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Abstract 

Background:  Data obtained from flow cytometry present pronounced variability due 
to biological and technical reasons. Biological variability is a well-known phenomenon 
produced by measurements on different individuals, with different characteristics such 
as illness, age, sex, etc. The use of different settings for measurement, the variation of 
the conditions during experiments and the different types of flow cytometers are some 
of the technical causes of variability. This mixture of sources of variability makes the use 
of supervised machine learning for identification of cell populations difficult. The pre‑
sent work is conceived as a combination of strategies to facilitate the task of supervised 
gating.

Results:  We propose optimalFlowTemplates, based on a similarity distance and Was-
serstein barycenters, which clusters cytometries and produces prototype cytometries for 
the different groups. We show that supervised learning, restricted to the new groups, 
performs better than the same techniques applied to the whole collection. We also 
present optimalFlowClassification, which uses a database of gated cytometries and 
optimalFlowTemplates to assign cell types to a new cytometry. We show that this 
procedure can outperform state of the art techniques in the proposed datasets. Our 
code is freely available as optimalFlow, a Bioconductor R package at https​://bioco​nduct​
or.org/packa​ges/optim​alFlo​w.

Conclusions:  optimalFlowTemplates + optimalFlowClassification addresses the 
problem of using supervised learning while accounting for biological and techni‑
cal variability. Our methodology provides a robust automated gating workflow that 
handles the intrinsic variability of flow cytometry data well. Our main innovation is 
the methodology itself and the optimal transport techniques that we apply to flow 
cytometry analysis.

Keywords:  Flow cytometry gating, Optimal transport, Wasserstein distance, 
Clustering, Supervised classification
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Background
Flow cytometry (FC) works with ‘high-dimensional quantitative measurement of light 
scatter and fluorescence emission properties of hundreds of thousands of individual cells 
in each analysed sample’ (see [1]). These quantitative measurements allow to analyse 
and classify individual cells, facilitating diverse applications. For example, as mentioned 
in [2],  ‘flow cytometry is used to identify and quantify populations of immune cells’ in 
order to monitor the immune state of patients or to detect relevant biomarkers by com-
paring flow cytometries from different patient groups.

A main component in FC is gating, the assignment of individual cells (data records) 
into discrete cell types. Manual gating, where an expert assigns cell types (labels) to 
individual cells using a set of rules on one- or two-dimensional projections, has been 
the prevalent option. However, this manual approach has some shortcomings. Firstly, 
it is subjective, since it depends on the expertise of the user, on the sequence of mark-
ers (measured variables) used to do the projections and on the locations of the gates on 
those projections. Secondly, it can be very time consuming because it is ‘roughly quad-
ratic in the number of markers’ (see [3]). Lastly, the recent increase in the number of 
markers and number of cells per cytometry makes human error a relevant factor.

To avoid some of the difficulties related to manual gating there have been different 
approaches to automated gating. In unsupervised methods there is no need for previ-
ously gated cytometries, and gating is done through a clustering procedure. Examples of 
such methods include CCST [4], which uses a nonparametric mixture model clustering 
and a data-derived decision tree representation for gating; FLOCK [5], which does grid-
based density estimation (with merging) and then applies k-means; FLAME [6], which 
performs skew t model-based clustering; and flowClust [7, 8], which does robust-based 
clustering through t mixture models with Box-Cox transformation. Other related clus-
tering procedures are: flowPeaks [9], which performs Gaussian mixture model-based 
clustering (with modified covariances) and merging, and flowMeans [10] which does 
k-means with initialization via mode detection through kernel density-based estimation. 
More information about state-of-the-art methods can be found in [1, 2].

The accuracy of cell type assignation can be improved using supervised machine 
learning which takes advantage of the historical information contained in previously 
gated cytometries (manually or otherwise). Recently, some methods have been pro-
duced addressing this problem. DeepCyTOF [3] combines de-noising, deep-learning 
algorithms, and domain adaptation. flowLearn [11] combines density features of the 
data, manually selected gating thresholds, and derivative-based density alignments. We 
stress that other more classical approaches for supervised learning are also available. For 
example, random forest algorithms, support vector machines or quadratic discriminant 
analysis can be used when learning from some previously gated cytometry. Supervised 
machine learning is a well-documented topic and for more detailed explanations we 
refer to [12].

There are two main setups for using supervised learning in the FC context which are 
relevant in practical studies. Firstly, the classical one, where there is an available data-
base of historical information. This means that a collection of gated flow cytometries 
is available and this information can be used to gate a new cytometry. In a second sce-
nario, we have a collection of ungated cytometries, and we want to gate manually (or 
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otherwise) a minimal amount of them and use these gated cytometries to classify the 
rest. In both setups, there is a fundamental problem intrinsic to FC. That is, flow cytom-
etry data have considerable technical and biological variability, which makes the use of 
supervised learning difficult. Biological variability is due to intrinsic differences between 
individuals such as health status, age, gender, etc. Technical variability appears due to 
different experimental adjustments, variation of conditions during experiments and the 
use of different measuring devices (flow cytometers).

In this work we provide novel methods for grouping (clustering) gated cytometries. 
The goal is to produce groups (clusters) of cytometries that have lower variability than 
the whole collection and, furthermore, that are coherent enough to be considered as a 
typology by themselves. This, in turn, allows to greatly improve the performance of any 
supervised learning procedure. We provide evidence of this below. Once we have a parti-
tion (clustering) of a collection of cytometries, we provide several methods for obtain-
ing an artificial cytometry (prototype, template) that represents in some optimal way 
the cytometries in each respective group. These prototypes can be used, among other 
things, to match populations between different cytometries as suggested in [13, 14] or to 
analyse and extract characteristics of a group of similar cytometries. In addition, a pro-
cedure capable of grouping similar cytometries could help to detect individuals with a 
common condition, i.e., a sickness, such as cancer. In our work we show that this indeed 
happens.

optimalFlowTemplates is our procedure for clustering cytometries and obtaining tem-
plates. It is based on recent developments in the field of optimal transport such as a simi-
larity distance between clusterings, introduced in [15], and a barycenter (Frechet mean, 
see [16, 17]) and k-barycenters (see [18–20]) of probability distributions.

Additionally, we introduce a supervised classification tool, optimalFlowClassification, 
for the case when a database of gated cytometries is available. The procedure uses the 
prototypes obtained by optimalFlowTemplates on the database. These are used to ini-
tialise tclust, a robust extension of k-means that allows for non-spherical shapes, to gate 
a new cytometry (see [21], not to be confused with TCLUST [22]). By using a similar-
ity distance between the best clustering obtained by tclust and the artificial cytometries 
provided by optimalFlowTemplates we can assign the new cytometry to the most similar 
template (and the corresponding group of cytometries). We provide several options to 
assign cell types to the new cytometry using the most relevant information, represented 
by the assigned template and the respective cluster of cytometries.

