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Abstract

Background: Benchmark datasets are essential for both method development and performance assessment. These
datasets have numerous requirements, representativeness being one. In the case of variant tolerance/pathogenicity
prediction, representativeness means that the dataset covers the space of variations and their effects.

Results: We performed the first analysis of the representativeness of variation benchmark datasets. We used
statistical approaches to investigate how proteins in the benchmark datasets were representative for the entire
human protein universe. We investigated the distributions of variants in chromosomes, protein structures, CATH
domains and classes, Pfam protein families, Enzyme Commission (EC) classifications and Gene Ontology annotations
in 24 datasets that have been used for training and testing variant tolerance prediction methods. All the datasets
were available in VariBench or VariSNP databases. We tested also whether the pathogenic variant datasets
contained neutral variants defined as those that have high minor allele frequency in the ExAC database. The
distributions of variants over the chromosomes and proteins varied greatly between the datasets.

Conclusions: None of the datasets was found to be well representative. Many of the tested datasets had quite
good coverage of the different protein characteristics. Dataset size correlates to representativeness but only weakly
to the performance of methods trained on them. The results imply that dataset representativeness is an important
factor and should be taken into account in predictor development and testing.
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Background
Benchmark datasets are essential for method developers
as well as for those who want to find the best perform-
ing tools. Benchmarks represent the golden standard of
known cases. There are a number of requirements for
benchmark datasets [1]. These include relevance, repre-
sentativeness, non-redundancy, scalability, reusability,
and cases must be experimentally verified and contain
both positive and negative examples. The benchmark
data should be relevant for the studied phenomenon to
be able to capture its characteristics. Non-redundancy
means in practice that overlapping cases are excluded to
avoid bias. The data entries should be experimentally
verified, not predicted. There must be both positive and
negative examples. For applicability to systems of differ-
ent sizes, the scalability is an important criterion. It is
preferable to be able to reuse the dataset for different

purposes. This is especially important since the collec-
tion and selection of high-quality datasets requires sub-
stantial amounts of work and effort.
The representativeness of a dataset means that the set

covers the space of the investigated phenomenon i.e. pro-
vides a good and balanced cross-section of a population
and includes the most information of the original dataset.
What this means in practice depends on the area of the
benchmark. In the case of variant tolerance/pathogenicity
prediction, it means that the dataset represents the space
of variations and their effects. Numerous tolerance predic-
tion methods are based on supervised machine learning
algorithms and are thus trained on known examples. The
goal of these predictors is to learn to generalize from the
given examples. If the examples used for training do not
fully represent the phenomenon space, the performance of
the tool will be negatively affected. Although representa-
tiveness is an important concept and relevant for many
different types of studies and fields, it has not been fully
defined. Similarity and likelihood were considered in the
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early attempts, subsequently, the theoretical background
has been accounted e.g. based on the Bayesian [2] and
fuzzy set approaches [3].
We have established the VariBench [1] and VariSNP

[4] databases for variation benchmark datasets that have
been used for training and testing of methods. Amino
acid substitutions are among the most common
disease-causing alterations due to genetic changes. Many
methods have been developed for this domain [5] and
are based on different principles. Evolutionary conserva-
tion measures are among the most useful features for
such predictions. Some methods are based solely on
sequence conservation and do not require machine
learning approaches. These include e.g. SIFT [6],
PROVEAN [7] and PANTHER [8]. Another group of
methods utilizes machine learning (ML) algorithms. The
features used for method training have just been consid-
ered to be useful or been selected with extensive feature
selection approaches. Examples of this kind of tools are
CADD [9], MutationAssessor [10], MutationTaster2
[11], PolyPhen-2 [12], PON-P2 [13] and VEST3 [14]. For
certain tools, more than 1000 features representing
amino acid physicochemical propensities, sequence con-
servation, variation position sequence context, protein
structural features, Gene Ontology (GO) [15] annota-
tions and others have been used.
The third category of predictors consists of meta-pre-

dictors, methods that use the predictions of other
methods to make their own decisions. These tools are
more advanced than a simple majority vote approach,
which can be problematic [16]. Advanced ML-based
meta-predictors include MetaLR [17], MetaSVM [17],
and PON-P [18]. Methods in the fourth group, hybrid
methods, combine diverse features and utilize evidence
from experimental tests and e.g. clinical features. These
tools are typically for specific applications of variants in
a single or a few proteins e.g. for variants in BRCA1 and
2 sets [19–21], as well as in the mismatch repair system
[22, 23].
Systematic method performance assessment requires

in addition to benchmark test data also relevant mea-
sures. The required measures, their principles and appli-
cations have been discussed previously [24–26]. It is also
important how the benchmark datasets are applied. A
common problem has been circularity, i.e. the use of the
same or similar data items for training and testing [27].
Several method assessments based on various bench-
marks have been published [27–30].
We investigated the representativeness of datasets

used for training and testing variant tolerance predictors
that are available in VariBench and VariSNP. Since no
similar studies have been reported, we had to start by
determining which features capture the representative-
ness. We decided to investigate how well the available

benchmark datasets represent the structural and func-
tional characteristics on the human proteome. Vast dif-
ferences were detected in the representativeness of the
established variation datasets. We discuss the relevance
of the representativeness for method performance and
development.

