
Ying et al. BMC Medical Genomics          (2023) 16:281 
https://doi.org/10.1186/s12920-023-01717-2

RESEARCH Open Access

© The Author(s) 2023, corrected publication 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 
International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To 
view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver 
(http://​creat​iveco​mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a 
credit line to the data.

BMC Medical Genomics

Polygenic risk for triglyceride levels 
in the presence of a high impact rare variant
Shengjie Ying1,2,3, Tracy Heung3,4, Bhooma Thiruvahindrapuram5   , Worrawat Engchuan5, Yue Yin5, 
Christina Blagojevic3, Zhaolei Zhang6,7,8   , Robert A. Hegele2   , Ryan K. C. Yuen5,6    and Anne S. Bassett1,3,4,9,10*    

Abstract 

Background  Elevated triglyceride (TG) levels are a heritable and modifiable risk factor for cardiovascular disease 
and have well-established associations with common genetic variation captured in a polygenic risk score (PRS). In 
young adulthood, the 22q11.2 microdeletion conveys a 2-fold increased risk for mild-moderate hypertriglyceridemia. 
This study aimed to assess the role of the TG-PRS in individuals with this elevated baseline risk for mild-moderate 
hypertriglyceridemia.

Methods  We studied a deeply phenotyped cohort of adults (n = 157, median age 34 years) with a 22q11.2 micro-
deletion and available genome sequencing, lipid level, and other clinical data. The association between a previously 
developed TG-PRS and TG levels was assessed using a multivariable regression model adjusting for effects of sex, BMI, 
and other covariates. We also constructed receiver operating characteristic (ROC) curves using logistic regression 
models to assess the ability of TG-PRS and significant clinical variables to predict mild-moderate hypertriglyceridemia 
status.

Results  The TG-PRS was a significant predictor of TG-levels (p = 1.52E-04), along with male sex and BMI, in a mul-
tivariable model (pmodel = 7.26E-05). The effect of TG-PRS appeared to be slightly stronger in individuals with obe-
sity (BMI ≥ 30) (beta = 0.4617) than without (beta = 0.1778), in a model unadjusted for other covariates (p-interac-
tion = 0.045). Among ROC curves constructed, the inclusion of TG-PRS, sex, and BMI as predictor variables produced 
the greatest area under the curve (0.749) for classifying those with mild-moderate hypertriglyceridemia, achieving 
an optimal sensitivity and specificity of 0.746 and 0.707, respectively.

Conclusions  These results demonstrate that in addition to significant effects of sex and BMI, genome-wide com-
mon variation captured in a PRS also contributes to the variable expression of the 22q11.2 microdeletion with respect 
to elevated TG levels.
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Background
Elevated circulating triglyceride (TG) levels are a well-
established risk factor for cardiovascular disease (CVD), 
with accumulating evidence supporting a causal role [1–
3]. Other CVD-associated lipid profiles include elevated 
low density lipoprotein cholesterol (LDLC) and total cho-
lesterol (TC), and low levels of high density lipoprotein 
cholesterol (HDLC) [4, 5]. The genetic architecture of 
lipid levels is polygenic [6], comprising rare variants with 
high penetrance (e.g., LDLR mutations in familial hyper-
cholesterolemia) [7, 8], and the aggregate effects of com-
mon variation that can be captured in a polygenic risk 
score (PRS) [9, 10].

Among the genetic contributors to lipid disorders are 
rare copy number variants (CNVs). Classically, these have 
been confined to CNVs that impact a single well-estab-
lished dyslipidemia gene (e.g., LDLR, LPL) [11]. Recently, 
however, we demonstrated that the 22q11.2 microdele-
tion confers an approximately 2-fold increased risk for 
mild-moderate hypertriglyceridemia (HTG; TG levels 
1.7–10.0  mmol/L) compared to general population risk 
[12]. Related conditions also associated with the 22q11.2 
deletion include type 2 diabetes [13] (T2D) and obesity 
[14]. To our knowledge, this is the only recurrent multi-
genic CNV to be associated with elevated TG levels that 
does not overlap an established TG metabolism gene. The 
22q11.2 microdeletion, with estimated live birth preva-
lence of 1 in 2148 [15], defines the 22q11.2 deletion syn-
drome (22q11.2DS), and has proven utility as a genetic 
model to study associated common complex conditions 
[16]. Its role as a genetic model includes serving as a plat-
form to investigate the interplay between rare and com-
mon genetic variation, an area that has become of intense 
research interest and potential clinical relevance [17–22]. 
For example, recent studies have demonstrated that 
additional genome-wide variation, rare CNVs and schiz-
ophrenia PRS, can contribute to likelihood of schizophre-
nia expression, where there is baseline > 20-fold increased 
risk conferred by the 22q11.2 deletion [18, 22, 23].