Our approach fits into the following general steps: 

0.	 Obtain a database of gated cytometries. This can be done by manual gating or by a 
suitable automatic gating procedure.

1	 Obtain a partition of the database of gated cytometries based on some similarity/dis-
similarity measure between gated cytometries.

2	 Obtain an artificial prototype (template cytometry) for every cluster of gated 
cytometries obtained in the previous step.

3	 Assign a new ungated target cytometry to the most similar artificial prototype. Use 
that prototype or the corresponding group of gated cytometries to gate the target 
cytometry.
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Previous approaches fit into this scheme but have implemented it using different meth-
ods. The crucial points in all procedures are to define an appropriate similarity/dissim-
ilarity measure and to propose a method for producing templates. We briefly discuss 
some of the most relevant approaches for our work.

In [23] the Earth Mover’s (Wasserstein, Kantorovich–Rubinstein) Distance was pro-
posed as an appropriate measure of similarity between gated cytometries. This approach 
is very attractive since Step 1 can be done comparing directly appropriate non-paramet-
ric approximations of the distribution of gated (or ungated) cytometries. Additionally, 
the similarity criterion is a parameter-free distance with a nice interpretation. However, 
this approach is very computationally intensive and even unfeasible in the high dimen-
sion and high cell count setting that is characteristic of modern FC.

QFMatch [24] introduces a similarity between cytometries based on a multidimen-
sional extension of a Quadratic Form (QF)-based distance. This QF-based distance is 
calculated through a non-parametric approximation of the distributions of the whole 
gated cytometry and of the separate cell types. Specifically, it is based on the Euclidean 
distance of the centers of mass between bins of the approximate pooled distribution and 
on the frequency difference in the bins of the separate cytometries. However, defining a 
QF-based distance is not trivial and no proposal or suggestion for a method of obtaining 
templates is made.

The most closely related method to ours is flowMatch [13]. There, similarity between 
gated cytometries is obtained solving a matching problem known as Generalized Edge 
Cover (GEC) and templates are obtained merging matched vertices.

Our proposal builds on the best properties of the previous procedures. It offers a simi-
larity measure between gated cytometries (2) which is a distance and is parameter free 
as QFMatch [24]. The similarity is based on optimal transport which is well suited for FC 
[23] and has a very intuitive meaning. Through the optimal transport soft assignment 
problem (1), we have extensive freedom for choosing the cost of transporting cell types 
from one cytometry to another in a fairly straightforward way, as in flowMatch. This 
enables us to measure the difference between the distributions of cell types in differ-
ent cytometries using suitable parametric or non-parametric approximations. We pro-
mote the use of the 2-Wasserstein distance and location-scale mixture models to be able 
to obtain meaningful templates. These are not based on pooling or keeping clusters of 
cell types, as for example in flowMatch, but in obtaining a prototype that is a consen-
sus between all the cytometries that are in the same group. The template simultaneously 
represents a consensus for the location, shape, and proportion of the different cell types 
present in the group of cytometries.

Methods
We can view a gated flow cytometry, Xi , as a collection of ni multidimensional points 
with their associated labels (cell types or group labels) forming a set Li = {Lik}

ki
k=1 of 

ki different labels. Hence, a gated cytometry can be described as Xi = {(Xi
j ,Y

i
j )}

ni
j=1 

where Xi
j ∈ R

d and Y i
j ∈ Li . Alternatively, we could describe it as a partition (cluster-

ing) of all Xi
j  into groups (clusters) formed by points sharing the same labels. That is, 

Ci = {(Cik , p
i
k)}

ki
k=1 where Cik = {Xi

j : 1 ≤ j ≤ ni,Y
i
j = Lik} is a cluster and pik is a weight 

associated with label Lik . A third useful description is to view a gated cytometry as a 
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clustering but coming from a mixture of location-scatter multivariate distributions. 
With some abuse of notation Ci = {(mi

k , S
i
k , p

i
k)}

ki
k=1 where mi

k , S
i
k are the multivariate 

mean and covariance of the points in cluster Cik.
We provide an example of the different descriptions in Fig. 1. We have five cell types,  

hence L1 = {Basophils (black), CD4+CD8− (red), Eosinophils (green),Monocytes (blue),

Neutrophils (Cyan)} . We have a three-dimensional projection onto three different mark-
ers. We can interpret the image on the left as a plot of the coordinates of every cell with 
its label, but also as the plot of the group of cells labelled as Basophils (black group), and 
so on. On the other hand, the plot on the right is a representation of the ellipsoid con-
taining 95% of the probability when we see each cluster as a multivariate normal distri-
bution with mean and covariance corresponding to the empirical mean and covariance. 
As we see from the plots, all the above descriptions seem to represent the data at hand 
well and, therefore, all of them could be useful for different applications.

Obtaining prototypic cytometries: optimalFlowTemplates

Due to the high variability in flow cytometry data we should expect that learning from 
different elements in the database should produce significantly different results on the 
classification of a new cytometry XT = {XT

1 , . . . ,X
T
nT
} ⊂ R

d . Our approach is to search 
for clusters of existing cytometries in the database. In this way we pursue a notable 
reduction of variability, thus allowing a good representation of the cytometries in each 
of these groups through prototypic cytometries. Therefore, using a prototype of a group 
for learning should produce a similar result for classifying XT to the one obtained using 
any other cytometry in the same group.

Clustering cytometries

Since gated cytometries can be viewed as partitions and we want to cluster cytometries to 
reduce variability, we want to do clustering of clusterings, also known as meta-clustering. 
The methodology we will develop consists of using some meaningful distance between par-
titions and then applying hierarchical clustering methods. We use hierarchical clustering 

Fig. 1  A flow cytometry with five cell types viewed in a three-dimensional projection: left as points with 
labels; and right as ellipsoids containing 95% probability of multivariate normal distributions. We have 
Basophils in black, CD4+CD8− in red, Eosinophils in green, Monocytes in blue and Neutrophils in cyan
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since it does not rely on a particular distance and therefore it is well suited for handling 
a variety of distances between objects. This is not the case in many other usual clustering 
procedures.

As a distance between clusterings we propose to use the similarity distance (2), intro-
duced in [15]. It is based on two auxiliary distances. The optimal transport distance between 
two partitions Ci and Cj is defined as

where d(Cik , C
j
l ) is a distance between clusters Cik and Cjl . (w

∗
kl) are the solutions of the 

optimal transport linear program

dOT measures the cost of the optimal way of transforming one partition into the other. 
For more detailed explanations on optimal transport see Additional file 1: Notions on 
optimal transport.