Methods and materials
Datasets
In Table 1, an overview of the investigated benchmark
datasets is provided.
Dataset 1 (DS1): neutral single amino acid substitutions

(SAASs) from the VariSNP database [4]. The dataset con-
tains 446,013 single nucleotide variants (SNVs) from
dbSNP (build 149, GRCh38.p7) filtered to exclude
disease-related variants found in ClinVar, Swiss-Prot or
PhenCode (https://structure.bmc.lu.se/VariSNP/). The rep-
resentativeness of the encoded protein variants was
investigated.
Datasets 2-21 (DS2-DS21): protein tolerance predictor

datasets. VariBench [1] contains information for experi-
mentally verified effects and datasets that have been
used for developing and testing the performance of pre-
diction tools (https://structure.bmc.lu.se/VariBench/).
DS2: dataset comprising 23,671 human non-synonymous

SNVs and associated SAASs for data from the dbSNP data-
base build 131. Cases with insufficient data were removed
from the original file.
DS3: pathogenic dataset of 19,335 SAASs obtained

from the PhenCode database, IDbases and from 18 indi-
vidual LSDBs.
DS2 and DS3 were used for the original predictor per-

formance assessment [30].
DS4: subset of DS2 from which cancer cases were re-

moved, 19,459 neutral non-synonymous coding SNVs
and their SAASs.
DS5: subset of DS3 from which cancer cases were re-

moved, 14,610 SAASs.
DS4 and DS5 were used for training PON-P [18].
DS6: subset of DS2 obtained by clustering the protein

sequences based on their sequence similarity to remove
close homologues which may cause problems with cer-
tain applications; 17,624 human non-synonymous cod-
ing SNVs and their SAASs on 6045 representative
sequences (clusters).
DS7: subset of DS3 obtained as DS6; 17,525 SAASs on

954 representative protein sequences (clusters).
DS8: subset of DS4 obtained by clustering the protein

sequences based on their sequence similarity to remove
close homologues.
DS9: subset of DS5 obtained like DS8.
DS10: subset of DS4 filtered by the availability of

features used in PON-P2.
DS11: subset of DS5, obtained like DS10.
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DS12: subset of DS4 filtered by the availability of fea-
tures used in PON-P2.
DS13: subset of DS5, obtained like DS12.
DS14-DS17: as DS10–13 with a probability of patho-

genicity cutoff of 0.95.
DS10 and DS11 were used for training the PON-P2

predictor and DS12–13 for testing its performance [13].
DS18-DS21: Filtered versions of five publicly available

benchmark datasets for pathogenicity prediction [27].
The sets contain variants from PredictSNP (DS18), Vari-
Bench (DS19), ExoVar (DS20), and HumVar (DS21).
DS22-DS23: PolyPhen-2 HumVar training datasets:

21,119 neutral (DS22) and 22,196 deleterious variations
(DS23) in 9679 human proteins, no restriction for dele-
terious and neutral variations coming from the same
proteins (ftp://genetics.bwh.harvard.edu/pph2/training).
HumVar contains human variants associated with dis-
ease (except cancer variations) or loss of activity/func-
tion vs. common (minor allele frequency > 1%) human
variation with no reported association with a disease or
other effect [12].
DS24: 75,042 SwissVar variants (SAASs) downloaded

(2017-04-19) from http://swissvar.expasy.org/cgi-bin/
swissvar/result?format=tab, only those entries with a
variant description were selected [31].

Chromosomal distribution of variants
Python scripts (version 2.7.12) were developed to determine
the number of variants per chromosome and total coding se-
quence (CDS) length in chromosomes. The observed num-
bers of variants per chromosome were taken from the
datasets, expected numbers were weighted by the number of
genes per chromosome or by length CDSs. The numbers of
genes per chromosome were taken from the Ensembl Bio-
mart service (http://www.ensembl.org/biomart/martview/)
with the following settings for the number of genes: Ensembl
Genes 89; Human genes (GRCh38.p10), Chromosome/scaf-
fold 1–22, X, Y; Gene type: protein coding. Only unique re-
sults (for Gene Stable ID) were exported to a tab-delimited
file. The total number of protein coding genes was 19,786.
Settings for the CDS lengths were: Ensembl Genes 92; Hu-
man genes (GRCh38.p12), Chromosome/scaffold 1–22, X, Y;
Attributes: Sequences. Peptide; Header information: Gene
stable ID, Transcript stable ID, CDS length. Unique results
only, were exported in FASTA format.

Mapping to ExAC dataset
The cases in the pathogenic datasets were mapped to
ExAC database (release 0.3.1) variants [32] with minor al-
lele frequency (MAF) higher than 1%, but lower than 25%,
in at least one of the seven geographical populations (Nir-
oula and Vihinen, submitted). The dataset is available at
http://structure.bmc.lu.se/VariBench/exac_aas.php.

Mapping to PDB
To perform analyses related to CATH protein domains [33]
and Pfam protein families [34], variants in the datasets were
first mapped to PDB structures, using Python scripts.
Depending on the level of the variant descriptions in the
datasets (DNA or protein level) and/or the reference se-
quences (NCBI RefSeq, UniProtKB identifiers, Ensembl gene
or protein identifiers), use was made of auxiliary files down-
loaded from the respective databases. Protein variant descrip-
tions with a RefSeq reference sequence [35] or an Ensembl
reference sequence [36] were first mapped to UniProt ref-
erence sequences [37]. A file containing cross-reference
RefSeq-UniProt identifiers and UniProt sequence lengths
was downloaded from UniProt (human and reviewed pro-
tein sequences, http://www.uniprot.org/uniprot/?quer-
y=*&fil=reviewed%3Ayes+AND+organism%3A%22Homo
+sapiens+%28Human%29+%5B9606%5D%22). A file with
cross-reference Ensembl-UniProt identifiers was obtained
using the Ensembl Biomart service. Mapping was only
done when the lengths of the RefSeq and the UniProt ref-
erence sequences matched.
Once variant descriptions were available on the pro-

tein level with a UniProt identifier for the reference se-
quence, residue level mapping to PDB structures was
obtained from the pdb_chain_uniprot file, which was
downloaded from the European Bioinformatics Institute
(EBI) SIFTS FTP site (https://www.ebi.ac.uk/pdbe/docs/
sifts/quick.html), including the start and end residues of
the mapping using SEQRES, PDB sequence and UniProt
numbering. When the protein was mapped to more than
one PDB structure, the xml files were downloaded from
the EBI FTP site (ftp.ebi.ac.uk/pub/databases/msd/sifts/
split_xml/). If the residue on the position of the variant
had the annotation ‘Not_Observed’, the structure was
discarded. PDB structures were checked starting with
those with the highest resolution. Resolution data were
downloaded from the EBI site (http://www.ebi.ac.uk/
pdbe/entry/search/index?organism_synonyms:“Homo sa-
piens (Human)”). When variants mapped to more than
one chain in the same PDB structure, the first one was
taken, and no further checking was done.

