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Abstract
Background  Fatal drug overdoses and serious injection-related infections are rising in the US. Multiple concurrent 
infections in people who inject drugs (PWID) exacerbate poor health outcomes, but little is known about how the 
synergy among infections compounds clinical outcomes and costs. Injection drug use (IDU) converges multiple 
epidemics into a syndemic in the US, including opioid use and HIV. Estimated rates of new injection-related infections 
in the US are limited due to widely varying estimates of the number of PWID in the US, and in the absence of clinical 
trials and nationally representative longitudinal observational studies of PWID, simulation models provide important 
insights to policymakers for informed decisions.

Methods  We developed and validated a MultimorbiditY model to Reduce Infections Associated with Drug use 
(MYRIAD). This microsimulation model of drug use and associated infections (HIV, hepatitis C virus [HCV], and severe 
bacterial infections) uses inputs derived from published data to estimate national level trends in the US. We used Latin 
hypercube sampling to calibrate model output against published data from 2015 to 2019 for fatal opioid overdose 
rates. We internally validated the model for HIV and HCV incidence and bacterial infection hospitalization rates among 
PWID. We identified best fitting parameter sets that met pre-established goodness-of-fit targets using the Pearson’s 
chi-square test. We externally validated the model by comparing model output to published fatal opioid overdose 
rates from 2020.

Results  Out of 100 sample parameter sets for opioid use, the model produced 3 sets with well-fitting results to 
key calibration targets for fatal opioid overdose rates with Pearson’s chi-square test ranging from 1.56E-5 to 2.65E-5, 
and 2 sets that met validation targets. The model produced well-fitting results within validation targets for HIV and 
HCV incidence and serious bacterial infection hospitalization rates. From 2015 to 2019, the model estimated 120,000 
injection-related overdose deaths, 17,000 new HIV infections, and 144,000 new HCV infections among PWID.

Conclusions  This multimorbidity microsimulation model, populated with data from national surveillance data and 
published literature, accurately replicated fatal opioid overdose, incidence of HIV and HCV, and serious bacterial 
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Background
People who inject drugs (PWID) experience many com-
plications from the substances used and from injection 
drug use (IDU). These complications can often occur 
together in PWID and include substance use disorder 
(e.g., opioid use disorder [OUD]), drug overdoses, and 
serious injection-related infections such as HIV, hepa-
titis C virus  (HCV), and severe bacterial infections like 
endocarditis. These complications also escalate morbid-
ity and mortality among PWID, particularly for those 
without access to harm reduction measures such as ster-
ile syringes and other equipment. The increasing use of 
synthetic opioids, such as fentanyl, are driving fatal drug 
overdoses in the US [1]. PWID experience higher infec-
tion rates and poorer outcomes from infections (HIV, 
HCV, bacterial infections), creating a syndemic between 
drug use and these infections [2–5]. PWID may also 
experience infections concurrently (e.g., HIV/HCV co-
infection), and one infection can exacerbate poor out-
comes for another. For example, people living with HIV 
have an increased risk of both HCV-related fibrosis and 
cirrhosis as well as invasive bacterial infections such as 
endocarditis, particularly at lower CD4 counts [6, 7].

Despite high morbidity and mortality rates, nation-
ally representative data from observational cohort stud-
ies on HIV, HCV, and bacterial infections among PWID 
and randomized control trials on interventions to reduce 
these infections among PWID are lacking. Policymakers 
often need information on long-term outcomes and cost-
effective interventions to make important health deci-
sions. In such cases, decision-analytic models can enrich 
the evaluation of clinical and public health interventions 
beyond the time horizons of clinical trials and obser-
vational studies. This importance is clear when studies 
focusing on PWID are limited, when trials have excluded 
PWID, or when important outcomes of public health 
interventions occur among people not engaged in care 
and thus are missed in trials and cohort studies [8]. How-
ever, previously published models of IDU do not consider 
multiple infections that PWID often experience concur-
rently nor account for the compounding clinical and eco-
nomic effects of co-infections [9–12].  A multimorbidity 
model that accounts for multiple drug- and infection-
related complications in PWID would improve estima-
tions of the clinical and economic impact of the syndemic 
of drug use and related infections as well as more clearly 
demonstrate how interventions could impact multiple 
complications simultaneously.

