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Abstract

Background: Cisplatin has been widely used for the treatment of cancer and its antitumour activity is attributed to
its capacity to form DNA adducts, predominantly at guanine residues, which impede cellular processes such as DNA
replication and transcription. However, there are associated toxicity and drug resistance issues which plague its use.

determine their potential as anticancer agents.

amplification reaction, Telomeric repeat

This has prompted the development and screening of a range of chemotherapeutic drug analogues towards
improved efficacy. The biological properties of three novel platinum-based compounds consisting of varying cis-
configured ligand groups, as well as a commercially supplied compound, were characterised in this study to

Methods: The linear amplification reaction was employed, in conjunction with capillary electrophoresis, to quantify
the sequence specificity of DNA adducts induced by these compounds using a DNA template containing telomeric
repeat sequences. Additionally, the DNA interstrand cross-linking and unwinding efficiency of these compounds
were assessed through the application of denaturing and native agarose gel electrophoresis techniques,
respectively. Their cytotoxicity was determined in Hela cells using a colorimetric cell viability assay.

Results: All three novel platinum-based compounds were found to induce DNA adduct formation at the tandem
telomeric repeat sequences. The sequence specificity profile at these sites was characterised and these were distinct
from that of cisplatin. Two of these compounds with the enantiomeric 1,2-diaminocyclopentane ligand (SS and RR-
DACP) were found to induce a greater degree of DNA unwinding than cisplatin, but exhibited marginally lower
DNA cross-linking efficiencies. Furthermore, the RR-isomer was more cytotoxic in Hela cells than cisplatin.

Conclusions: The biological characteristics of these compounds were assessed relative to cisplatin, and a variation
in the sequence specificity and a greater capacity to induce DNA unwinding was observed. These compounds
warrant further investigations towards developing more efficient chemotherapeutic drugs.

Keywords: Anticancer drug, Cisplatin, DNA adducts, Interstrand cross-linking, Sequence specificity, Linear

Background

cis-Diamminedichloroplatinum(II) (cisplatin) is a square
planar compound consisting of a central platinum atom
(Fig. 1a) that is widely used in cancer chemotherapy. Its
key biological target is DNA [1] where it forms either a
monofunctional adduct through covalent interactions
between a purine base and the monoaquated cisplatin
species or a bifunctional adduct between two purine
bases and the diaquated species [2, 3]. Intrastrand DNA
adducts between adjacent G residues account for 60% of
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cisplatin’s covalent interaction [4] and these contribute
significantly to its biological and antitumour activity, in
addition to DNA adducts formed at AG, GA and GC
sequences [5, 6]. Cisplatin also forms interstrand adducts
between two offset guanine bases (on opposing strands
of the DNA helix), which account for just 2% of adducts
[4] but these are the most toxic and are thought to
hinder DNA replication and transcription, leading to cell
cycle arrest and apoptosis [6-8].

Located at the ends of chromosomes are G-rich telo-
mere sequences consisting of tandem repeats of
5'-TTAGGG,-3" [9]. These undergo shortening during
progressive rounds of normal cell replication that limits
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Fig. 1 The chemical structures of cisplatin, RR-DACH and the three novel platinum-based compounds used in this study. All compounds used in

this study consist of a single platinum atom and two chloride atoms arranged in the cis configuration. Note that (a) cisplatin is a square planar compound
containing two ammine groups attached to the central platinum atom. RR-DACH, contains an RR-configured cyclohexane ligand attached to two ammine
groups. The novel compounds (c) [Pt(SS-DACP)CI,] and (d) [Pt(RR-DACP)CI,] consist of isomeric configured cyclopentane ligands. The novel compound (e)
[Pt@FH)Cl,] contains symmetrical fluorobenzoic hydrazide groups attached to ammine groups on either side of the platinum atom
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cell lifespan. Expression of the telomerase enzyme in
malignant cells catalyses the extension of these DNA
sequences, contributing to cellular immortality associ-
ated with carcinogenesis [10]. DNA templates consisting
of eukaryotic telomere sequences are preferential targets
for DNA damage induced by cisplatin and other novel
platinum-based compounds [11-13]. Furthermore,
cisplatin-induced DNA adducts at telomeres have been

correlated to a regression in tumour size in patients with
advanced head and neck cancer [14]. Hence, the ability
of novel platinum-based anticancer drugs to form DNA
adducts at telomere sequences may be a desirable prop-
erty to assess in relation to their potential use in cancer
therapy.

Cisplatin-induced DNA adducts have the ability to
bend and locally unwind the DNA helix to cause
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unstacking of the guanines [15] and to kink DNA by 53°
[16]. These adducts are recognised by enzymes including
those involved with DNA repair [17], such as the
nucleotide excision repair proteins [18, 19]. Alterna-
tively, DNA lesions may be shielded by HMG box 1 pro-
teins [20, 21] that protect them from repair and this may
be a key factor contributing to their antitumour
efficiency.

Cisplatin is used for the treatment of various cancers,
however, there are a range of associated cytotoxicity and
resistance issues that may be overcome by the design
and synthesise of novel platinum-based analogues. Since
its discovery, over 3000 platinum-based compounds have
been synthesised but only 35 of these have proven
advantages relative to cisplatin for use in clinical practice
[22]. One of the most successful of these is 1R,2R-diami-
nocyclohexaneoxalatoplatinum(II) (oxaliplatin). Oxali-
platin exhibits an enhanced range of activity and a lower
cross-resistance to that of cisplatin and the presence of
the 1R,2R-diaminocyclohexane (DACH) ligand may be
responsible for this [23]. As a case in point, oxaliplatin is
highly effective in the treatment of colon cancer whilst
cisplatin has minimal effect [22]. Additionally, use of
oxaliplatin is associated with lower toxicity and higher
patient survival rates than cisplatin in the treatment of
advanced, unresectable gastric cancer [24]. Since the
emergence of oxaliplatin, a range of novel platinum-based
compounds containing a 1S,2S-diaminocyclohexane
ligand, such as 56MESS, have been shown to be more
cytotoxic than cisplatin in a range of cisplatin-sensitive
and cisplatin-resistant cell lines [25]. In this study, the
biological properties of three novel platinum-based com-
pounds consisting of varying cis-configured ligand groups
as well as a commercially supplied compound were char-
acterised to determine their potential as anticancer agents.

