-
mithKline study MEK111759; ClinicalTrials.gov identifier
NCT00920140) [92]. 97 patients (AML, 75%; high-risk
MDS, 12%; CMML, 11%; and ALL, 1%) were enrolled in
the study: 13 patients had KRAS mutations, and 54 pa-
tients had NRAS mutations. Among RAS mutated pa-
tients, the overall response rate was 21% with reduction
in bone marrow and peripheral blasts. However, the re-
sponse did not translate into survival advantage, prob-
ably due to the fact that RAS mutations emerge late
during leukemogenesis and that many of the patients
enrolled were already resistant to previous therapies,
possibly due to the presence of different subclones with
various levels of dependence on the MAPK pathway
[92]. For what concern aCML, KRAS/NRAS mutations
were identified in 7/20 patients (35%) [11]. A case re-
port described a 81-years-old male with heterozygous
NRAS G12D mutation who, after receiving trametinib,

Fig. 1 JAK2 and CSF3R mutated patients can benefit of ruxolitinb
treatment. In basal conditions, JAK2 signaling is initiated by the binding
of cytokines to the associated receptors. Once activated, JAK
phosphorylates STAT proteins inducing their dimerization and
translocation to the nucleus, where they activate or suppress gene
transcription. In the presence of JAK2 V617F mutation, the JAK/STAT
pathway is constitutively activated. CSF3R is known to signal through
the JAK tyrosine kinase pathway. CSF3R membrane proximal mutations,
such as T615A, T618I and T640 N, constitutively activate JAK-mediated
signaling and are sensitive to its kinase inhibitor ruxolitinib
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showed improvements in his blood count and a durable
disease control for 14 months of follow-up [93].
This unique clinical report on an aCML patient treated

with trametinib, together with the results obtained in pre-
clinical studies, highlight the need for clinical trials to test
the efficacy of MEK inhibitors in larger cohorts of
RAS-mutated aCML patients (Fig. 2). Of note, RAS
also activates PI3K/AKT/mTOR, which can represent
an axis promoting proliferation and survival of cancer
cell. For this reason, combined treatment using both
MEK inhibitors and PI3K/AKT/mTOR inhibitors could
be more effective in inducing tumor regression and many
clinical trials are already testing this possibility in different
contexts [94]. Interestingly, treatment with GDC-0941, an
orally available inhibitor of class I PI3K isoforms, extended
Mx1-Cre, KrasLSL-G12D mouse survival, inducing reduc-
tion of anemia, splenomegaly and leucocytosis, by inhibit-
ing simultaneously MAPK and PI3K signaling [95].

The ROCK pathway
ROCK1/2 are two multifunctional proteins with 65% of
overall identity [96]. They play different roles in the
cells: from regulating cytoskeletal rearrangements to tak-
ing part in signaling pathways leading to apoptosis and
proliferation [97–105]. ROCK signaling deregulation is
emerging as a key feature in myeloid leukemias. Mali
and colleagues demonstrated that ROCK is constitutively

activated in cells harboring oncogenic forms of KIT,
FLT3, and BCR-ABL [101]. ROCK inhibition by Y-27632
or H-1152 strongly reduces leukemic cell proliferation
[21, 101, 106, 107] demonstrating that mutant tyrosine
kinase receptors are able to induce leukemic transform-
ation, at least in part, through ROCK signaling. A subse-
quent report demonstrated that ROCK downregulation
strongly impairs cell proliferation also in human CD34+
AML cells. In fact, if primary AML cells silenced for
ROCK are xenotransplanted in mice, human chimerism
is strongly reduced compared to control cells, demonstrat-
ing that the ROCK activity is required for oncogenic pro-
liferation in vivo [108]. Data from our laboratory added a
little piece to the puzzle by discovering the role of mor-
gana, an ubiquitous protein coded by the CHORDC1
gene, in myeloproliferation [100, 109–111]. While
Chordc1 knock-out mice die early during embryogen-
esis, heterozygous mice are vital, but develop spontan-
eously a fatal and transplantable myeloproliferative disease
resembling human aCML [15, 112]. Morgana is a
chaperone protein able to inhibit both ROCK1 [100] and
ROCK2 [110], and recently found to be required for
NF-κB signaling [113]. Chordc1 heterozygous mice, ex-
pressing half of the normal amount of morgana, show
Rock hyperactivation in the bone marrow preceding the
onset of the disease. Importantly, leukemic bone mar-
row cells treated ex vivo with the ROCK inhibitor fasu-
dil, already in clinical use in Japan for the treatment of
cerebral vasospasm, show a significant induction of
apoptosis compared to control cells [112] (Fig. 3). The
downregulation of morgana and the subsequent hyper-
activation of ROCK has been found in 16% of patients
with BCR-ABL positive CML and in 5 out of 5 patients
with aCML [112]. BCR-ABL positive CML patients ex-
pressing low morgana levels hardly achieve the major
molecular response (MMR) after 18 months of treatment
with the first line tyrosine kinase inhibitor imatinib. Low
morgana expression levels confer resistance to imatinib in
in vitro treatment of BCR-ABL positive bone marrow cells
from CML patients. The combination of imatinib with the
ROCK inhibitor fasudil is sufficient, in vitro, to restore an
optimal apoptotic response demonstrating that targeting
BCR-ABL and ROCK signaling simultaneously could be a
therapeutic strategy for BCR-ABL positive patients ex-
pressing low morgana levels. The beneficial effect of fasu-
dil on CML and aCML patients still need to be tested.
Interestingly, JAK2, RAS and ROCK pathways are