CATH domains
For allocating and mapping variant positions to CATH
domains, two files were downloaded from the CATH
website (http://www.cathdb.info/download): CathDo-
mainList.v4.1.0 containing all classified protein domains
in CATH for class 1 (mainly alpha), class 2 (mainly
beta), class 3 (alpha and beta) and class 4 (few secondary
structures), and CathDomall.v4.1.0 in which domain
boundaries for entries in the CATH database were de-
scribed. Only variants which had been mapped to a PDB
structure were used in the analysis.
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To compare the CATH superfamily distributions in the
datasets to the CATH superfamily space, a representative
set of protein chains was obtained from the Research Col-
laboratory for Structural Bioinformatics (RCSB) PDB
(ftp://resources.rcsb.org/sequence/clusters/). A file with
sequence clusters with 95% identity (bc-95.out) was
used to reduce redundancy by leaving only one repre-
sentative for proteins with (almost) identical se-
quences. From each cluster (12,583 in total), the first
sequence (chain) was taken as a representative, and
the frequencies of CATH superfamilies were deter-
mined for each domain in that chain. There are 907
CATH superfamilies, to which 9572 CATH domains
found in the 12,583 representative protein sequences
could be allocated. These data were used as the back-
ground distribution for the analysis of the datasets.

Pfam protein families
For mapping variant positions to Pfam families, a file
was downloaded from UniProt with UniProt-Pfam cross
references for human protein sequences. Equivalent to
the PDB mapping, variant descriptions with a RefSeq or
Ensembl reference sequence were first mapped to a Uni-
Prot protein sequence. Then Pfam IDs were looked up
in the UniProt-Pfam cross references file, and for each
Pfam domain the coordinates were obtained from the
corresponding UniProtID.xml file. These corresponding
xml files were downloaded from the Pfam database at
http://pfam.xfam.org/. If the position of the variant was
within the coordinates of a Pfam domain, it was
counted.
To compare the Pfam domain distribution in the data-

sets, the frequencies of Pfam domains in the UniProt-Pfam
cross references download were determined.

Enzyme commission numbers
Cross references for UniProt ID and Enzyme Commis-
sion (EC) numbers [38] for all human proteins were
downloaded from UniProt and served as reference data-
set. The frequencies of the EC numbers in the reference
set and the datasets were determined on all 4 levels.
Equivalent to the PDB mapping, variant descriptions

with a RefSeq or Ensembl reference sequence were first
mapped to a UniProt protein sequence. Then using the
UniProt-EC numbers cross-references, EC numbers were
allocated to each variant in the datasets, when applicable.

Gene ontology terms
Cross references for UniProt ID and GO terms, including
the identifiers for the 3 domains/aspects of the GO (MF:
Molecular Function, BP: Biological Process and CC:
Cellular Component), were obtained using the QuickGO
service at the EBI website (http://www.ebi.ac.uk/QuickGO/

GAnnotation) using the UniProt identifiers from the
cross-reference RefSeq-UniProt file.
Variant descriptions with a RefSeq or Ensembl refer-

ence sequence were first mapped to a UniProt protein
sequence. Then using the UniProt-GO identifiers
cross-references, GO terms were allocated to each vari-
ant in the datasets, where applicable.

Statistical tests
Pearson’s chi-square test (SciPy package v.0.19.0, scipy.s-
tats.chisquare) was used to compare the distribution of
variants over all chromosomes in the datasets (the ob-
served numbers) to the expected numbers. For the statis-
tical test of the chromosomal distribution, a two-tailed
binomial test (SciPy package v.0.19.0, scipy.stats.binom_t-
est) was used. The distributions of CATH, Pfam, EC and
GO classes at each level were tested using the Python im-
plementation (SciPy package v.0.19.0, scipy.stats.ks_2-
samp) of the Kolmogorov-Smirnov (KS) 2-sample test.
To estimate how well the datasets represented the

classes within the classification schemes the coverage
was calculated as follows

coverage ¼ A DSð Þ
A

;

where A(DS) is the number of class labels in the dataset
DS and A is the total number of classes in the classifica-
tion system. A class is covered if and only if at least one
representative belongs to the class.

Results
To test the representativeness of the variant datasets
statistical analyses were performed to reveal how well
the datasets covered the overall distribution in the hu-
man proteome.

Inclusion of benign variants to datasets for pathogenic
variants
First, we investigated the relevance of the datasets. This
was done for benign variants obtained from the ExAC
database, which contains information for allele frequen-
cies of 63,197 variants from 60,706 individuals. We in-
cluded only variants that have 1% <MAF < 25% in at
least one population, as frequent variants are considered
to be benign. This is a reasonable and widely used as-
sumption, however, a small number of highly frequent
variants are known to be disease-associated e.g. in late
onset conditions or in mild diseases. The cases in the
pathogenic variant datasets were mapped to the ExAC
entries.
Datasets of pathogenic variants contained only 1.13 to

1.77% of benign variants (Table 1) except for the Swiss-
Var dataset that contains both benign and pathogenic
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variants. The percentage of benign cases is 21.39% in
this dataset. The selection of pathogenic variants from
SwissVar contains neutral variants at about the same
frequency as the other datasets (1.31). The ratio of
benign variants in the pathogenic datasets is so small
that it does not bias methods developed based on
them. It has to be remembered that phenotype is not
a binary trait, instead has a continuum as described
in the pathogenicity model [39]. In conclusion, the
pathogenic datasets contain only minor amount of
benign cases and thus be considered to contain rele-
vant cases.