Decisionmakers also require confidence in model-
generated results to reasonably reflect the clinical envi-
ronment of diseases to consider the results when making 
medical decisions or health care resource allocation. 
However, uncertainty around key model inputs and 
structure can put that confidence at risk. To increase con-
fidence in the model results, best practices recommend 
transparency in the model’s construction, validation of 
the model’s ability to reproduce observed real-world out-
comes, and reporting and evaluation of parameter uncer-
tainty through sensitivity analyses [13–15]. Our objective 
was to create a comprehensive decision-analytic model 
that simulates the dynamics of multiple infections in 
PWIDs. In this paper, we sought to describe in detail the 
structure and validation of a MultimorbiditY model to 
Reduce Infections Associated with Drug use (MYRIAD) 
that reflect national estimates in the US to be used for 
future policy analyses.

Methods
Model description
Overview
MYRIAD is a microsimulation model of drug use and 
serious infections related to specific injection behaviors 
(e.g., needle sharing or reuse, especially without effective 
HIV pre-exposure prophylaxis, or introduction of skin or 
oral flora via injection) that is programmed in the R com-
puter language (version 4.2.1) [16]. The model includes 
4 health conditions: drug use behavior, serious bacterial 
infections, HIV, and HCV (Fig. 1). Each health condition 
contains many possible health states that a person can 
be in for that condition each month. The model creates 
a simulated person and assigns it an age, gender, and dif-
ferent health states within each of the 4 health conditions 
based in probabilities. No one enters the model with an 
active bacterial infection. The model will then increase 
the person’s age each month and may change the health 
state within each health condition for that month. This 
change is based on probabilities from data derived from 
the published literature (Table  1). Additional details on 
input derivations are in Supplement A. All simulated per-
sons have a probability of death each month that is based 
on their age, gender, and health state they are in within 
each of the 4 health conditions. The model will increase 
the person’s age and assess changes in their health states 
until that person is determined to die in a particular 
month or until that person reaches the end of pre-set 
duration. The model tracks individual clinical outcomes 

infections hospitalization rates. The MYRIAD model of IDU could be an important tool to assess clinical and economic 
outcomes related to IDU behavior and infections with serious morbidity and mortality for PWID.
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from model start until death or when the pre-set dura-
tion is reached. We repeat the process to create a hypo-
thetical cohort in line with recent estimates of active IDU 
prevalence in the US; active IDU was defined as having 
injected drugs within the past year [17].

Mortality
After the model determines people’s final health state 
within each health condition for the month, it esti-
mates the probability of death for that month. People are 
assigned a background mortality based on age and sex, 
derived using cause-specific mortality from the National 
Center for Health Statistics and removing mortality from 
substance use, IDU-related bacterial infections, HIV, and 
HCV since they were estimated elsewhere in the model 
[18]. Additional mortality rates are added onto the back-
ground mortality for each person based on their drug use 
behavior, type of bacterial infection, CD4 state, and liver 
fibrosis state (Table 1) [19–23].

Drug use behavior
People are assigned one of four health states regard-
ing drug use (focusing on opioid use): “Low-risk” (i.e., 
prescription opioid misuse without an OUD diagno-
sis), “Medium-risk” (i.e., illicit opioid use such as heroin 
without OUD), “OUD” (OUD with prescription or illicit 
opioids), and “Remission.” People can transition between 
different states each month as described in Fig. 1. Once 
people reach the “OUD” state, they can only transition to 
the “Remission” state and vice versa (indicating relapse). 
No one starts out in the “Remission” state. Each opioid 