Methods

In this investigation, we report the biological properties
of four platinum-based compounds [Pt(RR-DACH)CL,],
[Pt(RR-DACP)Cl,], [Pt(SS-DACP)Cl,] and [Pt(4FH)Cl,],
as shown in Fig. 1. RR-DACH is structurally related to
oxaliplatin whereas the isomers RR-DACP and SS-DACP
contain one less carbon in the cyclic ring. The DNA
sequence used to characterise the sites of damage
contained several telomeric repeat sites, as shown in
Fig. 2. This was achieved using a modified linear
amplification reaction (LAR) [26] to detect and quan-
tify DNA damage (bulky DNA adducts) at single
nucleotide resolution. This technique involves Tag
DNA polymerase extending from a fluorescently-labelled
oligonucleotide primer until its activity is terminated by a
DNA adduct [27, 28]. Fluorescently-labelled DNA frag-
ments were analysed using a capillary sequencer [12, 29].
This method is more efficient and accurate than
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conventional gel electrophoresis for the quantification of
data [30, 31]. Additionally, this research characterises the
DNA interstrand cross-linking and DNA unwinding effi-
ciencies of the platinum-based compounds, using a
purified pUC19 DNA template, through the application of
denaturing and native agarose gel electrophoresis
techniques, respectively.

Chemicals and starting materials

Cisplatin and the ligand, RR-DACH, were purchased
from Sigma-Aldrich. The novel platinum-based
compounds, [Pt(RR-DACP)Cl,], [Pt(SS-DACP)Cl,] and
[Pt(4FH)CL,], were synthesised and provided as a kind
gift by Janice Aldrich Wright of the Western Sydney
University, Sydney, Australia. All compounds were
dissolved in dimethylformamide (DMF) to give working
stock solutions of 5 mM prior to use.

DH5a E. coli cells transfected with pUC19, with an
insert of seven telomeric repeat sequences (pUC19/T7)
between the BamHI and HindIII restriction enzyme sites
[32], were utilised for this study. Purified pUC19/T7
plasmid derived DNA was used for all experiments
involving DNA-drug interactions. The 5° FAM-labelled
reverse sequencing primer (FAM-REV) 5-AACA
GCTATGACCATG-3 [32] used in the LAR procedure
was purchased HPLC purified from Invitrogen.

DNA preparation

The pUC19/T7 DNA was extracted and purified from
the DH5a E. coli cells, using a Qiagen Plasmid Maxi
purification kit. The purified plasmid pUC19/T7 DNA
was linearised with a Pvull restriction enzyme prior to
the DNA damage reactions for the LAR and interstrand
cross-linking assays. The native undigested pUC19/T7
DNA was used in the DNA unwinding assay.

DNA damage reactions

DNA damage reactions were carried out by treating 500
or 800ng of the native or Pvull-cleaved pUC19/T7
DNA, respectively, with increasing concentrations of
each compound. The samples were prepared in a final
reaction volume of 40pL, consisting of 2mM
N-2-hydroxyethylpiperazine-N'-2-ethane sulfonic acid
(HEPES) (pH 7.8), 10 mM NacCl and 10 uM EDTA, incu-
bated at 37 °C for 18 h in the dark. A DMF solvent con-
trol was prepared and incubated under the same
conditions as the drug-treated samples by substituting
the drug with 5% (v/v) DMF. Following incubation, an
ethanol precipitation was performed on all samples and
the DNA pellets were re-dissolved in 20 pL of 10 mM
Tris-HCI (pH 8.8), 0.1 mM Na,EDTA. The Pvull-cleaved
pUC19/T7 DNA samples were used in the LAR and
interstrand cross-linking assays as previously described
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CAGCTGGCAAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCA
GTCGACCGTTTCCCCCTACACGACGTTCCGCTAATTCAACCCATTGCGGT

G3l
GGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGAATTCGAGCT
CCCAAAAGGGTCAGTGCTGCAACATTTTGCTGCCGGTCACTTAAGCTCGA

G4 T7 T6 T5 T4 T3 T2
CGGTACCCGGGGATCTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGG
GCCATGGGCCCCTAGAATCCCAATCCCAATCCCAATCCCAATCCCAATCC

T1
GTTAGGGAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATT
CAATCCCTCGAACCGCATTAGTACCAGTATCGACAAAGGACACACTTTAA
<—— FAM-REV

GTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGT
CAATAGGCGAGTGTTAAGGTGTGTTGTATGCTCGGCCTTCGTATTTCACA

AAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCG
TTTCGGACCCCACGGATTACTCACTCGATTGAGTGTAATTAACGCAACGC

301 CTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAG
GAGTGACGGGCGAAAGGTCAGCCCTTTGGACAGCACGGTC

Fig. 2 Double-stranded sequence of the Pvull-cleaved pUC19/T7 DNA template. The upper strand of the sequence is written in the 5’ to 3'
direction. Sites of Pvull restriction enzyme cleavage are indicated by the bold vertical arrows and the annealing site of the FAM-REV primer is
shown by a horizontal arrow, with the primer sequence highlighted in blue. The seven telomeric repeats sequences (T1 to T7) are underlined,
with the guanines highlighted in red. Other sites of three or more consecutive guanines (G3l, G3Il, G4 and G5) are highlighted in red

Pvull

[33]. All assays were reproduced in triplicate to give con-
sistent results, representative examples are shown.