Mapping to PDB
The results for mapping of variants to a PDB structure
are given in Table 1. Variant mapping rates to PDB
structures ranges from 7.8% for the cases in DS1 to 54%
for DS7 (Table 1). The ratio of mapped variants in the
pathogenic datasets was always higher (36–54%) than
for the neutral counterparts (8–13%). These differences
are partially correlated with the mapping to a UniProt
protein sequence, which shows the same pattern. This is
to be expected, since to be able to map to a PDB struc-
ture a UniProt ID is needed, on the other hand, not
every UniProt ID is mapped to PDB structure(s). Every
variant position cannot be mapped to a PDB sequence,
since the coverage of UniProt sequences in PDB struc-
tures can differ greatly (1–100%). The termini of the
proteins are often too flexible to be seen in the struc-
tures and cannot therefore be mapped to structures.
There can also be gaps in the structures, especially in
loop regions. Many structures are for part of the entire
protein covering one or more domains.
The large difference between DS2 (neutral variants, 10%

mapped) and DS3 (pathogenic variants, 53% mapped)
seems to be negatively associated with the large difference
in the number of protein sequences the variants could be
mapped to (DS2: 7230; DS3: 1182; Table 2). Disease-related
variants have a non-random distribution. Further, they have
been extensively investigated in certain genes/proteins and
diseases. For instance, the maximum number of variants
mapped to a UniProt sequence is 2294 in DS3 (P04637; cel-
lular tumor antigen p53), whereas this number in DS2 is
only 71 (P20929; nebulin). The way the datasets were con-
structed can also play a role: DS2 is a selection of human
non-synonymous coding SNVs from dbSNP (allele fre-
quency > 0.01 and chromosome sample count > 49, and fil-
tered for disease-associated SNVs), whereas its pathogenic
counterpart, DS3, was selected from the PhenCode data-
base [40], IDbases [41], and 18 additional LSDBs, all of
which contained a substantial number of variants.
DS4-DS17 are subsets of DS2 and DS3, thus simi-

larities to the parent databases are expected. DS22
(neutral) and DS23 (pathogenic) also show similar

patterns: high number of unique UniProt sequences,
low maximum number of variants mapped to a spe-
cific protein in the neutral set; and the opposite situ-
ation for the pathogenic set.
DS18-DS21, mixed datasets of both neutral and patho-

genic variants, all show mapping of approximately 30%
of variants (Table 1). This is close to the means of the
neutral and pathogenic datasets. For instance, the mean
of the percentages mapped to PDB for DS22 and DS23
is 28%, and for DS21, which is a selection of the combin-
ation of DS22 and DS23, it is 27%. DS24, also a mixed
dataset, had a rather low percentage, 17%. When com-
paring the mapping percentages of these datasets to the
ratios pathogenic to total, which were in the range of
0.42 for DS19 to 0.62 for DS18 [27] and 0.44 for DS24
(data from 2017 to 07-06), we did not find a clear
correlation.

Chromosomal distribution of variants in the datasets
The chromosomal distribution of variants based on num-
bers of genes in chromosomes in DS1 is shown in Table 3,
the results for the other datasets are in Tables S1-S23
(Additional file 1). The summary of results in Table 4
shows that DS16 has the highest number of chromo-
somes, 13, with an unbiased distribution of variants,
whereas DS24 showed the lowest number, 2. The neutral
VariBench datasets (DS1, DS2, DS4, DS6, DS8, DS10,
DS12, DS14, DS16, DS22) always had higher numbers of
chromosomes (range 7–13, mean 9.3) with an unbiased
distribution than their pathogenic counterparts (DS3,
DS5, DS7, DS9, DS11, DS13, DS15, DS17, DS23), range
3–6 chromosomes, mean 4.3. Since DS14-DS17 are sub-
sets of DS2 and DS3, seeing the same difference between
the neutral and pathogenic datasets is not surprising, al-
though it would depend on how the subsets are selected.
The comparison of datasets with their subsets seems to
support this. For DS2 and DS3, differences with their sub-
sets DS4-DS17 were in most cases no more than one
chromosome, except for DS3 where the number of chro-
mosomes with an unbiased variant distribution in the sub-
set is sometimes even double (DS3 compared to subsets
DS9 and DS17) (Table 4).
For the PON-P2 training and test datasets, DS10-

DS13, their subsets DS14-DS17 were all generated with
the same selection criterion, 95% probability of patho-
genicity cutoff. In all but one (3 out of 4) case the subset
has a higher number of chromosomes with an unbiased
distribution. DS10 compared to its subset DS14, number
of chromosomes with unbiased distribution are 9 and
11, respectively. DS11 compared to DS15, number of
chromosomes with unbiased distribution is 5 for both.
DS12 compared to DS16, number of chromosomes with
unbiased distribution are 9 and 13, respectively. DS13
compared to DS17, number of chromosomes with
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unbiased distribution is 3 and 6, respectively. Most sub-
sets, except DS15, had a higher number of chromosomes
with an unbiased distribution than their parent datasets
(Table 4).
The number of chromosomes with an unbiased distri-

bution for DS21, which is a subset of the combined
DS22 and DS23, is 4, comparable to the 3 chromosomes
for the pathogenic DS23 (Table 4). The numbers for the
mixed datasets (DS18, DS19, DS20, DS21 and DS24)
were like those for the pathogenic datasets, range 2–6
chromosomes, mean 4.2. The numbers for the X
chromosome are strongly biased for the pathogenic
datasets. Mendelian diseases with defects in this
chromosome have complete penetrance. One would ex-
pect to see the same for the Y chromosome, but that is
not the case. The results for the Y chromosome are
based on very low numbers compared to the other chro-
mosomes. The numbers for chromosome 19 are also
very biased, apart from DS22.

The distribution of variants in the whole human gen-
ome over the 24 chromosomes was also tested. Pearson’s
chi square test statistic for the number of variants over all
24 chromosomes in DS1 was 8657.11 (p < 10− 4), so the
distribution of the variants over all chromosomes is
biased. The results for the other datasets are in Table S24
(Additional file 1).
Chromosomal distribution was studied also by com-

paring to the coding region length in chromosomes
(Table 3 and Additional file 1: Tables S1-S23). The re-
sults are not identical but show similar trends as gene
number based statistics. The differences between the
two studies are most apparent in some of the smallest
datasets, where one or a few exceptionally long or short
genes can have a big effect on the total CDS length.