use state confers additional monthly mortality risk due to 
drug overdose. Data on the monthly transition between 
states and additional mortality (in excess to background 
mortality) within each state were derived from model 
calibration and the published literature (Table  1) [24]. 
Apart from drug use and drug-related disorders (i.e., 
OUD), which informs the risk of fatal drug overdose in 
the model, we also account for the route of drug admin-
istration. People are also assigned an IDU state of “None,” 
“Active,” and “Former.” An “Active” state confers addi-
tional risk of acquiring infections from the act of injec-
tion. In addition, those with IDU have a lower likelihood 
of starting antiretroviral therapy (ART) in people with 
HIV compared to those not in the “Active” state. People 
in the “None” and “Former” states – which can include 
people who orally ingest, snort, or smoke drugs – have 
the same probability of acquiring infections regardless 
of their drug use state. As this model focuses on PWID, 
we assume all people start in the “Active” IDU state. Peo-
ple who move into the “Remission” opioid use state also 
move into the “Former” IDU state.

Serious bacterial infections
People can be in either an “Active” serious bacterial infec-
tion state or have “None.” They enter the model in the 
“None” state. For people with an “Active” serious bacte-
rial infection, they are assigned one of 4 types of infec-
tions: “CNS Infection,” “Endocarditis,” “Osteomyelitis,” 
and “Skin and Soft Tissue Infection.” The type of infection 
confers an additional mortality risk only for the month in 
which the infection occurs. The probability of acquiring 

Fig. 1  Schema for the Multimorbidity Model to Reduce Infections Associated with Drug Use (MYRIAD). Notes: HCV: hepatitis C virus; OUD: opioid use dis-
order; CNS: central nervous system. All persons in the model start in an active injection drug use state within the “low-risk,” “medium-risk,” and “OUD” states

 



Page 4 of 11Chiosi et al. BMC Health Services Research          (2023) 23:760 

Parameter Estimate Source
Population

  Initial calendar year 2015 b

  Time horizon, months 60 b

  Proportion female (%) 32.5  [24]

  Initial age, mean years (SD) 30 (2.5) b

Drug Use Behavior

  Initial Opioid Use Proportion (%)  [24]

    Low-risk state 62.9

    Medium-risk state 2.1

    OUD 35.0

  Monthly Transition Probabilities (%)

    Low to Medium -c

    Low to OUD -c

    Medium to OUD -c

    OUD to Remission 2.19 d

    Remission to OUD 5.75  [38]

Serious Bacterial Infections IDU Non-IDU
  Monthly Transition Probabilities

    Bacterial infection incidence (%), varies by calendar year 0.6915–0.8672 0.0262–0.0284  [4]

    Infection proportion (%)  [4]

      CNS infection 2.3 0.9

      Endocarditis 5.4 1.0

      Osteomyelitis 6.3 3.6

      Skin/soft tissue infection 86.0 94.6

    Cure from bacterial infection (%) 80.9 97.4  [25]

HIV IDU Non-IDU
  Initial HIV Probabilities

    HIV prevalence (%) 3.0 0.4  [26]

    CD4 distribution (%)  [10, 27]

      High CD4 (≥ 500 cells/mm3) 30.5 41.0

      Medium CD4 (200–499 cells/mm3) 29.9 16.0

      Low CD4 (< 200 cells/mm3) 38.6 43.0

    Aware of status if HIV positive (%) 92.7 83.5  [26]

    On ART (%) 47.7 57.5  [28]

  Monthly Transition Probabilities

    Monthly HIV incidence (%), varies by calendar year 0.0355–0.0382 0.0010–0.0012  [26]

    Aware of status if HIV positive (%) 19.6 14.4  [26]

    Start ART (%) 5.3 6.9  [28]

    Stop ART (%) 1.7 1.0  [28]

    CD4 Transitions (%) On ART Off ART  [10]

      High to Medium CD4 1.14 1.24

      High to Low CD4 0.01 -

      Medium to High CD4 1.61 -

      Medium to Low CD4 0.64 7.00

      Low to Medium CD4 0.03 -

      Low to High CD4 2.66 -

HCV IDU Non-IDU
  Initial HCV Probabilities

    HCV prevalence (%) 33.5 1.1  [5, 20]

    Liver fibrosis stage for people starting with HCV (%)  [20]

      F0 27.2

      F1 33.4

      F2 17.1

Table 1  Model inputs to estimate health outcomes of infections associated with active injection drug use in the United Statesa
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or being cured of an infection as well as the type of infec-
tion depends on the current IDU state; data were derived 
from published literature (Table 1) [4, 25]. Only one bac-
terial infection can be experienced in a given month, 
although simulated people remain at risk for additional 
infections in subsequent months.