DNA unwinding assay

Native agarose gels were prepared at 1% (w/v) and sub-
merged in TAE running buffer, comprising of 40 mM
Tris-acetate and 1 mM EDTA (pH8). The gel loading
buffer consisted of 30% (v/v) glycerol and 0.25% (w/v)
bromophenol blue in DNase-free water. The loading
buffer was combined with ~500ng of drug-treated
native (un-cleaved) pUC19 DNA sample in a 1:5 ratio,
made up to a final volume of 6.25pL. The 1% (w/v)
agarose gel were cast and run on a Bio-Rad Wide
Mini-Sub Cell GT System with 6.25puL drug-treated
plasmid DNA samples or untreated plasmid DNA
sample (DMF solvent control) and 5 uL of an Axygen
Biosciences ready-to-use 1kb DNA molecular weight
ladder. Gel electrophoresis was carried out at 5.5 V/cm
for 3 h, followed by staining in 1 x GelRed stain (diluted
in 1 x TAE buffer, pH 8) for at least 30 min. The gel was
visualised under UV light with a BioRad Gel Doc 2000
imager and compound-induced apparent molecular

weight changes of the plasmid DNA were analysed
against the 1 kb ladder standard, using BioRad Quantity
One gel imaging software.

Preparation of Hela cells and cytotoxicity assay

HeLa cells were cultured as subconfluent monolayers in
75 cm? culture flasks and maintained at 37 °C in 5% (v/v)
CO,. The cells were subcultured in Dulbecco’s modified
eagle medium (DMEM), supplemented with 10% (v/v)
EBS, 4.5 g/L D-Glucose, L-Glutamine, 110 mg/L Sodium
Pyruvate, 200 U/mL Penicillin and 200 pg/mL Strepto-
mycin. The HeLa cells were harvested after 3 days or
when at 90% confluence. Following trypsinisation the
cell pellet was washed with 10 mL of Dulbecco’s phos-
phate buffered saline (DPBS) and centrifugation at 500 x
g for 5 min. The DPBS was decanted and the cell pellet
was resuspended in 10 mL of fresh DMEM media. A
10 pL. aliquot was combined with 10 uL of 0.4% (w/v)
trypan blue solution for cell counting, cells were diluted
with DMEM media to yield a final concentration of
100,000 cells/mL. 100 pL aliquots were pipetted into the
wells of a flat-bottomed 96-well microtitre plate and



Johnson et al. BMC Cancer (2018) 18:1284

incubated at 37°C with 5% (v/v) CO,, for 24h. The
DMEM culture media was replaced with 100 pL of fresh
DMEM media containing the platinum-based compound
at concentrations of 1, 3, 5, 10, 30, 50 and 100 uM. In
the case of 4FH, the drug concentration was extended
further to 150 and 200 uM. All drug treatments were
carried out in triplicate and untreated cell controls (cells
in DMEM without drug) were included for each experi-
ment. 2% (v/v) DMF solvent controls were included in
triplicate for each experiment. Triplicate blank controls
(no cells) contained 100 uL. DMEM media. The 96-well
plate was incubated at 37 °C with 5% (v/v) CO, for 24 h.
Following drug treatment, 50puL of a 5mg/mL
MTT-DPBS solution was added and cells incubated for
2 h at 37 °C with 5% (v/v) CO,, the media was removed
from the wells by pipette and the resulting formazan
crystals were solubilised in 100 uL. of DMSO ([34]. The
plate was placed on a plate shaker for 30 min to ensure
thorough solubilisation of the formazan crystals prior to
measuring the optical density at 550 nm with a Thermo
Scientific Multiskan EX microplate reader.

Data analysis

The ssDNA products generated by the LAR procedure
were analysed on an ABI 3730 capillary sequencer by
fragment analysis, alongside reaction products obtained
from dideoxy sequencing on the untreated Pvull-cleaved
pUC19/T7 DNA. For each nucleotide peak in the
analysis trace the percentage of damage was determined
using GeneMapper software and normalised to a
maximal value of 1, relative to the highest percentage of
damage.

The degree of drug-induced DNA cross-linking was
determined by measuring the band intensity of the large
fragment of the Pvull-cleaved (linearised) pUC19, occur-
ring as ssDNA and dsDNA forms in each lane of the
denaturing agarose gels. The drug concentration that
prevents 50% of the dsDNA from being denatured on
the denaturing agarose gel was determined through the
application of non-linear regression analysis using
GraphPad Prism software. The frequency of interstrand
cross-linking was calculated according to the formula;
%ICL/Pt = XL/5408 x 1, [35]. Where %ICL/Pt refers to
the percentage of interstrand crosslinks per platinum
adduct and XL is the number of interstrand crosslinks
per template molecule, XL =-In A (A is the fraction of
DNA molecules corresponding to the non-cross-linked
ssDNA band) and 5408 corresponds to the number of
nucleotide residues of the linearised DNA template. The
1, ratios were estimated from the molarity of platinum
compound and nucleotides present in the solution at
which 50% of the DNA was resistant to denaturing. This
assumes that all of the drug has reacted with the DNA.
This assumption is supported by the fact that whilst
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determining the sequence specificity there were still
undamaged DNA sequences present and adding more
platinum compound led to further damage [13].

The extent to which a compound could unwind the
supercoiled conformation of pUC19 plasmid was
observed through changes in the electrophoretic
mobility of undigested plasmid conformations on the
native agarose gels. The drug concentrations that
caused open and supercoiled plasmid conformations
to merge at a point of coalescence was determined by
a linear regression analysis. The point of coalescence
of the plasmid conformations was determined from
the forecasted x-coordinates at which the two slopes
intercepted each other. The experimentally deter-
mined coalescence points were used to calculate the
associated DNA unwinding angle of the supercoiled
conformation, induced by each compound, which were
calculated using the formula, ¢ =180 / ry(c) [36];
whereby ¢ is the DNA unwinding angle, o is the
super-helical density of the supercoiled conformation
and rp(c) is the drug to nucleotide ratio at the point of
coalescence.