Domain and superfamily distribution of variants
The numbers of variants mapped to CATH domains,
the numbers of variants with a CATH classification

Table 4 Summary of the chromosomal distributions in the datasets. Chromosomes with non-biased distribution are indicated by an
asterisk

chromosome

dataset 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y no. of
chromosomes

DS1 * * * * * * * 7

DS2 * * * * * * * * 8

DS3 * * * 3

DS4 * * * * * * * * * 9

DS5 * * * * * 5

DS6 * * * * * * * * * 9

DS7 * * * 3

DS8 * * * * * * * 7

DS9 * * * * * * 6

DS10 * * * * * * * * * 9

DS11 * * * * * 5

DS12 * * * * * * * * * 9

DS13 * * * 3

DS14 * * * * * * * * * * * 11

DS15 * * * * * 5

DS16 * * * * * * * * * * * * * 13

DS17 * * * * * * 6

DS18 * * * * * * 6

DS19 * * * * * 5

DS20 * * * * * * * * * * * 11

DS21 * * * * 4

DS22 * * * * * * * * * * * 11

DS23 * * * 3

DS24 * * 2

no. of datasets 9 4 5 5 2 3 6 7 8 3 8 11 12 10 19 12 5 5 1 6 5 7 0 7
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(superfamily) and the numbers of unique CATH super-
families found in each dataset are provided in Table 5.
The number of unique CATH superfamilies is plotted
against the log number of variants mapped to a PDB
structure in Fig. 1.
The percentages of variants mapped to CATH do-

mains ranged from 29.5% for DS13 to 69.9% for DS20,
the percentages of variants with a CATH classification
ranged from 26.8% (DS13) to 68.1% (DS20), Table 5. The
percentages for the pathogenic datasets are in general
higher than those for their neutral counterparts, both
for the mapping to CATH domains as well as for the
CATH classifications. Exceptions are DS12 and DS13
and their subsets DS16 and DS17, where the situation is
the opposite. These datasets contain low numbers of
variants with CATH classifications. The mixed datasets
(DS18-DS21 and DS24) have percentages (mean 64.52%
for CATH domains) close to the mean percentage of the
pathogenic datasets without the values for DS13 and
DS17 (mean 65.39%). This is similar for the CATH

classification: mean is 65.38% for the pathogenic datasets
without DS13 and DS17, mean for the mixed datasets is
62.36%.
CATH classifies structures on four levels Class,

Architecture, Topology and Homology. We investigated
the distribution of variants to these categories by using
the KS test (Table 6). On the Class level, the null hy-
pothesis was not rejected for any dataset (p > 0.05). On
the Architecture level, only the DS12, DS13, DS16 and
DS17 showed biased distributions. DS16 and DS17 are
subsets of DS12 and DS13, respectively. DS13 and DS17
are the smallest investigated ones with 1301 and 751
variants, respectively. On the Topology and Homology
levels, all datasets have biased distributions.
For the human proteome, there are 4 classes, 30 archi-

tectures, 508 topologies and 907 superfamilies in CATH.
The maximum numbers for the datasets are 4, 30, 419,
and 700, respectively. The numbers of mapped CATH
superfamilies are generally in the order of 200 to 400,
the minimum being 12 and the maximum 700. Although

Table 5 Mapping of the datasets to PDB structures and CATH domains

dataset no. of variants
mapped to PDB

no. of variants
mapped to CATH
domain

% mapped to CATH
domain (of mapped to
PDB)

no. of variants with a
CATH classification

% with a CATH
classification (of mapped
to PDB)

no. of unique
CATH
superfamilies

DS1 39,081 23,303 59.63 21,853 55.92 700

DS2 2358 1387 58.82 1319 55.94 319

DS3 10,242 6580 64.25 6396 62.45 239

DS4 2245 1325 59.02 1262 56.21 306

DS5 7261 4687 64.55 4556 62.75 227

DS6 1743 991 56.86 941 53.99 277

DS7 9519 6100 64.08 5920 62.19 234

DS8 1706 973 57.03 928 54.40 269

DS9 6652 4301 64.66 4170 62.69 223

DS10 1731 865 49.97 826 47.72 253

DS11 6420 4350 67.76 4212 65.61 220

DS12 150 66 44.00 62 41.33 32

DS13 481 142 29.52 135 28.07 18

DS14 953 478 50.16 454 47.64 186

DS15 3728 2557 68.59 2486 66.68 188

DS16 82 38 46.34 36 43.90 21

DS17 272 78 28.68 73 26.84 12

DS18 4494 2980 66.31 2862 63.68 274

DS19 3418 2081 60.88 2035 59.54 210

DS20 2985 2086 69.88 2031 68.04 235

DS21 10,990 7051 64.16 6786 61.75 402

DS22 2169 1301 59.98 1217 56.11 291

DS23 10,290 6566 63.81 6353 61.74 307

DS24 12,749 7828 61.40 7499 58.82 347
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far from complete, the spread to the CATH levels indi-
cates inclusion of numerous types of proteins among the
datasets. The coverages on the levels 3 and 4 range from
1.8 to 82.5% and from 1.3 to 77.2%, respectively
(Table 7).

Protein family distribution of variant datasets
Pfam [34] is a widely-used classification for protein do-
mains. The numbers and distribution of Pfam domains
per dataset are depicted in Table 8. Pfam classifies pro-
tein families based on sequence similarities. The refer-
ence data for 5734 Pfam domains and their frequencies
in the entire human proteome are in Additional file 2.
Out of the 20,201 reviewed proteins in UniProt repre-
senting the human proteome in our study, 17,340 se-
quences (86%) had cross references to one or more Pfam
domains.
The proportion of variants to which a Pfam domain

could be allocated is dependent on the fraction of vari-
ants mapped to a UniProt sequence, ranging from 75%
(Table 2, DS18) to 100% (Table 2, DS9, DS11, DS13,
DS15, DS17, DS22, DS23, DS24). DS22 contains the low-
est fraction of variants within Pfam domains (Tables 8,
36.8%), whereas DS15 showed the highest number
(80.3%). The percentages for the neutral datasets were
always lower (mean 40.6%) than those for the pathogenic
datasets, mean 74.8%. The mixed datasets had inter-
mediate values, mean 56.7%. Pfam domains cover the
cores of the domains. This leaves a number of sites in
proteins outside the classified regions. Therefore, we

cannot even expect all variants to appear in Pfam do-
mains. The KS statistics showed p-values < 0.01 for all
datasets, so all datasets have non-random biased distri-
butions. The datasets show rather wide distributions to
the Pfam families (Table 8). Altogether 14 datasets are
mapped to more than 1000 families, and two datasets
(DS1 and DS24) to more than 3000 families. The larger
datasets cover numerous Pfam families. The coverage of
most of the datasets is in the order of 30% or somewhat
lower, the largest datasets 1, 21 and 24 being the major
exceptions (Table 7).