HIV
People enter the model in a “With HIV” or “Without 
HIV” state, informed from published national HIV prev-
alence data (Table  1) [26]. Those in the “Without HIV” 
state have a monthly probability of moving to the “With 

HIV” state based on their IDU state with inputs derived 
from national HIV incidence estimates [26]. People in the 
“With HIV” state cannot return to the “Without HIV” 
state. Those in the “With HIV” state are assigned a CD4 
state of “High” (CD4 ≥ 500 cells/mm3), “Medium” (CD4 
200–499 cells/mm3), or “Low” (CD4 < 200 cells/mm3); 
the current CD4 state determines an additional monthly 
mortality risk due to HIV. People can transition between 
CD4 states based on if they are receiving ART – those 
not on ART can only transition to a lower CD4 state 
and those on ART can transition to lower or higher CD4 
states based on published data [10, 27]. The likelihood of 

Parameter Estimate Source
      F3 11.1

      F4 9.6

      Decompensated cirrhosis 1.4

      Hepatocellular carcinoma 0.2

  Monthly Transition Probabilities

    Monthly HCV incidence (%), varies by calendar year 0.1359–0.2024 0.0002–0.0005  [29]

    % of acute HCV that clear spontaneously 2.4  [35]

    Liver fibrosis transitions (%) HCV+ HCV-  [20]

      F0 to F1 0.9386 -

      F1 to F2 0.7105 -

      F2 to F3 1.0316 -

      F3 to F4 1.0222 -

      F4 to decompensated cirrhosis 0.2449 0.0669

      F4 to hepatocellular carcinoma 0.1174 0.0418

      Decompensated cirrhosis to hepatocellular carcinoma 0.5851

Monthly Mortality Probabilitiese

  Background Mortality Varies by age and sex  [18]

  Drug Use Mortality (%), varies by calendar year  [24]

    Low-risk state 0.0052–0.0070

    Medium-risk state 0.1057–0.2580

    OUD 0.0166–0.0355

  Bacterial Infection Mortality (%)  [4]

    CNS infection 3.6

    Endocarditis 5.8

    Osteomyelitis 1.5

    Skin/soft tissue infection 1.5

  HIV Mortality (%) On ART Off ART  [19, 21–23]

    High CD4 state 0.0013 0.0033

    Medium CD4 state 0.0024 0.0155

    Low CD4 state 0.0102 0.1936

  HCV Mortality (%)  [20]

    Decompensated cirrhosis 1.0

    Hepatocellular carcinoma 4.5
aActive injection drug use was defined as having injected drugs within the past year
bUser-defined
cData derived from calibration
dUnpublished data from Opioid Policy simulation model
eOverall monthly mortality risks were calculated by converting all relevant mortality probabilities to rates, summing the rates, and then converting the summative 
rate back to a probability

SD = standard deviation; OUD = opioid use disorder; IDU = injection drug use; CNS = central nervous system

Table 1  (continued) 
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starting or stopping ART depends on a person’s IDU state 
as well as if they are aware of their HIV status since only 
those aware of their HIV state can start ART [26, 28].

HCV
People enter the model in either a “With HCV” or “With-
out HCV” state, and they transition monthly between 
the states based on their IDU state (Table 1) [20]. Those 
in the “Without HCV” state have a monthly probability 
of moving to the “With HCV” state based on their IDU 
state, with inputs derived from national HCV incidence 
estimate [29]. When in the “With HCV” state, there is a 
monthly probability for transitioning in the Liver state, 
which uses the METAVIR score to stage liver fibrosis 
severity from “F0” through “F4”. Those with a Liver state 
of “F4” incur a probability of developing decompensated 
cirrhosis or hepatocellular carcinoma, which both confer 
increased liver-related mortality.

Model validation and calibration
We used a multistep approach for model validation based 
on guidelines from the International Society for Pharma-
coeconomics and Outcomes Research and the Society for 
Medical Decision Making [13].