The degree of compound cytotoxicity (the ICs, value)
was determined from analysis of the dose response
curve. This involved the application of a non-linear
regression analysis to identify the drug concentration
that induced a 50% inhibition of cell viability using
GraphPad Prism software.

Results

In this investigation all compounds were evaluated for
their cytotoxicity and further characterised for their
DNA binding properties. It is of interest to characterise
the DNA binding properties of all of these compounds
regardless of their cytotoxicity since this may aid the
identification of their structural attributes that are either
beneficial or an impediment to their possible clinical
potential. For instance, a compound may be highly react-
ive to purified DNA but may possess structural proper-
ties that hinder its capacity to reach DNA in a cellular
environment. This may be useful knowledge to inform
on the design of new compounds with both desirable
DNA binding attributes and behaviour within a cellular
environment. It is anticipated that a knowledge of these
biological properties will enable the design and synthesis
of a range of platinum-based drugs with desirable
chemotherapeutic properties that surpass the clinical
efficacy of cisplatin.

Sequence specificity of the platinum-based compounds in
the pUC19/T7 sequence

The pUC19/T7 sequence contains seven telomeric
repeats consisting of GGGATT (T1-T7), a site of five
consecutive guanine bases (G5), a site of four
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consecutive guanine bases (G4) and two sites of three
consecutive guanine bases (G3I and G3II). These fea-
tures and the annealing site of the FAM-REV primer are
shown in Fig. 2. After treating the Pvull-cleaved pUC19/
T7 DNA samples with each compound, the LAR pro-
cedure was carried out with the FAM-REV primer,
which yields a full length single-stranded DNA (ssDNA)
product of 186 bp.

The LAR experimental conditions were optimised by
treating the DNA template with an increasing concen-
tration of each compound. Damage peaks in the electro-
pherogram traces were identified by comparison to
peaks in the untreated G dideoxy sequencing lane, as
shown in Fig. 3a. Note that the LAR was not carried out
for [Pt(RR-DACH)Cl,] as its sequence specificity has
already been characterised [37]. For cisplatin,
[Pt(RR-DACP)Cl,] and [Pt(SS-DACP)Cl,] an optimal
concentration of 0.3 uM was found to yield an even dis-
tribution of damage across the entire length of the
DNA template, whilst maintaining a strong signal cor-
responding to the full length extension product of 186
bp, as shown in Fig. 3c-e. However, a hundred-fold
higher compound concentration of 30 uM was required
for [Pt(4FH)CL,] in order for it to produce observable
DNA damage, as shown in Fig. 3f. Compound induced
damage is predominantly observed at the telomeric re-
peat sequences, and other G-rich sites in the Pvull--
cleaved pUC19/T7 sequence, as shown in Fig. 3c-f.
There was negligible damage in the DMF control sam-
ple as shown by the absence of background peaks in
the DMF trace, shown in Fig. 3b. However, DNA dam-
age could not be interpreted at the first telomeric re-
peat (T1) as a result of artefact peaks in close proximity
to the primer annealing site, in some replicates there
was also a lesser degree of interference at the T2 site.

Overall, the collective sum of T2-T7 telomeric repeats
accounting for 32-65% of total damage within the
pUC19/T7 sequence. All tested compounds, with the
exception of [Pt(4FH)Cl,], exhibited the highest damage
intensities at the T2-T4 telomeric sites (Fig. 4).
[Pt(RR-DACP)Cl,] induced the highest level of DNA
damage at the first five telomeric repeats, T2-T6, com-
pared to the other tested compounds. In comparison,
less damage was observed at the two G3 sites for all
compounds with damage not exceeding 3%, whereas the
G5 site yielded a similar damage to the T6 and T7 sites
for most compounds. Cisplatin induced the highest
levels of DNA damage at the G4 and G5 sites, both
accounting for over 8% of the total damage. Interestingly
4FH induced the highest proportion of DNA damage
(approximately 6%) at the G4 site.

A subsequent analysis was conducted to further char-
acterise the sequence specificity of adduct formation at
the telomeric repeat sites. The damage intensities of
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each compound was averaged across the nucleotides in
the telomeric repeat sites, T4, T5 and T6, since these
produced the most consistent damage intensity across
three repeat experiments. Cisplatin was found to induce
the highest damage intensity at the third guanine (Gs),
followed by (in decreasing order) the second guanine
(Gy), first guanine (G;), first thymine (T;) and adenine
(A), as shown in Fig. 5a. It can be noted that no damage
was detected for cisplatin at the second thymine (T,).
The novel compounds, [Pt(4FH)Cl,], [Pt(RR-DACP)Cl,]
and [Pt(SS-DACP)Cl,], were found to exhibit a unique
damage intensity profile compared to cisplatin, whereby
G, yielded the highest intensity of DNA damage rather
than Gs, as shown in Fig. 5b-d. It can be noted that
[Pt(RR-DACP)CI,] and [Pt(SS-DACP)Cl,] have almost
identical profiles, with G, yielding the highest damage
intensity, followed by Gs, G;, T; and A, as depicted in
Fig. 5b, c. Interestingly, the DNA damage profile of
[Pt(4FH)CI,] was the most distinct to that of cisplatin
whereby the highest intensity was induced at Go,
followed by Gs, A, G; and T;, as shown in Fig. 5d.
Furthermore, only [Pt(4FH)Cl,] gave a damage intensity
greater than 0.4 at the adenine (A) within the telo-
meric sequence.