Distribution of EC categories in variation datasets
Enzyme activities are classified with EC categories at 4
levels of increasing specificity. 4220 (21%) out of the
20,201 human proteins were allocated to one or more
EC classes. At the first level, 4692 proteins could be allo-
cated, at the second level 4605, at the third level 4479
proteins, and 3619 at the fourth level. The reason for
these differences is that classifications for some proteins
are not complete and do not include all the four levels.
The results for the distribution of the datasets to EC
classes are in Additional file 3. A summary of the results
is in Table 9.
The percentages of variants with an EC classification

was for the neutral datasets (DS1, DS2, DS4, DS6, DS8,
DS10, DS12, DS14, DS16 and DS22) almost always lower
than those for the pathogenic datasets (DS3, DS5, DS7,
DS9, DS11, DS13, DS15, DS17 and DS23). Again, DS12
and DS13 and their subsets DS16 and DS17 are

Fig. 1 Number of unique CATH domains in relation to the log number of variants mapped to a PDB structure in each dataset. +: neutral datasets,
*: pathogenic datasets, x: mixed datasets. The largest dataset, DS1, had also the largest number of unique CATH superfamilies, and there seems to
be a positive correlation between the number of mapped variants and the number of unique CATH superfamilies.
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behaving differently, here the percentages are close to
each other (28.4 and 24.6% for DS12 and DS13, respect-
ively, and 25.1 and 27.6% for DS16 and DS17, respect-
ively). Mean value for the neutral datasets without DS12
and DS16 is 20.2%, for the pathogenic datasets without
DS13 and DS17 the mean is 45.4%. The mean percent-
age for the mixed datasets (DS18-DS21 and DS24) was
30.0%, so intermediate, as for the Pfam domains.
On the first level of the EC classification all datasets

showed no significant difference in distribution com-
pared to the reference set (Table 9). There are just six
categories at the fist level. On the second level, DS11,
DS12, DS13, DS16 and DS17 showed biased distribu-
tions. When omitting DS11, which had a p-value close
to 0.01, we see again the distinct character of DS12 and
DS13, and their subsets DS16 and DS17. On the third
level, most datasets except for DS1, DS6, DS8 and DS25
(p > 0.01) are biased, whereas on the 4th level all datasets
were significantly different from the distribution for the

human proteome. Not all proteins are enzymes, and var-
iants can be located even in proteins that have enzym-
atic activity outside the catalytic domains. The data for
coverage in Table 7 show quite even values up to the
second level and decreasing coverage towards the fourth
level. UniProt includes practically all the EC categories
and DS24 85.5%. The dataset size and EC number cover-
age have a clear correlation.

Distribution of GO terms on variation datasets
For further classification of the functions of the proteins
in the datasets the GO annotations for each protein were
obtained. Mapping of the 20,201 protein-coding genes in
the human genome to GO yielded 19,137 UniProt en-
tries (95%) with one or more GO terms (Additional file 4).
The frequencies of the unique GO terms were calcu-
lated, and served as the reference for testing. In Table 10
the number of unique GO terms found in each dataset
and the KS test result on term level and on aspect levels
(MF, BP and CC) are shown.
On the aspect level of the GO, no dataset had a sig-

nificantly different distribution when compared to the
reference set (Table 10). On term level, all datasets had a
significantly different distribution when compared to the
reference set. On aspect level, the KS statistic and
p-values were all 0.33 and 0.97621, respectively, for all
neutral datasets, and 0.67 and 0.31972, respectively, for
all pathogenic datasets. For the mixed datasets, these
values were the same as for the neutral datasets, except
for DS19.
Proteins in 12 of the datasets were mapped to more

than 10,000 unique GO terms, while the total number
for the entire human proteome is 17,637. Although the
datasets contain thousands of GO annotations, they are
far from being fully representative. On the other hand,
for that the datasets should be rather large due to the
size of the GO. Still, the GO coverage is clearly higher
than for the other functional and structural classifica-
tions except for the first two levels in CATH and EC
(Table 7).

Discussion
ML methods are used to generalize from the training
data to unknown ones. If training is done on unrepre-
sentative data, the method cannot learn all features of
the event space and will be biased. Similarly, when test-
ing method performance, the test data should cover the
space to assess the performance in a realistic way. This
is to our knowledge the first study that addresses the
variant benchmark dataset representativeness.
The distribution of variants per protein varies greatly

which is a result of some proteins/genes and diseases be-
ing studied extensively. Therefore, some of the proteins
can include more than 2200 variants, whereas others are

Table 6 Kolmogorov-Smirnov 2-sample test statistics (KS) for
each dataset on the Class, Architecture, Topology and
Homology levels of CATH superfamilies

dataset KS Class KS Architecture KS Topology KS Homology

DS1 0.25 (0.99688)a 0.17 (0.76005) 0.30 (< 10−4) 0.36 (< 10−4)

DS2 0.25 (0.99688) 0.20 (0.53720) 0.60 (< 10−4) 0.65 (< 10−4)

DS3 0.25 (0.99688) 0.33 (0.05499) 0.68 (< 10−4) 0.74 (< 10−4)

DS4 0.25 (0.99688) 0.23 (0.34203) 0.61 (< 10− 4) 0.66 (< 10− 4)

DS5 0.25 (0.99688) 0.30 (0.10884) 0.69 (< 10−4) 0.75 (< 10−4)

DS6 0.25 (0.99688) 0.17 (0.76005) 0.65 (< 10− 4) 0.70 (< 10− 4)