In this study, we aimed to assess the additional genomic 
and phenotypic contributors to lipid levels (TG, HDLC, 
LDLC, TC) in individuals with a 22q11.2 microdeletion, 
with a focus on TG levels given the associated elevated 
baseline risk for mild-moderate HTG [12]. We studied a 
unique, deeply-phenotyped adult cohort of individuals 
with 22q11.2DS where there were both lipid level and 
genome sequencing data available for this rare condition 
(Additional file 1: Figure S1). The main goals of the study 
were to test whether lipid PRSs derived from the general 
population are associated with lipid levels (TG, LDLC, 
HDLC, and TC) in individuals with a 22q11.2 microde-
letion. In exploratory post-hoc analyses, we constructed 
receiver operating characteristic (ROC) curves to assess 

the predictive value of the TG-PRS and other clinical var-
iables for mild-moderate HTG status. We also examined 
the role of additional genome-wide clinically relevant 
rare variants, and assessed the contribution of overall 
candidate gene-based rare variants, on lipid levels.

Methods
22q11.2DS cohort and clinical variables
This study involved a well-characterized cohort of adults 
with a typical 22q11.2 microdeletion ascertained from a 
specialized 22q11.2DS clinic in Toronto, Canada. Typical 
22q11.2 deletions were identified through standard clini-
cal laboratory methods [13, 24] and precise 22q11.2 dele-
tion extents confirmed using genome sequencing data 
(see Additional file 1: Table S1 for details).

To be included, participants had to have at least one 
recorded circulating lipid level of TC, TG, LDLC, and/or 
HDLC (Additional File 1: Figure S1), obtained from rou-
tine clinical bloodwork assessments. Measurements were 
taken predominantly in the non-fasting but not post-
prandial state, as this was most feasible for this patient 
population [12]. For most individuals we used their most 
recent bloodwork. LDLC levels were calculated using the 
Friedewald equation. However, in cases where LDLC lev-
els were unavailable due to high TG levels that result in 
an inaccurate estimation by Friedewald equation [25], we 
used records of LDLC levels at other time points when 
available. No LDLC levels were calculated using the 
Friedewald equation when TG levels were > 4.52 mmol/L, 
consistent with previous lipid genetics studies [9, 26].

Additionally, we assessed other traits known to influ-
ence lipid levels or genetic background, including sex, 
age, BMI, T2D, psychotic illness [27, 28], and ances-
try. T2D was defined as having a hemoglobin A1c 
value ≥ 6.5% and/or diagnosed with T2D as indicated by 
medical records. We defined “psychotic” as individuals 
diagnosed with schizophrenia or schizoaffective disor-
der; all other individuals were deemed “non-psychotic”. 
European versus non-European ancestry was assigned 
using principal component analysis (PCA) of common 
genetic variants (Additional file  1: Figure S2), which 
showed complete concordance with pedigree-derived 
information.

For details on genome sequencing methods and vari-
ant annotation, see Additional file  2: Supplementary 
Methods.

Polygenic risk score analyses
We used lipid PRSs that were previously constructed in 
a UK Biobank study [29] (PGS Catalog publication ID: 
PGP000263), with a development sample of 391,124 
European individuals using the penalized regression 
(bigstatsr) method. Genotype positions and effect sizes 
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for the TG (PGS001979), HDLC (PGS001954), LDLC 
(PGS001933), and TC (PGS001895) PRSs were retrieved 
from the PGS catalog [30] (Additional file  1: Table  S3). 
Individual-level PRSs for the study cohort were calcu-
lated using PRSice-2 following QC (Additional File 1: 
Figure S3).