The second auxiliary distance is the naive transport distance, which measures the cost of 
naively transforming one partition into the other. It is defined as

The similarity distance is defined as the quotient

We recall that 0 ≤ dS ≤ 1 , where dS = 0 means that partitions Ci, Cj are represented by 
the same clusters with the same weights and dS = 1 means that every cluster in Ci is 
transported proportionally to every cluster in Cj . Therefore, values of dS close to 0 can 
be interpreted as high similarity between clusterings, and values of dS close to 1 can be 
interpreted as very dissimilar clusterings.

To completely define dS , we need to specify a distance between clusters. Our choice is to 
use the well-known Wasserstein distance (see Additional file 1: Notions on optimal trans-
port) so

dOT (C
i, Cj) =

k=ki
∑

k=1

l=kj
∑

l=1

w∗
kld(C

i
k , C

j
l ),

(1)

minimize
k=ki
∑

k=1

l=kj
∑

l=1

wkld(C
i
k , C

j
l )

subject to wkl ≥ 0, 1 ≤ k ≤ ki, 1 ≤ l ≤ kj
l=kj
∑

l=1

wkl = pik , 1 ≤ k ≤ ki

k=ki
∑

k=1

wkl = p
j
l , 1 ≤ l ≤ kj

k=ki
∑

k=1

∑l=kj
l=1 wkl = 1.

dNT (C
i, Cj) =

ki
∑

k=1

kj
∑

l=1

pikp
j
ld(C

i
k , C

j
l ).

(2)dS(C
i, Cj) =

dOT (C
i, Cj)

dNT (Ci, Cj)
.

(3)d(Cik , C
j
l ) = W2(N (mi

k , S
i
k),N (m

j
l , S

j
l)).
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In essence, we are treating clusters as multivariate normal distributions, N (mi
k , S

i
k) and 

N (m
j
l , S

j
l) , with means and covariances calculated from the clusters. Our choice of the 

Wasserstein distance is based on the desire to account for the spatial shapes of the clus-
ters and to obtain templates for the groups of cytometries. We stress that all results in 
this work are also valid when understanding clusters as members of a location-scatter 
family.

Another interesting measure for cluster difference is the (entropy) regularized Was-
serstein distance, Wγ (C

i
k , C

j
l ) , where clusters are understood as empirical distributions. 

We have written it down in Additional file 1: Notions on optimal transport equation (2). 
We recall that the entropy-regularized Wasserstein distance is strictly convex and there 
are efficient solutions based on the Sinkhorn algorithm (see [25]). However, any other 
dissimilarity measure can be used, and, indeed, several have been used in the context of 
cluster comparison in FC. For example, the symmetric Kullback–Leibler divergence was 
used in [13], where

and the Friedman–Rafsky test statistic was used in [14].
When we see clusters as collections of points, and we have different clusterings of the 

same data, the Adjusted Rand Index, the Jaccard distance or other similar measures can 

be used, at the expense of losing spatial information. 
The clustering of cytometries is presented in lines 1–17 in Algorithm 1, resulting in 

a partition, T = {T1, . . . ,T|T|} , of the input cytometries. Lines 12–16 are concerned 
with the obtention of a distance matrix S that, in line 17, is used to perform hierarchical 
clustering. Classical agglomerative algorithms can be used, but also density-based algo-
rithms as DBSCAN (see [26]) and HDBSCAN (see [27]).

(4)
dKL(C

i
k , C

j
l ) =

1

2

(

KL(N (mi
k , S

i
k)�N (m

j
l , S

j
l))

+ KL(N (m
j
l , S

j
l)�N (mi

k , S
i
k))

)

,
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Template obtention through consensus clustering

At this point we have obtained a partition, T , of the collection of cytometries {Cj}Nj=1 . 
Next, we want to obtain a prototype cytometry, T i , for every group of cytometries, 
i, in the partition T (lines 18–21 in Algorithm 1). To address this goal, we resort to 
k-barycenters using Wasserstein distance, which provide a suitable tool for consensus 
on probability distributions (see [20]). We propose three different methods to obtain 
a template cytometry from a group of cytometries, that is, to obtain a consensus 
(ensemble) clustering on flow cytometries. These methods are given in Algorithms 2, 
3 and 4. 



Page 9 of 25del Barrio et al. BMC Bioinformatics          (2020) 21:479 	

The intention behind pooling (Algorithm  2), is to take advantage of having 
groups of similar cytometries and knowing the actual cell types in them. A pro-
totype of a cell type is obtained through a (1-)barycenter—a consensus represen-
tation—of the multivariate distributions that represent the same cell type in the 
cytometries that are members of the same group in T . A prototype cytometry is 
the collection of prototypes of each cell type. This can be seen in Fig.  2. On the left-
hand side, we have 5 different cytometries, each with 4 different cell types, hence 
L = {Monocytes (black), CD4+CD8− (red), Mature Sig Kappa (green), TCRgd− (blue)} . 
Since the cell types are known, we take all the black ellipsoids of the left plot, represent-
ing the different normal distributions, and obtain the black ellipsoid on the right plot, 
the barycenter of the group of normal distributions, as a consensus element for Mono-
cytes. Doing this for every cell type gives us the prototype cytometry represented on the 
right of Fig. 2.

However, our templates could be obtained even when we have gated cytometries but 
without identified cell types. This could be the case when unsupervised gating is used 
to obtain a database of gated cytometries. Density-based hierarchical clustering (Algo-
rithm 3) and k-barycenter (Algorithm 4) are based on the idea that clusters that are close 
in Wasserstein distance should be understood as representing the same, although we 
may not know which, cell type. When using k-barycenters we must specify the number 
of cell types, K, that we want for the artificial cytometry. However, when using density-
based hierarchical clustering as HDBSCAN or DBSCAN the selection of the number 
of cell types for the prototype cytometry is automatic. Recall that both k-barycenters, 
through trimming, and density-based hierarchical clustering, are robust clustering 
procedures.

In Figs. 3 and 4 we have a representation of how Algorithms 3 and 4 work. Since we 
do not have cell type information for the 5 gated cytometries, we obtain the plot that 
can be seen on the left of Figs. 3 and 4. However, the absence of this information can be 

Fig. 2  An application of Algorithm 2-Pooling. On the left we have 5 
different cytometries, each with 4 different identified cell types given by 
{Monocytes (black), CD4+CD8− (red), Mature Sig Kappa (green), TCRgd− (blue)} . On the right we have 
a prototype cytometry obtained taking the 1-barycenter for each cell type. Ellipsoids contain 95% of the 
probability of the respective multivariate gaussian distributions
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mitigated using the spatial information, which clearly shows a group structure between 
the ellipsoids. We use density-based hierarchical clustering and k-barycenters respec-
tively, to try to capture this spatial information. As a result, we obtain the template 
cytometries on the right side of Figs. 3 and 4. Clearly, we see that the templates represent 
well the real cell types behind the cytometries (compare with Fig. 2), although we still 
do not know the cell types corresponding to each ellipsoid. This could be achieved using 
expert information or matching populations.