Interstrand cross-linking efficiency of the platinum-based
compounds

The ability of each compound to induce DNA cross-link-
ing was determined by measuring the extent to which
treated dsDNA could be separated into ssDNA in the de-
naturing agarose gel assay, since cross-linking inhibits the
separation of the dsDNA into ssDNA. DNA samples
treated with only 5% (v/v) DMF solvent were included as
controls and as expected exhibited complete separation
into ssDNA in the denaturation assay. The interstrand
cross-linking efficiency (ICLE) of each compound is
shown in Table 1, whereby a higher ICLE value indicates a
greater cross-linking efficiency. All tested compounds
were found to induce DNA interstrand cross-linking to
some extent, as seen in Fig. 6. Cisplatin treatment of
approximately 1 uM completely inhibited the separation
of the dsDNA, which correlated with an absence of the
ssDNA form, shown in Fig. 6a. An analysis of the denatur-
ing agarose gel revealed that 50% of the dsDNA form was
retained at a cisplatin concentration of 0.09 + 0.01 pM, cor-
relating to a calculated ICLE value of 6.8 + 0.5%, as shown
in Table 1.

The compounds, [Pt(RR-DACH)Cl,], [Pt(RR-DA
CP)Cl,] and [Pt(SS-DACP)Cl,], exhibited similar DNA
cross-linking activity to that of cisplatin. Like cisplatin,
[Pt(RR-DACH)Cl,] caused a complete absence of the
ssDNA form at a drug concentration of 1uM, see
Fig. 6b. RR-DACH was found to induce a 50% reten-
tion of the dsDNA form at a drug concentration of
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G3l

atin and novel platinum-based compounds that was amplified by the

re highlighted. Damage peaks corresponding to sites of telomeric repeats
gly

0.13+ 0.05 uM, yielding an ICLE value of 5.6 +2.1%,
as shown in Table 1. [Pt(RR-DACP)CI,] and [Pt(SS-
DACP)Cl,], were both found to induce a complete
reduction in band intensity of the ssDNA form at a
drug concentration of 3 uM, as seen in Fig. 6c, d,
respectively. A 50% retention of the dsDNA form was
attained by [Pt(RR-DACP)Cl,] and [Pt(SS-DACP)CI,]
at drug concentrations of 0.21+0.02uM and 0.12 +
0.01 uM, respectively; correlating to ICLE values of
3.1+£0.3% and 5.1+0.2%. The weakest interstrand

cross-linking activity was exhibited by [Pt(4FH)Cl,];
inducing a 50% retention of the dsDNA form at a
drug concentration of 23.52 + 8.94 uM and yielding an
ICLE value of 0.04 +£0.02%. Furthermore, a complete
reduction of the ssDNA form was not attained by
[Pt(4FH)Cl,] until a drug concentration of over
100 uM was implemented; over 10-fold higher than
that observed for the other tested compounds, as
shown in Fig. 6e. Additionally there was DNA
trapped in the loading wells of the denaturing agarose
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gels that was probably caused by extensive DNA
cross-linking that resulted high molecular weight
DNA or highly adducted DNA that was difficult to
re-dissolve. This was particularly evident for
[Pt(RR-DACH)Cl,], where a visible band at the top of
the denaturing gel (at a drug concentration of 3 pM)
can be seen in Fig. 6b. Further high molecular weight
DNA cross-linking can be observed for [Pt(SS-
DACP)Cl,] whereby a smearing and an additional
band can be seen above the dsDNA form in Fig. 6d
at a drug concentration of 3 uM. Further densitom-
etry of these high molecular weight forms was not
carried out and they were not seen in lanes where
the 50% retention of the dsDNA form was noted.

DNA unwinding induced by the platinum-based
compounds

The ability of each compound to unwind the supercoiled
conformation of pUC19 was determined by electrophor-
etic mobility on native agarose gels. As expected, three
different pUC19 conformations were observed on the
agarose gels. These were the relaxed open circular
form (OC) and the supercoiled forms I and II (SC I
and SC II). It is thought that SC II is probably a
dimer of SC I since its apparent molecular weight is
approximately double that of the SC I form. These
conformations resolve on agarose gels as distinct
bands, as shown in Fig. 7.

Plasmid treatment with increasing concentrations of
Cisplatin, [Pt(RR-DACH)CL,], [Pt(RR-DACP)Cl,] or
[Pt(SS-DACP)Cl,] up to 0.1 to 3puM was found to
induce a proportional decrease in electrophoretic mobil-
ity for the SC forms and an increase in that of the OC
form, as shown in Fig. 7a-d. In contrast, [Pt(4FH)Cl,]
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Table 1 Summary of compound-induced cross-linking of linear pUC19 DNA

Compound® ICLE (%) Drug concentration at 50% dsDNA 1, (drug: nucleotide) at 50% dsDNA Last detected data point
retention (UM) retention (UM)

Cisplatin 6.8 + 0.5 0.09 + 001 19%x107°£14x107* 10

[Pt(RR-DACH)CI,] 56+ 2.1 013 £005 27x1073+99x%x107* 3

[Pt(RR-DACP)CI,] 31+03 021 £002 41%x107°+£39x10°* 30

[Pt(SS-DACP)Cl,] 51402 0.12 + 001 25x107°+1.1x107* 3

[Pt(4FH)CI5] 0.04 £ 0.02 2352 +89%4 47%x107'+£18x 107" 300

2The r,, value was calculated based on 2 x 10~ mol of nucleotide sample incubated with each compound. The ‘last detected data point’ refers to the highest drug
concentration at which the DNA was still detectable on the agarose gel. All values and their respective SEM values were determined from three separate experiment

caused minimal change to the electrophoretic mobility
of the plasmid conformations across a broad concen-
tration gradient ranging from 0.1 to 100pM, as
shown in Fig. 7e. Cisplatin and [Pt(SS-DACP)CI,]
caused the OC and SC I conformations to merge at a
point of coalescence at drug concentrations of 2.5
and 2.4 puM, respectively. A similar trend was ob-
served for [Pt(RR-DACH)Cl,] and [Pt(RR-DACP)CI,]
treated plasmid, although band intensity at the point
of coalescence was faint within the treatment range,
as shown in Fig. 7b, c. Again, this is because higher
concentrations of compound treatment caused a
build-up of DNA in the wells and reduced sample
mobility. Again this may be due to extensive
cross-linking or reduced solubility as mentioned
earlier.