We tested for associations between PRSs and their cor-
responding lipid level using linear regression in 1) a uni-
variable model and 2) a multivariable model that adjusted 
for other key phenotypic variables, batch (TCAG vs IBBC 
cohort and sequencing platform), and the first four prin-
cipal components (PC) of ancestry.

1) lipid level ~ lipid PRS

2) lipid level ~ lipid PRS + sex* + age + BMI + T2D* + psy-
chotic illness* + cohort + sequencing platform + PC1–
PC4 *binary variable

Binary variables were coded as 0 or 1 and all val-
ues were standardized using the scale() function in R 
to produce standardized beta coefficients. For regres-
sion analyses, TG levels were natural log transformed to 
approximate a normal distribution, as done previously 
[8, 9, 31] (Additional File 1: Figure S4). For individuals 
on statins, LDLC and TC levels were divided by 0.7 and 
0.8, respectively, to adjust for the cholesterol-lowering 
effects of these medications, as done previously [8, 9, 32]. 
The variance in lipid level explained by each multivari-
able model was measured using the multiple R2 metric. 
The variance in lipid levels explained by the PRS variable 
alone in a multivariable model (i.e., ΔR2) was calculated 
as the difference in the multiple R2 between the multivar-
iable model when including the PRS variable (full model) 
versus without the PRS variable (covariate only model). 
Additionally, we tested for an interaction between TG-
PRS x BMI by adding this interaction variable to a model 
that included TG-PRS and BMI as other independent 
variables and to the multivariable model (2) (Additional 
file 1: Table S4).

Receiver operating characteristic (ROC) curve analyses
Given the elevated baseline risk for mild-moderate HTG 
for individuals with 22q11.2DS, we constructed ROC 
curves to classify mild-moderate HTG status based on 
logistic regression models using TG-PRS, sex, and BMI 
as predictor variables, independently or in various com-
binations (TG-PRS + BMI, TG-PRS + sex, BMI + sex, 
TG-PRS + BMI + sex). Logistic regression models were 
implemented using the glm() function in R and all visu-
alizations and analyses related ROC curves were done 
using the R package “pROC” [33]. Delong’s test for two 
correlated ROC curves was used to test for the difference 

between the area under the curve (AUC) of two ROC 
curves and the optimal sensitivity and specificity of each 
ROC curve was determined using Youden’s J statistic. 
Confidence intervals for AUCs were calculated using 
2000 bootstrap replicates.

Rare variant analyses
To prioritize variants for assessment of clinical relevance 
with respect to their relationship to causing extreme lipid 
levels (i.e., high TG, LDLC, HDLC, and low HDLC), we 
restricted to variants affecting protein coding or splicing 
regions that are (1) very rare (gnomAD PopMax filtering 
allele frequency < 0.2%), (2) loss of function (LoF) or pre-
dicted damaging missense, and (3) within genes relevant 
to lipid levels that are part of a targeted next generation 
sequencing (NGS) panel (n = 33 candidate genes) used at 
a specialized genetics clinic for lipid metabolism disor-
ders in London, Ontario [34] (Additional file 1: Table S5). 
Prioritized rare variants were then assessed using the 
American College of Medical Genetics and Genomics 
(ACMG) variant interpretation guidelines [35] or LDLR-
specific guidelines developed by ClinGen [36]. For fur-
ther details on variant prioritization, see Additional File 
2: Supplementary methods.

Additionally, we sought to assess whether being a car-
rier of a rare variant, including those with potentially 
smaller effect sizes that are not considered pathogenic/
likely pathogenic per ACMG criteria, would be associ-
ated with altered lipid levels (Additional file 1: Table S5). 
An association between “rare variant carrier status” and 
lipid levels was assessed using the same univariable and 
multivariable linear regression models as for PRS analy-
ses, but with the rare variant carrier status variable in 
place of the PRS variable. For additional details on the fil-
tering criteria for rare variants for this analysis, see Addi-
tional File 2: Supplementary Methods.

All statistical analyses were performed using R ver-
sion 4.0.3. Statistical significance was defined as p < 0.05. 
P-values were not adjusted for multiple testing.