Supervised classification: optimalFlowClassification

Now, our goal is to assign cell types to a new cytometry XT , using the information given 
in a database of gated cytometries {Ci}Ni=1 . The different sources of variability, mainly 

Fig. 3  Application of Algorithm 3—densit-based. On the left we have the same 5 cytometries as in Fig. 2, 
but each cytometry is grouped in clusters without cell types being identified. On the right we have a 
prototype cytometry obtained taking the denisty based hierarchical clustering approach on the cytometries 
represented on the left. Ellipsoids contain 95% of the probability of the respective multivariate gaussian 
distributions

Fig. 4  Application of Algorithm 4—4-barycenter. On the left we have the same 5 cytometries as in Fig. 2, but 
each cytometry is grouped in clusters without cell types being identified. On the right we have a prototype 
cytometry obtained taking the 4-barycenter of the cytometries represented on the left. Ellipsoids contain 
95% of the probability of the respective multivariate gaussian distributions
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those of a technical nature and those which are properly due to different cohorts present 
in the database, advise to search for different cytometric structures. Hence, we should 
assign XT to the group of cytometries that is more similar to it and then use supervised 
techniques. Indeed, this is the purpose of optimalFlowClassification, as shown in Algo-
rithm 5. As an input we apply optimalFlowTemplates to the database {Ci}Ni=1 to obtain 
the partition T and the templates T  . 

Lines 1–5 in Algorithm  5 are dedicated to finding an unsupervised partition of the 
new cytometry XT using as initialization for tclust the prototypes of the database. Ini-
tializing with the database entries attempts to use the available information optimally. 
Hence, if XT is similar to some of the cytometries in the database, appropriate initializa-
tion should be advantageous. However, some other suitable unsupervised initializations 
can be used, such as the ones proposed in FLOCK, flowPeaks or flowMeans. We need to 
cluster XT to compare it with the template cytometries.

Notice that tclust [21], is a more sophisticated version of k-means, allowing ellipsoidal 
clusters with different sizes and shapes. Like k-means, this robust model-based cluster-
ing procedure needs an initialization and its behaviour improves notably if that initiali-
zation is well suited. Nonetheless, it is possible to use any other unsupervised procedure 
that allows an initialization with a clustering defined by probability distributions. For 
example, this is the case for the popular mclust [28, 29], a finite Gaussian mixture model-
based clustering based on an EM-algorithm.

tclust searches for a partition {C0, . . . , Ck} of X = {X1, . . . ,Xn} , with |C0| = ⌈nα⌉ , vec-
tors mj , positive definite matrices Sj and weights pj ∈ [0, 1] that approximately maximize 
the pseudo-likelihood

under restrictions over the scatter matrices Sj . By ϕ(·;mj , Sj) we denote the density func-
tion of the multivariate normal N (mj , Sj) . C0 is the cluster of trimmed observations, 
where the trimming level is α.

(5)
k

∑

j=1

∑

i∈Cj

log
(

pjϕ(Xi;mj , Sj)
)

,
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The details of the algorithm can be found in [30]. For us it is relevant to recall only 
the initialization step, i.e., to provide an initial θ0 = (p01, . . . , p

0
k ,m

0
1, . . . ,m

0
k , S

0
1 , . . . , S

0
k ) . 

Subsequently, we only need a set of weights with corresponding means and covari-
ances to initialize tclust.

We favour the use of tclust over k-means since it allows for non-spherical clusters 
and for trimming, making partitions more robust to outliers and even bridge-points. 
However, our procedure is compatible with any other way of obtaining a partition of 
the data, which we reflect in lines 6–8. In our experiments we have used flowMeans 
as an alternative to tclust.

In lines 9–12 we look to assign XT  , using the clustering Cu , produced in the previ-
ous step, to the template that is closest in similarity distance to Cu . With this we hope 
to use only the most relevant information of the database, summarized in T ∗ and T∗.

The last step in Algorithm 5, line 13, assigns cell types to XT  . To do this we have 
several options. We can try to relabel Cu in an optimal way using T ∗ or T∗ , i.e., do 
label transfer. Alternatively, we can use T ∗ to do Quadratic Discriminant Analysis 
(QDA). Another possibility is to find the most similar partition in similarity distance 
(2) from T∗ to Cu and use it to do QDA or random forest classification.

For supervised classification we use standard tools, random forest and QDA. How-
ever, other methods can be used in a straightforward fashion. We stress that when 
using QDA and T ∗ we are using non-linear multidimensional gating regions obtained 
from T ∗ to classify XT  . This can be taught as an extension of the method presented in 
[11] where only linear one-dimensional regions are used. Another interesting fact is 
that the use of dS allows us to select the most similar real cytometry to Cu , resulting 
in supervised tools being more effective.

The problem of relabelling a clustering Cj with respect to another clustering Ci is 
usually stated as a weighted bipartite matching problem, where weights are related to 
the similarity between clusters in the two partitions. This problem can be solved by 
the Hungarian method [31] or generalized edge cover (see [13]), for example.

Additionally, we introduce an approach to obtain a fuzzy relabelling based on solv-
ing the optimal transport linear program associated to (1). The solution, (w∗

kl) , is the 
base for this fuzzy relabelling. We define the score of cluster l in Cj to come from clus-
ter k in Ci as slk = w∗

kl/p
j
l . In words, slk is the proportion of probability coming from 

cluster k, with respect to the probability in cluster l, that arrives at cluster l. Clearly, 
0 ≤ slk ≤ 1 , and higher scores indicate more evidence that clusters k and l represent 
the same cluster. A fuzzy relabelling for cluster l in Cj is the collection of all the scores 
sl = {sl1, . . . , s

l
|Ci|

} . A variation of the previous score is s̃lk = slk ∗ w
∗
kl/p

i
k , where we are 

weighting by the proportion of cluster k that goes to cluster l, with respect to the 
probability contained in cluster k. In this way we down-weight the effect of a small 
proportion of a big cluster with respect to a big proportion of a small cluster arriving 
to l. From these fuzzy relabellings a hard relabelling can be obtained easily.

Again, a suitable distance between clusters can be the Wasserstein distance as in 
(3), which is computationally very efficient. However, another possibility is to use
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which, unlike the Wasserstein distance, allows the labelling of small clusters in Cj , but 
does so at the price of using sub-sampling to compare bigger clusters (for example, more 
than 10,000 points).

Results
In this section we present several experiments and comparisons of our methods with 
other state-of-the-art procedures on two real datasets.