Face validation
We first ensured face validity through detailed review 
of the model structure, underlying assumptions, and 
derived inputs with experts in simulation modeling of 
infectious diseases and opioid use who were not involved 
in the model’s construction.

Internal validation and calibration
We next internally validated the model by compar-
ing model results to data used as model inputs for each 
health condition to check the validity of the model 

structure, and calibrated model parameters as needed to 
meet target estimates. For example, we isolated the HIV 
health condition to ensure HIV incidence and prevalence 
occurred as expected according to input specifications, 
which did not require calibration (Supplement B). How-
ever, we used national estimates of annual fatal opioid 
overdose rates from 2015 to 2019 to calibrate monthly 
transition probabilities between health states within the 
drug use behavior health condition.

We calibrated unknown variables within certain health 
conditions using the approach from Vanni et al. (Table 2) 
[30]. First, we identified parameters within each health 
condition to vary for the calibration process. Second, we 
selected calibration targets within each health condition. 
Third, we selected Pearson’s Chi-square as the good-
ness of fit (GOF) measure. This measure was selected 
to account for the level of certainty in the observed data 
while also balancing the complexity of the model and 
processing time to run the model. Fourth, we used Latin 
hypercube sampling as a parameter search strategy. This 
approach uses a probability density function and divided 
intervals with the same probability. A parameter value is 
selected within each interval for each parameter. Fifth, we 
established convergence criteria for each parameter being 
calibrated, which defines when the GOF parameters have 
been successfully met. We considered the convergence 
criteria being met when model outputs were within the 
99% confidence interval of the observed calibration tar-
get values. Sixth, we established conducting 100 samples 
as a stopping rule for terminating the calibration process 
to balance identifying the ideal parameter set while also 
accounting for model processing time. Finally, we used 
the parameter sets meeting the convergence criteria and 
minimized the GOF measure for the external validation 
process.

Target estimates for internal validation and calibration
We calibrated the model to publicly available data. We 
identified parameter subsets that best fit the calibration 
data targets through an indirect, iterative process with 
Latin hypercube sampling and a GOF goal to minimize 
Pearson’s χ2 while within the 99% confidence interval of 
the calibration target data.

Target estimates for the annual fatal overdose rates 
from 2015 to 2019 were calculated using the number 
of fatal opioid overdoses identified in the Centers for 
Disease Control and Prevention (CDC) Wide-ranging 
Online Data for Epidemiologic Research (WONDER) 
database divided by an adjusted estimate for the num-
ber of people who misuse opioids in the US from the 
National Survey on Drug Use and Health (NSDUH) 
(Table 3) [1, 24]. Compared to published opioid overdose 
death rates for the general US population, which were 
estimated to increase from 10.4 in 2015 to 21.4 in 2020 

Table 2  Calibration approach [30]
Calibration Step Approach for MYRIAD
1. Identify parameters to vary in calibra-
tion process.

• Monthly transition prob-
abilities between low-risk, 
medium-risk, and OUD states.

2. Select calibration targets. • Fatal opioid overdose rates, 
2015–2019

3. Select a goodness of fit (GOF) 
measure.

• Pearson’s Chi-squared

4. Select a search strategy • Latin hypercube sampling

5. Identify acceptable GOF parameter 
sets (convergence criteria).

• Model outputs are within 
99% confidence interval of 
the observed calibration 
target values

6. Identify the termination of the calibra-
tion process (stopping rule).

• 100 number of sample runs

7. Identify how the model calibration 
results and economic parameters are 
integrated.

• Use parameter set that 
minimizes GOF measure
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per 100,000 people, we calibrated towards higher opioid 
overdose death rate targets for a population of people 
who misuse opioids that included people who misuse 
prescription opioids and/or used heroin [1]. While the 
number of people who misuse opioids can be challenging 
to estimate, this approach more accurately reflects the at-
risk population for fatal opioid overdoses. We applied a 
multiplier from a capture-recapture analysis that more 
accurately reflects the prevalence of OUD to account for 
the underreporting of opioid misuse in the NSDUH [31]. 
We also accounted for the exclusion of people experienc-
ing homelessness or incarceration in the NSDUH by esti-
mating the number of people with substance use disorder 
within these populations (see Supplement Table B1) [32, 
33].