Results
Cohort description and demographic and phenotypic 
predictors of lipid levels
Table  1 summarizes the clinical and demographic fea-
tures of the 151 of 157 individuals with a 22q11.2 micro-
deletion who had genome sequencing data that passed 
common variant quality control (Additional file  1: Fig-
ure S1). As expected from previous results for an over-
lapping sample (Additional file 1: Table S2), 45.0% of the 
cohort with TG data available (n=67 of 149) had mild-
moderate HTG (TG 1.7–10.0  mmol/L), representing an 
approximately twofold increase in risk compared to an 
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age-matched general Canadian population prevalence of 
21.6% [12]. Males in particular had a significantly higher 
prevalence of HTG (60.8% vs 29.3%, Fisher’s exact test 
p = 1.44E-04) and significantly lower average HDLC levels 
(0.99  mmol/L vs 1.31  mmol/L, Wilcoxon test p = 3.02E-
09) (Table 1).

Polygenic risk score and other predictors of lipid levels
We first examined whether lipid PRSs (for TG, HDLC, 
LDLC, and TC) that were previously developed in an 
entirely European general population cohort (aged 
40–69 years) [29] (Additional file 1: Table S3), would be 
significantly associated with their corresponding lipid 
level in a relatively younger (median age 34, range 17–64, 
years), predominantly (89.4%) European, and smaller 
(n = 149–151) cohort of individuals with a 22q11.2 
microdeletion. The results showed that each PRS was a 
significant predictor (all p < 0.01) of its corresponding 
lipid level, in univariable models. Multivariable linear 
regression models that adjusted for sex, age, BMI, T2D, 
psychotic illness, ascertainment cohort, sequencing 

platform, and the first four principal components (PCs) 
of ancestry (Table  2, Additional file  1: Figure S7) were 
significant however only for TG and HDLC levels; over-
all models were non-significant for LDLC and TC (only 
the PRS variable appeared to have a significant effect). 
Results were similar when restricting to only individu-
als of European ancestry (n = 134–136), with no notable 
changes in effect sizes of the respective PRSs (Additional 
file 1: Table S6).

The TG-PRS variable alone (beta = 0.313, p = 1.52E-04) 
explained 8.4% of the variance (ΔR2) in TG levels in the 
multivariable model (R2

model = 24.7%, pmodel = 7.26E-05) 
(Table 2), with male sex and higher BMI also significant 
independent predictors of higher TG levels (Table 2).

Univariable linear regression analyses within those with 
or without obesity (BMI ≥ 30), revealed that the effect size 
of the association between the TG-PRS and TG levels was 
greater in those with obesity (beta = 0.4617) than without 
obesity (beta = 0.1778) (Fig. 1). Further testing for a dif-
ference between these effect sizes (i.e., the slope of the 
regression lines), by adding an interaction term (TG-PRS 

Table 1  Lipid and other phenotypic/clinical variables, and sex effects, in adults with a 22q11.2 microdeletion

SD Standard deviation, TG Triglyceride, LDLC Low density lipoprotein cholesterol, HDLC High density lipoprotein cholesterol, TC Total cholesterol, BMI Body mass index, 
HTG Hypertriglyceridemia, T2D type 2 diabetes
a Excluded one individual on fibrates (n = 1)
b For individuals on statin medications, LDLC and TC levels were divided by 0.7 and 0.8, respectively, as in previous studies [8, 9, 32]
c Recorded at the date of TC measurement to the nearest 0.1 years
d Mild-moderate HTG is defined as having a TG level between 1.7–10 mmol/L. For this row only, there are n = 74 males and n = 149 total
e Defined as schizophrenia or schizoaffective disorder

Continuous variables
Total sample Males Females
n Mean SD n Mean SD n Mean SD

Lipid levels
  TG (mmol/L)a 149 1.92 1.18 74 2.25 1.37 75 1.60 0.85

  HDLC (mmol/L) 150 1.15 0.35 75 0.99 0.28 75 1.31 0.33

  LDLC (mmol/L) 148 2.71 0.87 73 2.67 0.86 75 2.75 0.88

  LDLC statin-adjusted (mmol/L)b 148 2.81 0.93 73 2.74 0.85 75 2.88 0.99

  TC (mmol/L) 151 4.72 0.98 76 4.64 0.98 75 4.80 0.99

  TC statin-adjusted (mmol/L)b 151 4.84 1.06 76 4.74 1.02 75 4.94 1.09

Other clinical/demographic variables
  BMI (kg/m2) 151 30.29 7.39 76 29.82 7.36 75 30.77 7.44