Data

The first dataset is formed by cytometries obtained following the Euroflow protocols 
using a BD FACSCanto flow cytometer in four different international centres. The size 
of the cytometry datasets varies from 50,000 to 300,000 cells. The samples are from adult 
male and female individuals, from a variety of age groups and with different conditions 
(see Table  1). Thus, there is biological variability, since there are different individuals 
with different conditions, ages, and other different characteristics. Moreover, we have 
technical variability since we have different centres, different dates of measurement and 
different incubation times.

The dataset contains 40 gated cytometries, C = {C1,h, C2,h, C3,h, C4,h, C5,h, C6,h, C7,h, C8,h,

C9,h, C10,h, C11,h, C12,h, C13,h, C14,h, C15,h, C16,h, C17,h, C18,h, C19,h, C20,h, C21,h, C22,s, C23,s,

C24,s, C25,s, C26,s, C27,s, C28,s, C29,h, C30,h, C31,h, C32,h, C33,h, C34,s, C35,s, C36,h, C37,h, C38,h, C39,h, C40,h} , 
where the super index s means sick and super index h means healthy. Comple-
mentary information about the cytometries can be found in Table  1. We split 
them in a learning set, DB = {C1, C3, C4, C6, C8, C10, C11, C12, C13, C16, C19, C20, C21, 
C22, C23, C24, C25, C28, C30, C32, C33, C34, C35, C36, C37, C38, C39} , and a test set 
T S = {C2, C5, C7, C9, C14, C15, C17, C18, C26, C27, C29, C31, C40}.

Additionally, in order to explore the behaviour of our procedure in the presence of 
different sources of variations and make a clear comparison with flowMatch, we use the 
healthy donor dataset from [32] to further validate our methods. This dataset includes 
“three sources of variations: (1) technical or instrumental variation among replicates of 
the same sample, (2) within-subject temporal (day-to-day) variation, and (3) between-
subject natural or biological variation”. This dataset is available in the package healthy-
FlowData in Bioconductor. In our labelling the data correspond to the individuals as 
follows, A: 1–5, B: 6–10, C: 11–15 and D: 16–20.

Measures of performance

We need appropriate methods to measure the performance of the different automated 
gating procedures that appear in this work. We recall that we use both unsupervised and 
supervised methods. In this setup an appropriate tool is the F-measure statistic which 
has been used in [1, 3, 9, 10]. With our notation we have

(6)d(Cik , C
j
l ) =

1

|Cik ||C
j
l |

∑

x∈Ci
k

∑

y∈C
j
l

�x − y�2
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Table 1  Detailed information about  the  participants and  the  measurements 
for the cytometries used in the experiments

Samples come from four international centers labelled as 1–4. Diagnosis abbreviations correspond to: healthy diagnosis, 
mantle cell lymphoma, follicular lymphoma, lymphoplasmacytic lymphoma, chronic lymphocytic leukemia, diffuse large 
B-cell lymphoma and hairy cell leukemia. The abbreviations for the type of tested samples correspond to: peripherial blood, 
bone marrow, lymph node. Coagulant refers to the type of coagulant used for preservation of the sample. The incubation 
period is measured in minutes

Center Final diagnosis Tested sample Coagulant Sex Age Incubation 
period

Flow cytometer

C1 1 HD PB EDTA M 53 30 BD FACSCanto

C2 1 HD PB EDTA M 50 30 BD FACSCanto

C3 1 HD PB EDTA M 61 30 BD FACSCanto

C4 2 HD PB Heparin M 29 30 BD FACSCanto

C5 2 HD PB Heparin M 38 30 BD FACSCanto

C6 2 HD PB Heparin F 27 30 BD FACSCanto

C7 2 HD PB Heparin F NA 30 BD FACSCanto

C8 2 HD PB Heparin M NA 30 BD FACSCanto

C9 2 HD PB Heparin F NA 30 BD FACSCanto

C10 2 HD PB Heparin F NA 30 BD FACSCanto

C11 3 HD PB NA M 34 15 BD FACSCanto

C12 3 HD PB NA F 33 15 BD FACSCanto

C13 3 HD PB NA M 32 15 BD FACSCanto

C14 3 HD PB NA M 33 15 BD FACSCanto

C15 3 HD PB NA F 35 15 BD FACSCanto

C16 3 HD PB EDTA NA Adult 15 BD FACSCanto

C17 3 HD PB EDTA NA Adult 15 BD FACSCanto

C18 3 HD PB EDTA NA Adult 15 BD FACSCanto

C19 3 HD PB EDTA NA Adult 15 BD FACSCanto

C20 3 HD PB EDTA NA Adult 15 BD FACSCanto

C21 NA HD NA NA NA NA NA BD FACSCanto

C22 4 MCL PB NA F 82 15 BD FACSCanto

C23 4 MCL PB NA M 70 15 BD FACSCanto

C24 4 FL BM NA M 52 15 BD FACSCanto

C25 4 MCL BM NA M 81 15 BD FACSCanto

C26 4 LPL PB NA M 67 15 BD FACSCanto

C27 1 CLL LN Other F 61 30 BD FACSCanto

C28 1 CLL LN Other F 61 30 BD FACSCanto

C29 1 HD PB EDTA F 27 30 BD FACSCanto

C30 1 HD PB EDTA M 54 30 BD FACSCanto

C31 1 HD PB EDTA M 50 30 BD FACSCanto

C32 1 HD PB EDTA F 36 30 BD FACSCanto

C33 1 HD PB EDTA M 74 30 BD FACSCanto

C34 1 DLBCL Other Other M 65 30 BD FACSCanto

C35 1 HCL BM EDTA M 40 30 BD FACSCanto

C36 2 HD PB Heparin M 38 30 BD FACSCanto

C37 2 HD PB Heparin F 27 30 BD FACSCanto

C38 2 HD PB Heparin M NA 30 BD FACSCanto

C39 2 HD PB Heparin F NA 30 BD FACSCanto

C40 3 HD PB EDTA NA NA 15 BD FACSCanto
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with M =
∑

k=1,...,|Ci| |C
i
k | =

∑

l=1,...,|Cj | |C
j
l | . We make the convention 

R(∅, C
j
l ) = P(Cik , ∅) = 1 and R(Cik , ∅) = P(∅, C

j
l ) = 0 . Another appealing measure is the 

median F-measure used in [11] specifically for supervised learning. The formal defini-
tion is

where Ci is the ground truth, in our case a manual gating, and Cj is the classification 
obtained for the same data.

Clustering cytometries and template obtention

We want to compare different methods for clustering a database. For a state-of-the-art 
comparison, we use flowMatch [13]. Notice that flowMatch is based on a GEC proce-
dure, a generalization of bipartite matching, where the cost between partitions is given 
by

where dKL is as in (4), or

where dMahalanobis is the well-known Mahalanobis distance between multivariate 
normals.