For the analyses of these data, the molar ratio of drug
to nucleotide was calculated for the point of coales-
cence, this is referred to as ry(c). These ry(c) values
were used to calculate the DNA unwinding angle in-
duced by each compound. Cisplatin is known to induce
an unwinding angle (¢) of 13° in plasmid DNA [36, 38],
this value along with the experimentally determined
rp(c) value was used to calculate that the SC I plasmid
had a super-helical density value (o) of —0.073, using
the formula described in the methods. This
super-helical density value was used along with each
rp(c) value to calculate the DNA unwinding angle in-
duced by each compound, listed in Table 2.
[Pt(RR-DACP)CL,] induced the largest DNA unwinding
angle (since its migration in the gel was reduced to a
greater extent) followed by [Pt(RR-DACH)CI,] and
[Pt(SS-DACP)Cl,]. Minimal unwinding of the
super-helical structure of the SC I plasmid was caused
by [Pt(4FH)Cl,] under the experimental conditions.
Although the point of coalescence was not observed on
the gel, it was possible to calculate a small change in
the DNA unwinding angle for [Pt(4FH)Cl,] by extrapo-
lation of the data. However this value is reflective of an
increase in migration of the OC band since little de-
crease in the migration of the SC I band was observed.

Cytotoxic activity of the platinum-based compounds in
Hela cells

The cytotoxicity was assessed in the cervical
cancer-derived HeLa cells which are commonly used as
an indicator of cellular activity. Cisplatin was utilised as
a reference compound, with an ICsy value of 9.3+
0.2 uM being obtained in this investigation, which was
similar to that previously determined for cisplatin in
HeLa cells [39]. [Pt(RR-DACP)Cl,] was found to exhibit
the highest degree of cytotoxic activity, having an ICsq
value of 6.9+ 1.0. The compounds, [Pt(RR-DACH)Cl,]
and [Pt(SS-DACP)CI,] were found to be less cytotoxic
with ICsy values approximately twice that of
[Pt(RR-DACP)Cl,], as shown in Table 3. [Pt(4FH)Cl,]
was found to exhibit the weakest cytotoxic activity with
an ICsy value of 28.8 + 1.6 uM, which is approximately
4-fold higher than for [Pt(RR-DACP)CL,]. Both the SS
and RR isomer of [Pt(DACP)Cl,] were found to induce a
complete loss in cell viability at a drug concentration of
50 uM  whereas [Pt(RR-DACH)CI,] required 100 uM.
[Pt(4FH)CL,] did not induce a complete loss in cell via-
bility until a drug concentration of over 200 pM was
applied. Cisplatin induced a complete loss in cell viabil-
ity at a concentration of 30 uM which was the most
effective of these compounds, as shown in Table 3.

Discussion

Sequence specificity of the platinum-based compounds in
the pUC19/T7 sequence

All novel platinum-based compounds tested in this
study similarly demonstrated a preference to covalently
bind to guanine bases within the T7/Pvull sequence,
particularly at the telomeric repeats (T2 to T7), G4, G3I
and G3II and G5 sites. This binding pattern is in agree-
ment with a previous investigation which reported that
telomeric repeats (as well as other G-rich sequences) are
effective binding targets for cisplatin [13]. This infers the
presence of abundant 1,2 intrastrand GG DNA adducts,
which is consistent with literature [4]. However, it was
found that these compounds exhibit binding affinity with
a preference for the G, base of the telomeric repeats (as
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shown in Fig. 5), which was not observed for cisplatin.
Both DACP isomers produced comparable DNA damage
intensities to cisplatin, whereby a drug concentration of
0.3 uM was optimal to attain even DNA damage profiles
distributed across the entire sequence. This could be be-
cause these compounds contain chloride groups in the
cis-configuration and this trend has previously been ob-
served for a cis-configured [Pt(1,2-diaminoethane)(Cl,)]
[40]. Furthermore, [Pt(RR-DACP)CI,] and
[Pt(SS-DACP)Cl,] exhibited almost identical sequence
specificity profiles at the telomeric repeats, shown in Fig.
5b, c. This was not surprising, since these compounds
differ only in the conformation of the cyclopentane
rings. A similar trend has been noted regarding the se-
quence specificity for the RR and SS-conformations of
DACH [41]. The damage profiles of the two DACP iso-
mers (and to a lesser extent cisplatin) exhibit a prefer-
ence to bind the first three telomeric repeats in the T7/
Pvull sequence, resulting in higher DNA damage inten-
sities detected at the T2, T3 and T4 sites. It was intui-
tively thought that this bias towards the first cluster of
telomeric repeats was due to excessive adduct formation
inhibiting the Taq polymerase, which has previously
been demonstrated for successively higher doses of cis-
platin [12, 42]. However, it has been postulated that this
may be because the 3" end of the telomeric DNA repeats
have an unusual conformation that exhibit an enhanced
nucleophilicity [13]. This could explain the higher dam-
age intensities detected at the T2, T3 and T4 sites in this
current study, since they are situated proximally to the
3" end of the T7/Pvull sequence in comparison to the
other telomeric repeat sites.

Within the telomeric repeats, [Pt(4FH)Cl,] displayed a
higher damage intensity at the A base that suggests a
bias towards forming 1,2 GA intrastrand adducts. Add-
itionally [Pt(4FH)Cl,] exhibited the weakest ability to
form adducts and approximately 100-fold more, with re-
spect to cisplatin, was required to obtain a detectable
level of damage in the T7/Pvull sequence. The limited
covalent binding ability of [Pt(4FH)Cl,] to DNA maybe
due to steric hindrance of the bulky fluorobenzoic
hydrazide-based ligands.

Drug resistance during cancer treatment has been cor-
related to cisplatin-based DNA adducts being commonly
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(See figure on previous page.)