Target estimates for HIV incidence from 2015 to 2019 
were calculated by the annual number of new HIV infec-
tions attributed to IDU divided by an estimated number 
of active PWID without HIV (Supplement Table B2) [5, 
26]. Target estimates for HCV incidence from 2015 to 
2019 were calculated by the estimated number of new 
HCV infections in people ages 18–40 (as a proxy for 
IDU) divided by the estimated age-related population 
of PWID (Supplement Table B3) [17, 29, 34, 35]. Target 
estimates for serious bacterial infection hospitalization 
rates from 2015 to 2017 were calculated by the estimated 
annual number of hospitalizations divided by the number 
of active PWID (Supplement Table B4) [4]. Active PWID 
was defined as having reported IDU within the past 12 
months.

External validation
To externally validate the model, we integrated all health 
conditions within the model and compared model output 

for the year 2020 to estimated targets from the published 
literature for that year (Fig. 2).

Estimates of clinical outcomes
We provided estimates of clinical outcomes over 5 years 
(2015–2019). To estimate the total number of fatal injec-
tion-related overdoses, we first averaged model results for 
the annual fatal opioid overdose rates that used param-
eter subsets meeting the convergence criteria. Next, we 
multiplied the rate by the annual estimate for the number 
of people who misuse opioids to calculate the number of 
fatal opioids overdoses each year. Lastly, we applied mul-
tipliers for the proportion of people who reported IDU 
upon admission for opioid use within the Treatment Epi-
sode Data Set-Admissions (TEDS-A) dataset (as a proxy 
for the proportion of opioid overdose deaths due to IDU) 
and for the proportion of injection-related deaths from 
opioids to calculate the total number of injection-related 
overdose deaths (Supplemental Table B6) [36].

The number of new HIV and HCV infections among 
PWID from 2015 to 2019 were estimated by applying 
model results for annual HIV and HCV incidence to the 
estimated PWID population for each year.

Results
Internal validation and calibration
For the drug use behavior health condition, we identi-
fied 3 independent parameters to undergo calibration. 
Out of 100 parameter sets derived by Latin Hypercube 
sampling for monthly transition probabilities among 
drug use behavior states, model results for 3 parameter 
sets fell within the 99% confidence interval of the annual 
opioid overdose death target data (Fig.  2). For param-
eter sets meeting the convergence criteria, the monthly 
probability of transitioning within the drug use behav-
ior state ranged from 0.22 to 0.27% for the “Low-risk” to 
“Medium-risk” state, 0.06–0.32% for the “Low-risk” to 
“OUD” state, and 2.80–3.80% for the “Medium-risk” to 
“OUD” state. We identified the best-fitting parameter set 
with the lowest Pearson’s Chi-square (Supplement Table 
B5). Additional parameter sets for internal validation of 
severe bacterial infection hospitalization rates, HIV and 
HCV incidence can be found in Supplement B (Figures 
B1-B4). Model results for HIV and HCV incidence were 
within the 99% confidence interval of target estimates.

External validation
Of the 3 parameter sets meeting the convergence crite-
ria for fatal opioid overdose rate, 2 sets produced a model 
estimate that fell within the 99% confidence interval for 
the 2020 target rate (Fig. 2).

Table 3  Calibration and validation targets for fatal opioid 
overdose rates in the US from 2015–2020.*
Year Number of 

opioid deaths 
[18]

Estimated number of 
people who misuse 
opioids [24]

Fatal opioid 
overdose rate 
(99% CI)

2015 33,091 22,811,881 0.1451%
(0.1383-0.1525%)

2016 42,249 21,582,291 0.1958%
(0.1864-0.2061%)

2017 47,600 20,325,520 0.2342%
(0.2220-0.2478%)

2018 46,802 19,081,554 0.2453%
(0.2321-0.2600%)

2019 49,860 18,435,900 0.2705%
(0.2531-0.2904%)

2020 68,630 17,731,936 0.3870%
(0.3486-0.4351%)

* Calibration targets included years 2015–2019. Validation target included year 
2020

CI = confidence interval
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Estimates of clinical outcomes
From 2015 to 2019, the model estimated 223,288 fatal 
opioid overdoses. Using data from TEDS-A that approxi-
mated 48.9% of these deaths were injection-related and 
91.2% of injection-related deaths are from opioids (Sup-
plemental Table B7), we estimated 119,816 injection-
related overdose deaths over this period. The model 
estimated 17,137 new HIV infections and 143,765 new 
HCV infections over this period as well.