For a comparison with different variability sources and a clear ground truth we cluster 
the healtyFlowData and present the results in Fig. 5. The left column presents the results 
when we use optimalFlowTemplates, or equivalently when we use similarity distance 
as a distance between cytometries. The right column presents the results when using 
flowMatch and distances between cytometries given by (12) and (11) and an appropriate 
Euclidean distance-based modification. In Fig. 6 we present a similar procedure but for 
the training set DB of our first dataset.

(7)F(Ci, Cj) =
∑

k=1,...,|Ci|

|Cik |

M
max

l=1,...,|Cj |
F(Cik , C

j
l ),

(8)F(Cik , C
j
l ) = 2

R(Cik , C
j
l )P(C

i
k , C

j
l )

R(Cik , C
j
l )+ P(Cik , C

j
l )
,

(9)R(Cik , C
j
l ) =

|Cik ∩ C
j
l |

|Cik |
and P(Cik , C

j
l ) =

|Cik ∩ C
j
l |

|C
j
l |

(10)
F̃(Ci, Cj) = median

{

{

F(Cik, C
j
k∗) :

k such that Lik = L
j
k∗ ∈ Li ∩ Lj

}

, {0} × |Li△Lk |
}

(11)d(Ci, Cj) =
1

kikj

ki
∑

k=1

kj
∑

l=1

dKL(C
i
k , C

j
l ),

(12)d(Ci, Cj) =
1

kikj

ki
∑

k=1

kj
∑

l=1

dMahalanobis(N (mi
k , S

i
k),N (m

j
l , S

j
l)),
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In Table  2 we see two different clusterings obtained when using optimalFlowTem-
plates. We recall that HDBSCAN automatically selects the number of clusters. We also 
stress that the clustering obtained from complete linkage comes from the appropriate 
pruning of the tree shown top in Fig. 6.

We notice that DB is relabelled from 1 to 27 as shown in the first row in Table 2 and 
these are the labels used in Fig. 6. Let us stress that labels {14, 15, 16, 17, 18, 22, 23} corre-
spond to the cytometries {C22, C23, C24, C25, C28, C34, C35} that represent individuals with 
cancer.

Gating and classification

We will use the results of optimalFlowTemplates applied to the database DB , introduced 
in the previous section, as entries to optimalFlowClassification to automatically perform 
gating in T S . For the cytometries in T S , we also perform an unsupervised gating given 
by flowMeans. Results are shown in the first and last columns of Table 3.

Table 2  Clustering of  the  cytometries in  DB obtained using optimalFlowTemplates 
with complete linkage hierarchical clustering looking for 7 clusters and using HDBSCAN

ID Cytometry Cluster

Comp.-Link. HDBSCAN

1 C1 1 1

2 C3 2 6

3 C4 2 6

4 C6 2 6

5 C8 2 6

6 C10 1 8

7 C11 1 9

8 C12 1 8

9 C13 1 9

10 C16 3 6

11 C19 3 7

12 C20 3 7

13 C21 4 7

14 C22 4 2

15 C23 4 2

16 C24 4 2

17 C25 4 2

18 C28 5 3

19 C30 6 4

20 C32 6 4

21 C33 6 4

22 C34 5 3

23 C35 7 3

24 C36 6 5

25 C37 6 5

26 C38 6 5

27 C39 6 5
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We also compare our methods with a state-of-the-art supervised procedure. In this 
case we will use DeepCyTOF, with some bug corrections and some adaptations to our 
setting of the Github version, implemented in Python with tensorflow 0.12 and keras 
1.2.2. To use DeepCyTOF we need cytometries with the same number and types of cells, 
so we use a data set T S

′ = {C2
′
, C5

′
, C7

′
, C14

′
, C15

′
, C17

′
, C18

′
} , where we have extracted 

the common groups from the original cytometries. Hence, comparisons in Table 3 are 
biased in favour of DeepCyTOF, since for optimalFlowClassification we use the original 
complete cytometries. We want to emphasize that DeepCyTOF only uses the supervised 
information from one of the cytometries in T S

′ to classify all the others. This is shown 
in Table  3 in italic. Results of DeepCyTOF are provided, with domain adaptation and 
without de-noising, since all entries are classified, in column 2 of Table 3.

We see that DeepCyTOF performs rather poorly for {C7′ , C17′ , C18′ } due to the high 
variability of the cytometries in T S

′ , which cannot be accommodated by DeepCyTOF’s 
domain adaptation procedure. Hence, if we were able to reduce this variability, Deep-
CyTOF should give better results. Indeed, if we use flowMeans to gate the cytometries in 
T S

′ , and then we use optimalFlowTemplates, we obtain the hierarchical tree presented 
in Fig.  7. It suggests splitting T S

′ into T S
′
1 = {C2

′
, C14

′
} , T S

′
2 = {C5

′
, C7

′
, C15

′
} and 

T S
′
3 = {C17

′
, C18

′
} . We highlight that until now we have not used any supervised infor-

mation. Applying DeepCyTOF to T S
′
1 , T S

′
2 and T S

′
3 we obtain the results in column 3 

of Table 3. Again, in italic we have the cytometry which DeepCyTOF uses for learning in 
each group.

In Table  4, we present the best results, as measured by median F-measure (10), of 
applying optimalFlowTemplates + optimalFlowClassification to T S . For instance, for 
C27 , a 61-year-old female with Chronic Lymphocytic Leukemia (see Table  1), we have 
obtained a very satisfactory median F-measure of 0.9313. This value has been obtained 

Table 3  Table of  F-measure statistics as  given  by (7), where  we use the  manual gating 
as the ground truth

First column: results of the unsupervised gating procedure flowMeans on T S . Second column: results of the 
supervised procedure DeepCyTOF on T S

′ . Third column, results of DeepCyTOF on the clusters T S
′
1 , T S

′
2 and T S

′
3 

produced by optimalFlowTemplates. Forth column: results of our supervised procedure optimalFlowTemplates + 
optimalFlowClassification on T S . In underline we have the best performance according to the F-measure

flowMeans DeepCyTOF optimalFlowTemplates + 
DeepCyTOF

optimalFlowTemplates + 
optimalFlowClassification

C2 0.8988 0.9546 0.9736 0.9610

C5 0.8977 0.9161 0.9196 0.9587

C7 0.9508 0.7514 0.9769 0.9768

C9 0.8936 0.9172

C14 0.9004 0.9838 0.9530 0.9066

C15 0.8974 0.9408 0.9352 0.9556

C17 0.9405 0.7847 0.9810 0.9848

C18 0.9004 0.7837 0.9796 0.9849

C26 0.9024 0.9313

C27 0.8645 0.9306

C29 0.9475 0.9744

C31 0.9290 0.9656

C40 0.9330 0.9538
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Table 4  Parameters and performance (as measured by (10) and manual gating as ground 
truth) of the best results obtained by optimalFlowTemplates + optimalFlowClassification 
on T S