Fig. 7 Images of 1% (v/v) native agarose gels and their respective semi-log scatter plots, showing changes in the apparent molecular weight of the native
pUC19 DNA conformations following treatment with (a) cisplatin, (b) [Pt(RR-DACH)CL], (c) [Pt(RR-DACP)CL)], (d) [Pt(SS-DACP)Cl,] and (e) [Pt(4FH)Cl,]. Bands
corresponding to the OC, SCI and SCII conformations of pUC19, are indicated on the left-hand side of each gel image. The DMF solvent control sample
(pUC19 without drug treatment) is situated to the left of the 1 kb ladder. All other lanes contain DNA samples treated with increasing concentration of
compound as indicated in uM above each gel image. The changes in apparent molecular weight of each pUC19 conformation is plotted on the semi-log
scatter graphs to the right of each image. The band migration for the OC, SCI and SCII plasmid conformations are represented by red, green and blue
lines, respectively. The error bars shown represent the SEM determined across three separate experiments

recognised and processed by DNA repair pathways [43].
Therefore, adducts of [Pt(RR-DACP)Cl,], [Pt(SS-
DACP)Cl,] and[Pt(4FH)Cl,] may evade detection and
overcome drug resistance. For instance, a human endo-
metrial cancer cell line deficient in the repair protein
hMSH2 exhibited less resistance to oxaliplatin than cis-
platin and components of the mismatch repair protein
complex were shown to bind with increased affinity to
cisplatin-DNA adducts compared to oxaliplatin-adducts
[44]. Additionally, it has been shown that MutS is able
to recognise DNA adducts induced by cisplatin but not
those of oxaliplatin [45].

Interstrand cross-linking efficiency of the platinum-based
compounds
In this study the ICLE value of cisplatin was 6.8% + 0.5%
which is in agreement with that previously determined
[46]. [Pt(RR-DACP)Cl,], [Pt(SS-DACP)Cl,] and [Pt(RR-
DACH)CI,] were found to induce interstrand cross-links
less efficiently and exhibited values of 3.1, 5.1 and 5.6%,
respectively. [Pt(RR-DACH)Cl,] was most similar to cis-
platin, consistent with values of 6% reported in a previ-
ous study [47]. The [Pt(RR-DACP)Cl,] isomer exhibited
lower ICLE values than cisplatin and the [Pt(SS-
DACP)Cl,] isomer in contrast to a previous investigation
where the RR-isomer was marginally more active than
the SS-isomer, with reported ICLE values of 5.7% + 0.4
and 5.5% +0.5%, respectively [48]. Furthermore
[Pt(RR-DACP)Cl,] was found to be more cytotoxic
than [Pt(SS-DACP)Cl,] in HeLa cells suggesting that
a high ICLE alone does not necessarily correlate to a
high cytotoxicity.

The compound [Pt(4FH)Cl,] exhibited a poor inter-
strand cross-linking efficiency which is consistent with

the previously described sequence specificity data
whereby its DNA adducts were not detectable at low
drug concentrations. This is possibly because it contains
bulkier ligand groups that prevents the aquated ligands
from binding to residues in the DNA helix. Steric hin-
drance of platinum drugs containing bulky ligand is a
common drawback associated with their clinical
development. Previously, the Kkinetic activity of
sterically-hindered platinum(II) complexes were found
to impede their nucleophilic substitution-based reactivity
[49]. 1t is possible that similarly the bulky ligands of
[Pt(4FH)CL,] inhibit the nucleophilic substitution reac-
tion at the N7 of the purine imidazole ring.

DNA unwinding induced by the platinum-based
compounds

Cisplatin, [Pt(RR-DACH)Cl,], [Pt(RR-DACP)Cl,] and
[Pt(SS-DACP)Cl,] were each able to induce unwinding
of the SC I conformation of the pUC19 plasmid decreas-
ing its electrophoretic mobility. Furthermore, these com-
pounds were found to cause an increase in the
electrophoretic mobility of the OC plasmid conform-
ation. This trend has been previous reported [50] and it
is thought that such bifunctional adducts cause the
native OC DNA helix to condense [51] and migrate
faster through the agarose gel.

The point of coalescence of the SC I and OC plasmids
conformations were detected for cisplatin at an ry(c)
value of approximately 0.1. This value is marginally
higher than those previously reported of 0.076 [36] and
0.08 [52]. The higher ry(c) determined for cisplatin in
this study can be attributed to the high super helical
density of the template. For instance, pUC19 template in
this study had a super helical density of — 0.073 which is

Table 2 Summary of compound-induced unwinding of the SC | conformation of pUC19

Compound DNA unwinding angle (°) Drug concentration at coalescence point (uM)® 1,(C) (drug: nucleotide at coalescence point)
Cisplatin 13 25+ 00 10x107'+20x1073

[Pt(RR-DACH)Cl,] 155419 22403 87x1072+1.1x10 2

[Pt(RR-DACP)C,] 169+ 0.0 19+ 00 78%1072+£20x 1074

[Pt(SS-DACP)Cl,] 138+06 24401 95x 107 °+40x 103

[Pt@FH)CL,] 02400 184.5 + 342 74+14

“The drug concentration at the coalescence point indicates when the OC plasmid migrates at the same position as the SC | form. The r, (c) values represent the
drug to nucleotide ratio at the coalescence point. For all experiments, the amount of nucleotide sample incubated with each compound was 1 x 10~° mol. All
values in the table were averaged from three separate experiments and are shown with their respective SEM values
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Compound ICs0 (UM)? Drug concentration at which complete cell death was obtained (uM)
Cisplatin 93+02 30

[Pt(RR-DACH)CI,] 123+ 40 100

[Pt(RR-DACP)CI;] 69+ 10 50

[Pt(SS-DACP)CL,] 137 £20 50

[Pt(4FH)Cl,] 288+ 16 > 200

“These ICs, values represent the drug concentration at which a cell viability of 50% was obtained and were determined by non-linear regression. Each ICso value
was determined from the average of three separate experimental values and is reported along with its corresponding SEM value

larger than the - 0.055 value previously reported [36]. A
higher density would require a higher concentration of
cisplatin to induce unwinding.