  Agec 151 35.66 11.2 76 34.92 11.51 75 36.42 10.9

Categorical variables
Total sample (n = 151) Males (n = 76) Females (n = 75)
n % n % n %

  Mild-moderate HTGa,d 67 45.0 45 60.8 22 29.3

Other clinical/demographic variables
  On statin medication 16 10.6 7 9.2 9 12.0

  Type 2 diabetes 14 9.3 8 10.5 6 8.0

  Psychotic illnesse 65 43.0 37 48.7 28 37.3

  European ancestry 135 89.4 71 93.4 64 85.3
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x BMI) to a linear regression model that included TG-
PRS and BMI as predictors of TG levels, identified a sig-
nificant interaction (beta = 0.179, p = 0.045) (Additional 
file 1: Table S4). The interaction term did not reach sig-
nificance however when adjusted for the other 10 vari-
ables included in the multivariable models (beta = 0.168, 
p = 0.059) (Additional file 1: Table S4).

Using triglyceride polygenic risk score (TG‑PRS), BMI, 
and sex to classify mild‑moderate hypertriglyceridemia
In post-hoc analyses we constructed ROC curves using 
logistic regression models to assess the ability of the TG-
PRS, along with significant clinical predictors of TG lev-
els (sex and BMI), to discriminate between those with 
and without clinically defined mild-moderate HTG (TG 
levels 1.7–10.0 mmol/L). Among the univariable models, 
sex had the highest AUC (0.659; 95% CI 0.582–0.736), 
with BMI and TG-PRS having slightly lower AUCs 
(Fig. 2, Additional File 1: Table S7). Combining all three 
variables in one model resulted in a significantly higher 
AUC (0.7486) than each univariable model (vs TG-PRS 

p = 0.0023, vs BMI p = 0.0089, vs sex p = 0.0024), achiev-
ing an optimal sensitivity and specificity (using the 
Youden Index) of 0.746 and 0.707, respectively (Addi-
tional File 1: Tables S7 and S8). Furthermore, we tested 
whether the addition of TG-PRS to each clinical predictor 
alone (i.e., sex vs sex + TG-PRS, BMI vs BMI + TG-PRS) 
or combined (i.e., sex + BMI vs sex + BMI + TG-PRS) 
would improve prediction (Additional File 1: Figure 
S8). In each case, the addition of TG-PRS marginally 
increased the AUC, but the difference did not reach sta-
tistical significance (Additional File 1: Table S8).

We also assessed the prevalence of mild-moderate 
HTG within each decile of TG-PRS (Additional File 1: 
Figure S9). Individuals in the top decile had a non-signif-
icantly higher prevalence of mild-moderate HTG (64.3%; 
n = 9 of 14) compared to individuals in the lowest decile 
(26.7%, n = 4 of 15) (Fisher’s exact test p = 0.3166).

Clinically relevant rare variants
In 32 (20.5%) of 156 individuals we identified 38 
rare (< 0.2%) single nucleotide (SNV) or insertion/

Fig. 1  Scatterplot and linear associations between the triglyceride (TG) polygenic risk score (TG-PRS) and TG levels for n = 149 adults with a 22q11.2 
microdeletion by obesity classification. Fitted lines were generated using linear regression performed within two sub-groups, with (orange) 
(beta = 0.4617) and without (blue) (beta = 0.1778) obesity defined as BMI ≥ 30 kg/m2 (unadjusted TG x BMI interaction beta = 0.179, p = 0.045). 
TG levels are natural log (2ln) transformed. The dashed black line indicates the natural log transformed value of the lower-bound clinical cut-off 
that defines mild-moderate HTG (1.7 mmol/L), thus above this line individuals would be classified as having mild-moderate hypertriglyceridemia
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deletion (indels) variants in 17 of the 33 lipid panel 
genes assessed, which we then examined using stand-
ard clinical criteria [35, 36] (Additional file 1: Table S9). 
There were no rare CNVs overlapping exonic regions of 
these 33 genes (Additional file 1: Table S5).