Discussion
We described the structure of a novel multimorbidity 
microsimulation model of injection drug use and asso-
ciated infections, detailing the process for input deriva-
tion, model calibration and validation against national 
US data. The model produced well-fitting results to key 
calibration and validation targets that include fatal opioid 
overdose rates, HIV incidence, and HCV incidence.

The model estimated approximately 120,000 injection-
related overdose deaths from 2015 to 2019. Hall et al. 
estimated 28,257 injection-related overdose deaths for 
2018, [36] slightly above our model’s estimate of 24,957 
injection-related overdose deaths for that year. Our mod-
el’s estimate of more than 17,000 new HIV infections 
among PWID from 2015 to 2019 is similar to HIV sur-
veillance estimates of 18,700 (range 15,100–22,400) over 

the same time period (using transmission categories of 
IDU with or without men who have sex with men) [26]. 
Similarly, our model’s estimate of nearly 144,000 new 
HCV infections among PWID was comparable to sur-
veillance estimates of 158,000 (range 125,000–539,000) 
among people aged 18–40, which serves as a proxy for 
new HCV infections from IDU [29].

The model’s value is in its ability to address the syn-
demic of drug use and associated infections by incor-
porating drug overdose with injection-related viral 
and bacterial infections, which is particularly impor-
tant for PWID who may experience many infections 
concurrently. In the absence of preventive measures, 
undiagnosed asymptomatic HIV and HCV each propa-
gate transmission of the other, and treatment delays 
worsen the long-term response as well as survival. This 
is reflected in our input parameters that incorporate 
higher monthly probabilities for developing a new bacte-
rial infection, HIV, HCV infection in PWID (Table 1). As 
PWID seek medical care for acute symptomatic bacte-
rial infections, an opportunity arises for earlier HIV and 
HCV diagnoses, linkage to care, and treatment of OUD, 
a key contributor to IDU. Other models of IDU have 
focused on a viral infection (HIV and HCV) or a bacterial 
infection (e.g., endocarditis), while this model integrates 

Fig. 2  Calibration and validation of MYRIAD results to fatal opioid deaths rates among people who misuse opioids in the US from 2015–2020. Notes: CI: 
confidence interval
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multiple infections with an emphasis on the multimor-
bidity of IDU [9–12].

The model also distinguishes substance use and sub-
stance use disorders (e.g., OUD) from the act of injection, 
which will allow us to look at interventions with differ-
ent goals. For example, syringe service programs focus on 
reducing infections associated with the act of injection 
without addressing the drug use (i.e., harm reduction). 
Whereas medications for OUD would address OUD 
(but not necessarily non-opioid substance use disorder), 
where IDU may or may not decrease. This model allows 
us to look at the impact of medications for OUD on its 
own, syringe service programs on its own, and an inte-
grated syringe service program with MOUD that could 
synergistically impact IDU and OUD together.

We hope that this multimorbidity model will allow us 
to inform health policy guidance in the US, for example, 
by assessing packages of interventions that can reduce 
drug overdose deaths (e.g., medications for OUD, safe 
consumptions sites), reduce harms associated with 
specific injection practices (e.g., syringe service pro-
grams), prevent HIV (i.e., pre-exposure prophylaxis), and 
improve linkage to care for chronic viral infections such 
as HIV and HCV. This model can also assess the impact 
of an intervention on multiple infections concurrently, 
such as the reduction of bacterial infections, HIV, and 
HCV with syringe service programs.