Database Clustering refers to the clustering method used in line 17 in Algorithm 1. Template Formation refers to the method 
used in line 19 in Algorithm 1. Assigned Cluster refers to the label of the cluster as given in Table 2 to which the new 
cytometry is assigned. Sample Clustering refers to how we obtain Cu in Algorithm 5. Supervised Classification refers to the 
method used in line 13 in Algorithm 5. Assigned Cytometry refers to the optimal cytometry in the respective cluster that is 
used for learning (when applicable)

C2 C5 C7

Median F-measure 0.9441931 0.8530806 0.957045

Database Clustering Complete linkage HDBSCAN Complete linkage

Template Formation Pooling Pooling HDBSCAN

Assigned Cluster 1 6 2

Sample Clustering tclust tclust tclust

Supervised Classification QDA QDA from template Random forest

Assigned Cytometry C1
C8

C9 C14 C15

Median F-measure 0.9458429 0.9254252 0.8807339

Database Clustering HDBSCAN HDBSCAN HDBSCAN

Template Formation Pooling k-barycenter k-barycenter

Assigned Cluster 9 1 1

Sample Clustering tclust tclust tclust

Supervised Classification QDA Label transfer with (6) Random forest

Assigned Cytometry C13 C1

C17
C18 C26

Median F-measure 0.9679446 0.9575489 0.8316279

Database Clustering HDBSCAN HDBSCAN Complete linkage

Template Formation HDBSCAN HDBSCAN HDBSCAN

Assigned Cluster 7 7 4

Sample Clustering tclust flowMeans tclust

Supervised Classification Random forest Random forest Random forest

Assigned Cytometry C20 C20 C24

C27 C29 C31

Median F-measure 0.9312977 0.9259644 0.931515

Database Clustering Complete linkage Complete linkage HDBSCAN

Template Formation Pooling k-barycenter Pooling

Assigned Cluster 5 6 4

Sample Clustering tclust flowMeans tclust

Supervised Classification Random forest Random forest QDA from template

Assigned Cytometry C28 C33

C40

Median F-measure 0.8240522

Database Clustering Complete linkage

Template Formation Pooling

Assigned Cluster 6

Sample Clustering tclust

Supervised Classification Random forest

Assigned Cytometry C30
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using optimalFlowTemplate followed by optimalFlowClassification. What follows is an 
extended explanation of how to understand the entries of Table 4.

For optimalFlowTemplates we have used complete linkage to cluster the cytometries 
in DB (third column in Table 2) and pooling to obtain the templates. This information 
is provided in the entries Database Clustering and Template Formation in Table 4 cor-
responding to C27 (in red). For optimalFlowClassification, we have clustered C27 (without 
using the manual gating information) with tclust, as indicated in lines 1–5 in Algo-
rithm 5, obtaining Cu . This is reflected in the entry Sample Clustering. Then, we assigned 
Cu to the cluster, {C28, C34} , labelled as 5, in column 3 of Table 2. This is shown in the 
entry Assigned Cluster. In order to use random forests for classification, as reflected in 
the entry Supervised Classification, we have assigned Cu to the closest cytometry in simi-
larity distance in the cluster, i.e., the assigned cytometry for learning is C28 as reflected in 
the entry Assigned Cytometry.

Discussion
From the results shown in Section Clustering cytometries and template obtention, par-
ticularly in Fig. 5, we see that optimalFlowTemplates produces trees very similar to the 
ones given by flowMatch and that it also captures accurately the ground truth. We see 
that both procedures identify the data coming from the same individuals in 2 of the 3 
shown cases.

As shown in Fig.  6, it seems that optimalFlowTemplates captures the difference 
between healthy and sick individuals accurately in the DB example. This comes from the 
fact that clusters of sick individuals merge other clusters high in the tree. Hence, produc-
ing clusters from cuts high in the tree will form separate clusters for healthy and sick 
individuals. However, we see that this is not entirely the case for flowMatch. Therefore, 
in this case, optimalFlowTemplates offers an advantage over flowMeans when we want 
to produce templates that will be used for classifying a new cytometry.

Some additional facts should be stated: first, the similarity distance is independent of 
parameters, something that is not the case for the generalized edge cover distance used 
in flowMatch. Second, optimalFlowTemplates produces templates only at one stage, 
once the number of clusters is determined, while flowMatch produces templates at every 
stage of the hierarchical clustering procedure. Third, optimalFlowTemplates uses a simi-
larity distance which is bound between 0 and 1 and has a clear meaning. However, no 
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Fig. 7  Hierarchical tree obtained by using optimalFlowTemplates with complete linkage on the databse T S
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after gating each cytometry with the unsupervised procedure flowMeans



Page 21 of 25del Barrio et al. BMC Bioinformatics          (2020) 21:479 	

such bounds are available for flowMatch. Fourth, flowMatch could be adapted to use the 
Wasserstein distance between cell types, but this is not implemented in the Bioconduc-
tor package that we used to make our comparisons.

We also notice that optimalFlowTemplates can capture differences within the groups 
of healthy and sick individuals. This is seen in Fig. 5. Therefore, it seems to be capturing 
additional biological and/or technical variability and not just the one provided by the 
distinction between healthy and sick. This can be clearly seen in Table 2, where we have 
several clusters for healthy individuals and several clusters for sick individuals. Hence, 
we can infer that the similarity distance is sensitive enough to differentiate between 
cytometries, and therefore that it is a suitable distance for comparing them.

Raw FC data are usually processed via different transformations to produce data more 
suitable for analysis. This raises two relevant questions: first, what are the effects of the 
transformations on the hierarchies and the templates that we obtain?; and second, are 
the templates and hierarchies invariant under transformations? We thank the referee 
that suggested us these topics.

To address the first question, we will assume that all raw cytometries will be submit-
ted to the same type of transformation. In the setting we have presented, which is mainly 
model-based, the more the data look like mixtures of a location-scale distribution, the 
better the performance will be, and the more realistic the artificial templates will seem. 
On the other hand, if we choose a cost in the similarity distance (2) that is non-paramet-
ric, such transformations may not be needed, although they may prove to be helpful. 
However, templates may be more unrealistic since the location-scale approximation may 
not be well suited. We expect to address production of templates in a non-parametric 
fashion in future work.

The hierarchies and templates we obtain, as well as the ones obtained using proce-
dures as flowMatch and QFMatch, are not transformation invariant. Similar transforma-
tions will produce similar hierarchies and similar templates. Therefore, from a purely 
mathematical point of view, there is no true or correct hierarchy. However, from a prac-
tical point of view, transformations that allow to produce hierarchies and templates that 
capture more relevant information for the problem at hand should be preferred.