Of these 38 SNV/indels, two were classified as 
pathogenic/likely pathogenic, one for hypercholester-
olemia and the other for HTG. A pathogenic heterozy-
gous missense variant in LDLR (c.G523A, p.D175N; 
rs121908033; ClinVar ID: 3726) [37, 38], diagnostic 
for familial hypercholesterolemia, was identified in 
a 21.1-year-old male with an elevated LDLC level of 
4.53 mmol/L. We also identified a loss of function (LoF) 
(frameshift insertion) variant in CREB3L3 (c.729dupG, 
p.L243fs; rs780374391; ClinVar ID: 967,101) that 
was classified as likely pathogenic with respect to 
mild-moderate HTG. This female patient had a vari-
able history of elevated TG levels with a maximum 
recorded TG level of 3.89 mmol/L (age 46.9 years), and 
most recent recorded TG level of 1.57  mmol/L (age 
47.4 years). See Additional file 1: Table S10 for detailed 
patient history and scoring of these two variants.

Rare variant carrier status regression analyses
Of the n = 154–156 individuals assessed for the four lipid 
traits examined (Additional file 1: Figure S1), we identi-
fied relatively few individuals who were carriers of rare 
(< 1.0%) variants in genes canonically associated with 
each lipid trait: high TG (n = 7, two individuals had two 
variants each), high LDLC (n = 14), low HDLC (n = 9), 
and high HDLC (n = 10) (Additional file  1: Table  S5, 
Table S11). Rare variant carrier status was not a signifi-
cant predictor of the level of corresponding lipid trait 
using either univariable or multivariable linear regression 
models (Additional file 1: Table S12), possibly due to lim-
ited power afforded by the sample size.

Discussion
In this initial study of lipid genetics in individuals with the 
most common pathogenic CNV in humans, we demon-
strate that part of the variable expression of the 22q11.2 
microdeletion with respect to elevated TG levels can be 
explained by genome-wide common variation captured in 
a PRS, along with significant effects of sex and BMI. With 
few individuals having rare variants in TG metabolism 

Fig. 2  Receiver operating characteristic (ROC) curves of logistic regression models using each of triglyceride polygenic risk score (TG-PRS; red), 
BMI (brown), sex (purple), and the combination of these three variables (blue), as predictors of mild-moderate hypertriglyceridemia in adults 
with 22q11.2DS. The area under the curve (AUC) and 95% confidence intervals (95% CI) for each curve are shown in the figure key on the bottom 
right



Page 8 of 11Ying et al. BMC Medical Genomics          (2023) 16:281 

genes, this study was underpowered to determine their 
role in 22q11.2DS.

The modifying effect on TG levels from the TG-PRS 
in the presence of a high impact “first-hit” exerted by 
the 22q11.2 deletion is consistent with previous studies 
of schizophrenia and related neuropsychiatric pheno-
types in 22q11.2DS, where Schizophrenia-PRS has been 
reported to modify the associated penetrance of the dele-
tion [18, 39]. This pattern for the 22q11.2 deletion also 
appears to be consistent with previously reported PRS 
modification of the BMI-lowering effect of the 16p11.2 
duplication [40]. In other conditions, PRSs have also 
been reported to modify the penetrance of a pathogenic 
rare variant affecting a single gene, e.g., in familial hyper-
cholesterolemia [21, 40], coronary artery disease [17], 
breast cancer [20], and prostate cancer [20]. Notably, the 
variance in TG levels explained by the TG-PRS (8%) in 
a multivariable model in the current study of 22q11.2DS 
appears in line with general population expectations 
for TG-PRS explaining variance in TG levels (~ 2–10%), 
although it is difficult to make head-to-head comparisons 
of PRS performance given that each study used a differ-
ent PRS and different methods to quantify PRS perfor-
mance [41–43].

Consistent with previous studies using general popula-
tion samples [44–47], in this 22q11.2 microdeletion sam-
ple we identified a potential interaction between TG-PRS 
and BMI, in an unadjusted interaction model, that indi-
cates that the TG-PRS may have a stronger association 
with TG levels amongst individuals with obesity. This 
suggests that obesity may play a role in further unmask-
ing the TG level-increasing effect of a high TG-PRS, 
potentially further increasing the likelihood of HTG in 
individuals with a 22q11.2 microdeletion who also have 
elevated BMI.