DS7 0.25 (0.99688) 0.33 (0.05499) 0.68 (< 10−4) 0.74 (< 10− 4)

DS8 0.25 (0.99688) 0.20 (0.53720) 0.65 (< 10−4) 0.70 (< 10− 4)

DS9 0.25 (0.99688) 0.30 (0.10884) 0.69 (< 10− 4) 0.75 (< 10− 4)

DS10 0.25 (0.99688) 0.20 (0.53720) 0.67 (< 10− 4) 0.72 (< 10− 4)

DS11 0.25 (0.99688) 0.30 (0.10884) 0.70 (< 10− 4) 0.76 (< 10− 4)

DS12 0.25 (0.99688) 0.50 (0.00062) 0.94 (< 10− 4) 0.96 (< 10− 4)

DS13 0.50 (0.53344) 0.73 (< 10− 4) 0.97 (< 10− 4) 0.98 (< 10− 4)

DS14 0.25 (0.99688) 0.23 (0.34203) 0.75 (< 10− 4) 0.79 (< 10− 4)

DS15 0.25 (0.99688) 0.33 (0.05499) 0.73 (< 10− 4) 0.79 (< 10− 4)

DS16 0.25 (0.99688) 0.67 (< 10− 4) 0.96 (< 10− 4) 0.98 (< 10− 4)

DS17 0.50 (0.53344) 0.80 (< 10− 4) 0.98 (< 10− 4) 0.99 (< 10− 4)

DS18 0.25 (0.99688) 0.17 (0.76005) 0.64 (< 10− 4) 0.70 (< 10− 4)

DS19 0.25 (0.99688) 0.27 (0.20033) 0.72 (< 10− 4) 0.77 (< 10− 4)

DS20 0.25 (0.99688) 0.17 (0.76005) 0.68 (< 10− 4) 0.74 (< 10− 4)

DS21 0.25 (0.99688) 0.17 (0.76005) 0.49 (< 10− 4) 0.56 (< 10− 4)

DS22 0.25 (0.99688) 0.20 (0.53720) 0.61 (< 10− 4) 0.68 (< 10− 4)

DS23 0.25 (0.99688) 0.27 (0.2003) 0.60 (< 10− 4) 0.66 (< 10− 4)

DS24 0.25 (0.99688) 0.23 (0.34203) 0.56 (< 10− 4) 0.62 (< 10− 4)
ap-value in brackets
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represented by only a single one. Comparison to ExAC
data revealed that all the pathogenic datasets contained
a small number of likely benign variants; however, the
proportion is so small, < 2%, that it will not have a major
effect on the performance or assessment of methods.
To perform the analysis, we first considered what as-

pects of representativeness are the most relevant for
our datasets. We decided to study how representative
the datasets are in describing the protein universe in
protein fold, domain, enzyme classification, and GO an-
notation levels as well as for the distribution of the
coding genes to chromosomes. As our knowledge of
many aspects of the protein universe is limited, we con-
centrated on the available data and annotations. Only
the enzyme classification data were (almost) complete.
It is possible that still some new enzymatic activities
will be found for human proteins e.g. due to moonlight-
ing/multitasking [42]. Certain characteristics, such as
protein structures, are available only for some proteins.

In these cases, we collected the current proteome-wide
knowledge of the feature and used it as the background
for statistical tests.
The distribution tests for CATH, Pfam, EC, and GO

data could only be made for a fraction of the variants
in the datasets. The mapping to CATH domains de-
pends on mapping to a PDB structure, which in its
turn is dependent on the availability of a UniProt pro-
tein sequence. In DS1, the largest dataset, 85% of the
variants could be mapped to a UniProt sequence, but
only 8.8% of the variants could be mapped to a PDB
structure, and of these, about 56% had a CATH classi-
fication, i.e. less than 5% of the total number of vari-
ants in the dataset. For other datasets, the situation
was better, e.g. in DS15, 52% of the variants could be
mapped to a PDB structure, and of these 67% had a
CATH classification, almost 35% of the total number
of variants in the dataset. CATH, Pfam, EC and GO
annotations may apply only to a part of a protein,

Table 8 Mapping of the datasets to Pfam domains

dataset number of unique
Pfam domains

number of variants
with a Pfam domain

% variants with a Pfam
domain of total number
of variants in dataset

no. of variants
mapped to a
UniProt sequence

% variants with a Pfam
domain of number
of variants mapped
to UniProt

KS statistica

DS1 5213 148,681 33.34 378,706 39.26 0.25 (< 10− 4)

DS2 2065 7307 30.87 18,660 39.16 0.64 (< 10− 4)

DS3 794 14,228 73.59 19,318 73.65 0.86 (< 10− 4)

DS4 1954 6589 33.86 15,880 41.49 0.66 (< 10− 4)

DS5 742 10,997 75.27 14,597 75.34 0.87 (< 10− 4)

DS6 1898 5293 30.03 13,811 38.32 0.67 (< 10− 4)

DS7 775 12,842 73.28 17,514 73.32 0.86 (< 10− 4)

DS8 1810 4833 33.00 11,847 40.80 0.68 (< 10−4)

DS9 727 9796 74.80 13,096 74.80 0.87 (< 10− 4)

DS10 1632 4396 33.65 10,882 40.40 0.72 (< 10−4)

DS11 668 9641 76.61 12,584 76.61 0.88 (< 10− 4)

DS12 147 579 36.07 1288 44.95 0.97 (< 10−4)

DS13 80 897 68.95 1301 68.95 0.99 (< 10− 4)

DS14 1197 2656 30.66 7185 36.97 0.79 (< 10− 4)

DS15 551 5619 78.85 7151 80.31 0.90 (< 10− 4)

DS16 116 354 33.62 848 42.22 0.98 (< 10−4)

DS17 64 526 70.04 751 70.04 0.99 (< 10−4)

DS18 1265 7190 44.66 12,056 59.64 0.78 (< 10−4)

DS19 1172 4859 47.33 10,154 47.85 0.80 (< 10−4)