The compounds [Pt(RR-DACH)CI,],
[Pt(RR-DACP)Cl,] and [Pt(SS-DACP)Cl,] exhibited
DNA unwinding angles of 16.9° and 15.5° and 13.8°,
respectively. These were larger than the 13° unwinding
angle known for cisplatin. The unwinding angle deter-
mined for [Pt(RR-DACH)Cl,] in this study is in agree-
ment with that of 15° previously reported [47].
Additionally, it was suggested that the unwinding ability
of [Pt(RR-DACH)Cl,] may impede the removal of these
bulky adducts by the DNA repair system.
[Pt(RR-DACP)CI,] was found to be more effective than
the SS-isomer by a factor of approximately 1.2. This
trend has also been observed for the RR-DACH isomer
over its SS-counterpart [53]. Molecular modelling
analysis has shown that the two ammonia ligands of the
[Pt(SS-DACH)Cl,] complex are more prone to clashes
with the DNA structure than the [Pt(RR-DACH)CI,]
complex [53]. A similar mechanism may explain the dif-
fering DNA unwinding efficiencies of the DACP isomers
reported here.

Weak DNA unwinding was exhibited by [Pt(4FH)CI,]
which caused only minimal changes to the electrophor-
etic mobility of pUC19. The chemical structure of
[Pt(4FH)Cl,] consists of two bifunctional chloride
groups so that it could covalently bind to DNA to
induce unwinding. However, the reduced unwinding
ability of [Pt(4FH)Cl,] may be attributed to its bulky
fluorobenzoic hydrazide-based ligand, which physically
hinders its ability interact with DNA. This is in keeping
with reduced DNA unwinding as a consequence of steric
hindrance for compounds containing bulky naphthalene
moieties around the platinum group [54].

Cytotoxic activity of the platinum-based compounds in
Hela cells

In this investigation the ICs, value of cisplatin was deter-
mined to be 9.3 + 0.2 uM which is consistent with that of
11.42 uM determined for cisplatin in HeLa cells [39].
Generally, [Pt(RR-DACP)Cl,], [Pt(RR-DACH)CI,] and
[Pt(SS-DACP)Cl,] induced ICs, values within the same

order of magnitude as cisplatin, at 6.9, 12.3 and 13.7 uM,
respectively. This is likely attributed to the fact that they
are all cis-configured covalent binders containing cyclo-
hexane or cyclopentane ligands. [Pt(RR-DACH)Cl,] was
slightly less cytotoxic to HeLa cells than cisplatin which
is in agreement with a previous study, whereby
DACH-derived compounds were tested in four different
cancer cell lines [55]. The complex of the RR-isomer of
DACP was approximately 2-fold more active than the
SS-isomer. Similarly it has been shown that the RR-i-
somer of oxaliplatin is more active than its SS-isomer
[56]. This is not surprising considering that both DACP
isomers contain a comparable cycloalkane ligand to oxa-
liplatin, albeit that the DACP cyclic ligand contains five
carbons whereas the DACH ligand of oxaliplatin con-
tains six. Furthermore, it has been reported that the
cytotoxic activity of platinum-based complexes contain-
ing RR-DACP-based ligands in mouse leukemia cells ex-
hibited greater cytotoxicity activity than the SS-isomers
[57]. However, this trend does not hold true for all
RR-configured platinum-based compounds; for instance
[(1,10-phenthronline)(1R,2R-diaminocyclohexane) plati-
num(Il) dichloride] (PHENRR), [(5-methyl-1,10-phen-
thronline)(1R,2R-diaminocyclohexane) platinum(II)
dichloride] (5MERR) and [(3,4,7,8-tetramethyl-1,10--
phenthronline)(1R,2R-diaminocyclohexane) platinum(II)
dichloride] (3478MERR) are less active than their re-
spective SS-configured isomers, PHENSS, 5MESS and
3478MESS in human colon and ovarian cell lines [56].
Clearly, it is not possible to predict with certainty the
cytotoxic effects of novel platinum-based compounds
and each needs to be tested empirically. Such an ap-
proach is crucial for the future design and development
of novel chemotherapeutic compounds.

Conclusion

DNA sequence specificity analysis revealed that DNA
adducts at telomeric repeat sequences and other G-rich
sequences are effective targets for cisplatin and other
novel compounds. The isomeric compounds,
[Pt(RR-DACP)Cl,] and [Pt(SS-DACP)Cl,], induced a
relatively similar amount of DNA damage comparable to
that of cisplatin, whereas, [Pt(4FH)Cl,] was found to be
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considerably less efficient. We have proposed that the
lesser activity of [Pt(4FH)CIl,] is likely due to steric hin-
drance associated with its bulky fluorobenzoic hydrazide
ligands.  Interestingly, [Pt(RR-DACP)Cl,], [Pt(SS-
DACP)Cl,], and [Pt(4FH)CI,] exhibited a slight variation
in sequence specificity at the telomeric repeat sequences
compared to cisplatin. Despite exhibiting marginally
lower interstrand cross-linking efficiencies than cisplatin,
all of the tested compounds (except for 4FH) were able
to inducing a greater degree of structural distortion, as
indicated by the DNA unwinding efficiency. Addition-
ally, [Pt(RR-DACP)Cl,] exhibited a relatively higher cyto-
toxic activity than cisplatin in HeLa cells. Overall, these
data provide an insight into the activity of these com-
pounds towards DNA and in relation to assessing their
antitumour properties. Further assessment of these com-
pounds in a range of other cell lines, in relation to their
cellular DNA binding and cytotoxic activity, is warranted
to further predict their clinical potential.
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