The potential value of PRSs as a clinical risk prediction 
tool is a widely debated topic [48, 49]. In a previous study 
of PRS and schizophrenia in 22q11.2DS, it was suggested 
that PRSs may potentially have greater clinical use when 
there is an elevated baseline risk, as stratification using 
PRSs would be able to produce larger differences in abso-
lute risk [39]. In this study, we assessed the ability of the 
TG-PRS, along with significant clinical variables, sex and 
BMI, to predict mild-moderate HTG, in the context of an 
elevated baseline risk conveyed by a typical pathogenic 
22q11.2 deletion. While the performance of each of these 
three variables independently was relatively poor (AUC 
0.59–0.61), the combination of the three demonstrated 
moderate predictive value (AUC = 0.75, sensitivity = 0.75, 
specificity = 0.71). However, the addition of the TG-PRS 
to each clinical variable-only model did not demonstrate 
a significant increase prediction accuracy, suggesting that 

the TG-PRS used adds no predictive value that would 
be clinically meaningful to that obtained from standard 
clinical data. Furthermore, while we observed a substan-
tial difference in the prevalence of mild-moderate HTG 
between individuals in the highest (64.3%) vs the lowest 
(26.7%) deciles of TG-PRS, this difference did not reach 
statistical significance, likely related to the relatively small 
size of each decile bin (n = 14–15) and the effect size of 
the PRS used.

It is also important to consider when an intermediate 
biomarker, such as a lipid PRS, would be clinically useful. 
Lipid PRSs are predictors of lipid levels, which are risk 
factors for end-point diseases, such as coronary artery 
disease [6]. Lipid PRSs would not serve as actionable 
markers in adults where lipid levels are obtainable from 
routine bloodwork, as the lipid level itself would guide 
management. Future research may provide a potential 
use-case for 22q11.2DS in childhood, prior to HTG man-
ifestation, if a well-validated and more highly predictive 
TG-PRS was shown that could further motivate preven-
tive measures, such as physical exercise and healthy diet, 
for those individuals with high TG-PRS.

The results of this study demonstrate the potential 
value of a sample of individuals with a rare clinically rel-
evant CNV where there is both deep phenotyping and 
genome sequencing data available to study complex, 
polygenic disorders, especially those of high clinical rel-
evance. To our knowledge, this study contains the largest 
available cohort of adults with a 22q11.2 microdeletion 
and lipid level and other essential phenotypic data that 
enabled an assessment of the added value of lipid PRSs 
and combined ability with phenotypic data for predict-
ing HTG. This study would not be possible using current 
large-scale biobank data, as there is an acknowledged 
selection bias against individuals with rare high-impact 
CNVs (e.g., n = 10 with a pathogenic 22q11.2 deletion in 
UK BioBank) [50, 51]. Sequencing data enabled the iden-
tification of two rare pathogenic/likely pathogenic vari-
ants relevant to lipid disorders.

This study also has several limitations. Due to the rar-
ity of 22q11.2DS, especially with relevant adult data, 
the sample size is relatively small. This limited the abil-
ity to compare mild-moderate HTG prevalence between 
extremes of the PRS distribution (e.g., highest vs lowest 
decile of TG-PRS), and to further assess effects of rare 
variant burden on lipid levels [8, 10]. Also, given the 
sample size limitations, we opted to include individu-
als of non-European ancestry in the main analyses and 
accounted for ancestry using PCA, despite applying a 
PRS developed using only individuals of European ances-
try where the predictive performance may be decreased 
by up to half [29] when applied to non-European 
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ancestries. Although we observed no substantial differ-
ences in effect sizes when restricting to only individuals 
of European ancestry, using a PRS derived from a multi-
ancestry GWAS [9] may yield better overall performance. 
Also, we were unable to assess the influence of lifestyle/
environmental factors on TG levels; this will require 
future studies.

Conclusions
In conclusion, we found that the TG-PRS is associated 
with TG levels in the context of elevated baseline risk for 
mild-moderate HTG conferred by the 22q11.2 micro-
deletion. The results contribute to the body of literature 
demonstrating how additional genome-wide common 
variation can modify the expression of a high-impact 
rare variant.
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characteristic (ROC) curves of logistic regression models predicting mild-
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