strictly interconnected: RAS binds to and activates PI3K,
while JAK2 activates RAS and PI3K pathways [114] and
in turn, PI3K can activate ROCK [101]. This signaling
network could generate a vicious circle promoting prolif-
eration, survival and poor treatment response in MPN.
Combining inhibitors for the different network compo-
nents is an interesting possibility to increase treatment

Fig. 2 Targeting RAF–MEK–ERK signaling pathway. GTP-bounding RAS
recruits and activates RAF, which in turn initiates a cascade of protein
phosphorylation starting with MEK. Activated MEK phosphorylates ERK
that moves from the cytoplasm to the nucleus where it phosphorylates
several transcription factors. Mutational activation of RAF–MEK–ERK
cascade contributes to progression of the disease. Selective inhibitors
of MEK, e.g. trametinib, cause potent and durable suppression of
ERK signaling
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efficacy and overcome resistance. Of note, a currently
enrolling clinical trial (NCT02493530) will test the com-
bination of ruxolitinib and a PI3Kδ inhibitor and aCML
patients will be also enrolled in its expansion stage.

Genetic alterations in aCML
In the past few years, scientists’ attention focused on
genetic alterations characterizing aCML. The development
of next generation sequencing (NGS) techniques allowed
the identification of low recurrent mutations, transloca-
tions, indels and splicing variants in a number of genes
[6, 70, 115–119]. These studies demonstrated that aCML
is predominantly a JAK2 V617F negative neoplasm
[120, 121] with mutation in the gene found in 4% to 8%
of patients [11, 14, 70]. However, other genes have been
found mutated at different frequencies, mainly ASXL1
(28%), TET2 (16%), NRAS (16%), SETBP1 (12%), RUNX1
(12%), ETNK1 (8%), PTPN11 (4%), CSF3R (3%) [70, 115–
117, 119, 122, 123]. These findings may have crucial
relevance in directing personalized therapies, since
aCML-associated genetic alterations could be suscep-
tible to specific therapeutic approaches, directly targeting
the mutant proteins or their associated pathways. NRAS,
JAK2 and CSF3R mutations, have been previously dis-
cussed and since they directly impact on the MAPK and
JAK/STAT pathways, they are obvious candidates for

targeted therapies. However, other two mutations are pre-
dicted to activate the signaling pathways discussed above.
SETBP1 encodes a protein named SET binding protein

1 (SEB) for which the precise function is still to be dis-
covered. Mutations in a particular 12 bp hot spot disrupt
a degron signal, leading to SEB overexpression [124]. It
has been demonstrated that SEB impacts on AKT and
MAPK pathways, responsible for cell proliferation and
survival [125]. In particular, SEB binds to the SET nuclear
oncoprotein protecting it from protease cleavage. In turn,
SET represses PP2A activity [126, 127] that inhibits AKT
and MAPK pathways. When SEB is mutated, it accumu-
lates in the cells and, through SET, decreases PP2A activ-
ity, leading to increased cellular proliferation [117].
PTPN11 gene encodes for SHP2 (Src-homology-2 do-

main containing protein tyrosine phosphatase), a protein
tyrosine phosphatase (PTPase) acting downstream to
growth factor receptors. Mutations in the PTPN11 gene
result in constitutively activated RAS. In fact, when SHP2
is mutated it activates guanine nucleotide exchange factors
(GEFs), necessary for the conversion of GDP-RAS into
GTP-RAS [14, 128]. Interestingly, SHP2 is phosphorylated
by JAK1 and JAK2 and the phosphorylated form of SHP2
binds to GRB2 and activates RAS [129]. Moreover, JAK2,
PTPN11 and RAS mutations were identified as mutually
exclusive in MDS, suggesting their participation to the
same pathway [130]. Given the central role of RAS muta-
tion in MPN and the convergence of SETBP1, PTPN11
and JAK2 encoded proteins on MAPK pathway overacti-
vation, patients carrying mutations in these genes could
benefit from treatment with MEK inhibitors.
However, a number of genes mutated in aCML en-

codes for biosynthetic enzymes, transcription factors and
epigenetic modifiers. These proteins are apparently un-
related with the signal transduction molecules previously
discussed and their exact role in the onset of the path-
ology is still unclear.
ETNK1, for example, encodes an ethanolamine kinase