There lacks a standard approach to model validation 
in the development process. Best practice guidelines 
developed by the International Society for Pharmaco-
economics and Outcomes Research and the Society for 
Medical Decision Making highlight the importance of 
transparency and validation in model development so 
that decisionmakers can trust the model output when 
making informed healthcare decisions [13]. Other health 
models have transparently reported model development 
with a systematic approach to calibration and validation. 
Zang et al. reported on the development and calibration 
of a dynamic compartmental model of HIV transmission 
among 6 US cities [15].

While we used a systematic approach for selecting cali-
bration targets outlined by Vanni et al., there is no stan-
dardized approach to model calibration and validation 
[30]. A standardized approach may be challenging given 
the limited availability of data to both calibrate and vali-
date the model. For example, we used national estimates 
of annual fatal opioid overdose rates from 2015 to 2019 
to calibrate the model and separately validated the model 
with data from 2020.

Our analysis has limitations. First, calibration targets 
of national estimates are derived from cross-sectional 
surveys that may undercount people who use drugs 
and PWID due to reporting and selection biases. We 
addressed these biases by adjusting for the number of 

people who misuses opioids in the US and using a 99% 
confidence interval for calibration targets to fall within 
given uncertainty of the data. Second, the model was cali-
brated to overall opioid overdose deaths in the US given a 
lack of injection-specific data. Newly published data esti-
mating the proportion of injection-related overdoses for 
opioid and non-opioid use will be utilized in future analy-
ses [36]. Third, the model does not account for differences 
in clinical outcomes by race/ethnicity due to differing 
rates of access to prevention and treatment measures, 
which will be the focus of a future analysis. Fourth, the 
model does not account for the impact of COVID-19 on 
IDU. In our next planned set of policy-focused analyses, 
we will consider this impact as well as the impact from 
shifts in opioid usage (e.g., increasing fentanyl use) when 
projecting future clinical outcomes. We can account for 
the accelerated overdose deaths from fentanyl using data 
from the CDC WONDER database, where D’Orsogna 
et al. found that fentanyl-related fatal overdose rates for 
2020 exceeded projections by 30% [37]. Fifth, our model 
may undercount clinical outcomes when all people start 
in an active IDU state, thus not accounting for those in 
remission from OUD or have a history of IDU who may 
relapse. Our focus for this analysis were people with 
active IDU, but future analyses can incorporate those 
who relapse to better account for additional clinical 
and economic outcomes. Sixth, this analysis focuses on 
selected infections of clinical and public health interests 
in the US; we exclude other injection-related infections 
that may play a more significant role in other countries 
such as tuberculosis or hepatitis B. Seventh, HCV treat-
ment for PWID is not included in the model and will be 
incorporated into future analyses. Eighth, as with all sim-
ulation models, the model necessarily simplifies complex 
biosocial processes while also retaining key parameters 
that drive outcomes for IDU and associated infections. 
We internally validated our model with experts in simu-
lation modeling of HIV, HCV, and opioid use to main-
tain equipoise between the simplifying assumptions and 
reflecting the complex interactions between drug use and 
its associated infections. Finally, our calibration approach 
of Latin hypercube sampling risks convergence on local 
optima (i.e., the most favorable solution among neigh-
boring set of solutions, but not the most favorable solu-
tion among all possible solutions). To address this, we 
average model results from all 3 parameter sets that met 
the convergence criteria.

Conclusion
Injection drug use has converged multiple epidemics 
into a syndemic in the US, including opioid use, HIV, 
HCV, and serious bacterial infections. There are limited 
national data on clinical outcomes for PWID, and in the 
absence of clinical trials and nationally representative 
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longitudinal observational studies of PWID, simula-
tion models are critical in providing expected outcomes 
for decisionmakers. This validated and calibrated model 
will next be used to project clinical outcomes and costs. 
We hope that this microsimulation model of injection 
drug use will be an important tool for decision-makers; 
it will allow them to project long-term clinical outcomes 
beyond the horizon of traditional clinical studies, as well 
as short- and long-term costs, and thus to evaluate the 
cost-effectiveness of interventions that reduce drug over-
doses and other harms associated with injection drug 
use.
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