With respect to the results shown in Section Gating and classification, there are sev-
eral interesting implications. Firstly, as expected, our supervised method, optimalFlow-
Templates + optimalFlowClassification outperforms an unsupervised method such as 
flowMeans. This is seen in the higher values in each entry of column 3, with respect to 
column 1, of Table 3. We also see that the F-measures obtained by our procedure are 
very satisfactory giving a mean value of 0.9539 and a median value of 0.9587 for T S . It 
is also worth noting that good results are obtained both for healthy individuals and for 
cancer patients.

Secondly, a comparison with a supervised method, DeepCyTOF, based on neural 
networks and domain adaptation has been provided. We want to stress that, at least 
with the implementation provided in Github, we were unable to apply DeepCyTOF 
to cytometries with different cell types, which limits the applicability of this method. 
Hence, we had to produce a modified test group given by T S

′ . This favours Deep-
CyTOF since our procedure was instead applied to the original cytometries. From col-
umn 2 of Table 3, we see that DeepCyTOF works well for cytometries {C2′ , C5′ , C14′ , C15′ } 
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giving results comparable to our own procedure. However, it does not work as well for 
cytometries {C7′ , C17′ , C18′ } . We see that our procedure outperforms DeepCyTOF for 
every cytometry in T S

′ , even in the previously mentioned disadvantageous position, 
except for C14′ . We stress that DeepCyTOF is using precisely C14′ for learning, as indi-
cated in italic in column 2 of Table 3. Therefore, it is using 80% of the data in C14′ to cali-
brate the neural network. Hence, it is natural that DeepCyTOF is the best procedure for 
this cytometry.

Thirdly, because of the versatility of our procedure optimalFlowTemplates, we can 
use it to improve the results of DeepCyTOF. In essence, DeepCyTOF’s domain adapta-
tion is not able to account for the high variability in T S

′ , but this is exactly what opti-
malFlowTemplate is for. We start by creating a set of gated cytometries by gating in an 
unsupervised fashion, using flowMeans, the cytometries in T S

′ . Then we apply optimal-
FlowTemplates and obtain the tree shown in Fig. 7. This suggests splitting the original 
group of cytometries into three different clusters T S

′
1 , T S

′
2 and T S

′
3 . Now, applying 

DeepCyTOF to each cluster separately, we obtain the results shown in column 3 of 
Table 3, which show a significant improvement with respect to baseline DeepCyTOF for 
cytometries {C7′ , C17′ , C18′ } and comparable results for {C2′ , C5′ , C14′ , C15′ } . Hence, our 
procedure has indeed helped to improve the performance of DeepCyTOF.

It is important to note that when DeepCyTOF learns in a cytometry, as is the case for 
C14

′ , and {C2′ , C7′ , C17′ } , for columns 2 and 3 of Table 3, respectively, it uses 80% of the 
sample. This justifies the great result for C2 and C7 in column 3 of Table 3.

Additionally, we want to highlight something that is reflected in Table 4. Cytometries 
{C26, C27} , taken from individuals with cancer, are assigned to clusters of cytometries of 
patients with cancer. Therefore, our procedure is correctly assigning sick individuals to 
clusters of sick individuals. Furthermore, when there is a patient with the same type of 
cancer in the cluster results are very good. This is the case for C27 , which is assigned to 
cluster 5 in the third column of Table 2, where C28 also has Chronic Lymphocytic Leuke-
mia. It is also worth noting that healthy individuals are, likewise, assigned to clusters of 
healthy individuals.

The last thing we want to discuss is the meaning of the median F-measure values, as 
the ones given in Table  4, which are obtained from values such as the ones shown in 
Table 5. A high median F-measure value indicates that classification is good along all cell 
types, regardless of the number of cells in each cell type. This is quite important since 
often cell types with a small number of cells are very relevant for diagnosis. Indeed, from 
the values in Table 5 we see that our procedure achieves good performance in almost all 
cell types.

Conclusion
In this work we have presented a viable automated supervised gating workflow which is 
efficient, robust, scalable, and accountable. In particular, we ensure efficiency by using 
automatically produced clusters of previously gated cytometries capable of capturing 
information such as sickness and other types of variability. Throughout our experiments, 
we have shown that our method is robust due to the grouping of cytometries and the 
automatic assignment of a new one to the most similar group.
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Our method does not necessarily require manual gating, so it can be applied to big 
datasets with only computational cost as a burden, with the added benefit of counter-
acting the shortcomings of the manual gating approach (namely, human error and the 
need for experts).

The way in which we approached the problem ensures accountability. Cluster mem-
berships can be screened and, furthermore, synthetic prototypes can be manually 
gated to check their suitability. Hence even when classification is used with some 
black-box procedure, we have an accurate understanding of the starting point. Finally, 
we have shown that our method is versatile, as our workflow can incorporate many 
previously existing tools in automated flow cytometry gating and it can accommodate 
many supervised learning procedures.
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Table 5  F-measure values (as in  (8)) for  each cell type for  C17 and  C27 which are used 
to obtain the respective median F-measure value in Table 4

Recall and precision are defined in (9)

C17
C27

F-measure Precision Recall F-measure Precision Recall

Abnormal Sig Kappa 0.9697 0.9478 0.9925

CD4+CD8− 0.9973 0.9982 0.9965 0.9828 0.9796 0.9859

CD8+CD4− 0.9960 0.9960 0.9960 0.9769 0.9835 0.9704

Neutrophils 0.9968 0.9959 0.9978 0.9421 0.9092 0.9775

Debris/Doublets 0.9692 0.9818 0.9570 0.7704 0.9111 0.6673

Monocytes 0.9679 0.9571 0.9791 0.8419 0.8475 0.8364

Mature Sig Lambda 0.9897 0.9939 0.9856 0.9561 0.9864 0.9277

Mature Sig Kappa 0.9923 0.9866 0.9981 0.9421 0.9421 0.9421

TCRgd− 0.9810 0.9777 0.9843 0.5549 0.5698 0.5408

TCRgd− 0.9403 0.9145 0.9677 0.8634 0.8195 0.9122

CD4+CD8dim 0.9452 0.9504 0.9401 0.5899 0.7111 0.5039

NK cells 0.9313 0.9433 0.9196

Myeloid Cells 0.8321 0.9489 0.7409

CD56dim 0.9827 0.9683 0.9975

Eosinophils 0.9722 0.9713 0.9732

Monocytoid DC 0.9563 0.9713 0.9417

Basophils 0.9123 0.9877 0.8476

Neutrophils (U.S.) 0.7632 0.7106 0.8242

Myeloid DC 0.8908 0.8413 0.9464

CD56bright 0.8785 0.9860 0.7921

Plasmocytoid DC 0.7790 0.8011 0.7581

Plasma Cells 0.9677 1.0000 0.9375
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lymphoplasmacytic lymphoma; MCL: mantle cell lymphoma; PB: peripherial blood; QDA: quadratic discriminant analysis; 
QF: quadratic form.
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