(EKI 1) which phosphorylates ethanolamine to phos-
phoethanolamine in the phosphatidylethanolamine bio-
synthesis pathway. Two recurrent point mutations
impairing the catalytic activity of the kinase have been
described in ETNK1 gene in aCML [131]. The phospha-
tidylethanolamine biosynthesis pathway is involved in
many biochemical processes like definition of membrane
architecture, anchoring of proteins to the plasma mem-
brane, mitochondria biogenesis, autophagy and progres-
sion to cytokinesis during cell division [116, 132, 133]. Due
to the fact that EKI 1 contributes to different processes in
the cell, the mechanisms by which the mutant protein in-
duces myeloproliferation have not yet been clarified.
RUNX1 encodes the alpha subunit of the core binding

factor (CBF) complex. This complex activates and re-
presses transcription of genes involved in growth, survival

Fig. 3 Fasudil treatment for Morganalow leukemic cells. A diminished
Morgana expression induces ROCK hyperactivation. ROCK plays a key
role in multiple cell signaling processes, inducing proliferation and
survival in myeloid cells. ROCK inhibition, through fasudil, results in
increased apoptosis of leukemic cells
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and differentiation pathways in hematopoietic cells,
maintaining the proper balance among different lineage
progenitors [134]. This gene is recurrently mutated in a
variety of hematological malignancies due to chromosomal
translocations and somatic mutations. Mono- and biallelic
RUNX1 mutations have been described in aCML [14].
Some mutations cause inactivation of the protein, while
others induce a dominant negative activity [135]. However,
the mechanism through which the mutant RUNX1 induces
myeloid expansion is still to be understood.
The TET dioxygenases, TET1, TET2, and TET3,

catalyze the transfer of an oxygen atom to the methyl
group of 5-methylcytocine (5-mC), converting it to 5-
hydroxymethylcytocine (5-hmC) [136, 137]. This modifi-
cation, in turn, promotes locus-specific reversal of DNA
methylation, impacting on DNA methylation landscape
[138]. TET2 is frequently mutated in both myeloid and
lymphoid malignancies [14, 122, 139–142] resulting in a
wide hypermethylation phenotype [143], but, again, the
precise pathways responsible for the phenotype down-
stream this global genome alteration have not been dis-
sected. The hypomethylating agent decitabine, approved
by FDA for the treatment of MDS and CMML, have been
tested in aCML patients (regardless of TET2 mutational
status) with some positive results, even if on small cohorts
of patients, and deserves better investigations [144–147].
ASXL1 (Additional of sex combs-like 1) plays a role in

the recruitment of the Polycomb Repressive Complex 2
(PRC2) to its target sequences and takes part in the
complex involved in deubiquitination of histone H2A ly-
sine 119 (H2AK119) [148, 149]. Mutations of the gene,
identified in patients with AML, MPN and MDS, are as-
sociated with loss of ASXL1 expression [148]. Changes
in the cell following ASXL1 mutations include: loss of
PRC2-mediated gene repression, global loss of H3K27
trimethylation (H3K27me3) and derepression of the pos-
terior HOXA cluster genes, including HOXA5–9, known
to play a role in leukemogenesis [148].
All these proteins have in common a functional plei-

otropy, since they can modify the expression of hundreds
of genes or the functionality of many proteins in the cell.
However, it is conceivable that, among the several deregu-
lated events and pathways, few are responsible for
leukemogenesis. In this view, it would be very useful to
analyze the signaling pathways known to play a role in
myeloproliferation in these mutational contexts in the
final attempt to exploit targeted therapies with available
inhibitors. Moreover, given that two or more mutations
often occur simultaneously in aCML patients [119] com-
bination therapies with different inhibitors seems, at least
in theory, a promising approach.
Recently, two studies demonstrated that the percentage

of healthy people showing clonal expansion of somatic
mutations associated with hematologic diseases increases

with age. The authors found that clonal haematopoiesis
frequently involves DNMT3A, TET2, and ASXL1 mutant
cells. Of note, somatic mutations were found to be associ-
ated with increased risk of hematological malignancies, as
well as other adverse events [150, 151]. It will be tempting
to envisage specific strategies for the prevention of the dis-
ease based on the mutations arising during the precancer-
ous phases, however the predictive power of mutant
hematopoiesis is low and additional biomarkers are
needed to justify pharmacological intervention [150, 151].

Conclusions
aCML is a rare hematological disease for which no
standard of care exists. NGS techniques have allowed in
the past few years to highlight mutations in signal trans-
duction proteins but also in proteins with pleiotropic
functions, like transcription factors and chromatin-
modifying enzymes [14]. These proteins may regulate the
expression of thousands of genes simultaneously, deeply
altering cell physiology. However, the precise mechanisms
by which they induce and sustain tumorigenesis are still
elusive. In particular, it is not known whether a single gene
or a specific subgroup of genes controlled by these en-
zymes are responsible for cell transformation and through
which mechanism. It is conceivable that wide alteration in
gene expression could impact on the specific signal trans-
duction pathways regulating proliferation and survival in
haematopoietic cells. However, a wide analysis of signal
transduction alterations in the different mutational con-
texts is still missing. This information will help to identify
new therapeutic approaches in genetically defined subsets
of diseases, but also to successfully repurposing existing
drugs. As discussed in this review, JAK2, MEK and
ROCK inhibitors might represent a treatment option
for aCML patients. However, apart from encouraging
preclinical studies and case reports, we still need multi-
center randomized trials to test the potential benefits of
these treatments in large cohorts of patients.
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