DS20 1046 4818 54.44 8662 55.62 0.82 (< 10− 4)

DS21 2301 20,415 50.55 39,735 51.38 0.60 (< 10− 4)

DS22 2090 7727 36.53 21,151 36.53 0.64 (< 10−4)

DS23 1073 16,309 73.48 22,196 73.48 0.81 (< 10− 4)

DS24 3325 41,997 55.94 75,042 55.96 0.61 (< 10−4)
ap-value between brackets
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therefore we cannot even expect all the variants to fall
into these classes.
Suitable statistical tests were chosen to investigate the

dataset representativeness. We used the non-parametric
Kolmogorov-Smirnov test to compare the dataset distri-
butions to proteome-wide background data. The bino-
mial test was used for the analysis of chromosome
distributions. The coverage was calculated based on the
numbers of instances in the dataset with a certain classi-
fication compared to the background.
Analysis of the chromosomal distribution of variants

in the datasets showed that some chromosomes in all
the datasets had normal distribution; however, these
chromosomes were different for the different datasets.
The numbers of variants per chromosome were
weighted by the number of genes per chromosome. The
differences in the chromosomal distributions largely ori-
ginate from the uneven distribution of variants to the in-
vestigated proteins.

Many of the tested datasets are subsets of larger ones
and therefore have related properties. The DS16 and
DS17 are subsets of DS12 and DS13, all being small and
therefore standing out in many of the statistical tests.
The results in Table 11 show that all the datasets have
statistically significant deviations from the background
distributions at many levels. The space of variants is
huge when we consider all the different characteristics,
it is thus obvious that small datasets cannot be represen-
tative. DS1, which is the largest one with 446,013 vari-
ants, shows the highest coverage of included categories
in CATH, Pfam, EC and GO, still many of the tests show
biased distributions in this dataset. The size is not the
only parameter that defines dataset representativeness.
The cases should be widely spread into the protein
universe.
The results show that all the datasets are more or less

unrepresentative of the protein universe. The space of
the variants and effects is huge and therefore the current

Table 9 Mapping of datasets to EC classification at 4 levels

dataset number of variants
with EC numbers

% of total
number
of variants

KS 1st level KS 2nd level KS 3rd level KS 4th level

DS1 92,063 20.64 0.17 (0.99996) 0.16 (0.41923) 0.15 (0.04553) 0.41 (< 10− 4)

DS2 4665 19.71 0.17 (0.99996) 0.15 (0.57158) 0.22 (0.00050) 0.43 (< 10− 4)

DS3 7190 37.19 0.33 (0.80956) 0.27 (0.02676) 0.42 (< 10− 4) 0.81 (< 10− 4)

DS4 4754 24.43 0.17 (0.99996) 0.15 (0.57158) 0.23 (0.00020) 0.44 (< 10− 4)

DS5 6951 47.58 0.33 (0.80956) 0.27 (0.02676) 0.43 (< 10− 4) 0.82 (< 10− 4)

DS6 3911 22.19 0.17 (0.99996) 0.11 (0.88044) 0.16 (0.01740) 0.54 (< 10− 4)

DS7 6744 38.48 0.33 (0.80956) 0.27 (0.02676) 0.43 (< 10− 4) 0.83 (< 10− 4)

DS8 3552 24.25 0.17 (0.99996) 0.13 (0.73544) 0.17 (0.01232) 0.55 (< 10− 4)

DS9 6485 49.52 0.33 (0.80956) 0.27 (0.02676) 0.44 (< 10−4) 0.83 (< 10− 4)

DS10 3035 23.23 0.17 (0.99996) 0.13 (0.73544) 0.18 (0.00596) 0.53 (< 10−4)

DS11 6445 51.22 0.33 (0.80956) 0.31 (0.00785) 0.45 (< 10−4) 0.83 (< 10− 4)

DS12 455 28.35 0.17 (0.99996) 0.73 (< 10−4) 0.85 (< 10− 4) 0.97 (< 10− 4)

DS13 320 24.60 0.50 (0.31803) 0.82 (< 10−4) 0.92 (< 10− 4) 0.99 (< 10− 4)

DS14 1758 20.29 0.17 (0.99996) 0.22 (0.12644) 0.30 (< 10−4) 0.65 (< 10− 4)

DS15 3880 54.26 0.33 (0.80956) 0.29 (0.01477) 0.44 (< 10−4) 0.81 (< 10− 4)

DS16 264 25.07 0.50 (0.31803) 0.75 (< 10−4) 0.87 (< 10− 4) 0.98 (< 10− 4)

DS17 207 27.56 0.50 (0.31803) 0.85 (< 10−4) 0.93 (< 10− 4) 0.99 (< 10− 4)

DS18 4585 28.48 0.33 (0.80956) 0.18 (0.29309) 0.29 (< 10−4) 0.65 (< 10− 4)

DS19 2283 22.24 0.33 (0.80956) 0.20 (0.19638) 0.26 (< 10−4) 0.67 (< 10− 4)

DS20 3142 35.50 0.50 (0.31803) 0.13 (0.73544) 0.24 (< 10−4) 0.64 (< 10− 4)

DS21 12,723 31.50 0.33 (0.80956) 0.13 (0.73544) 0.19 (0.00407) 0.60 (< 10−4)

DS22 4841 22.89 0.17 (0.99996) 0.11 (0.88044) 0.22 (0.0032) 0.43 (< 10−4)

DS23 8710 39.24 0.33 (0.80956) 0.16 (0.41923) 0.35 (< 10−4) 0.72 (< 10− 4)

DS24 24,218 32.27 0.17 (0.99996) 0.09 (0.97024) 0.16 (0.01740) 0.57 (< 10−4)
ap-value between brackets
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datasets cannot be fully representative. When we are
looking at the coverage to the investigated categories,
the situation looks more encouraging. Most of the data-
sets display a wide coverage of categories. The major
reason for this is the still limited number of verified
cases. Many datasets have included practically all avail-
able cases without having a chance to set further re-
quirements. As the experimental data is highly biased
and certain diseases are well studied and contain large
numbers of variants, the distribution to the character
space is therefore uneven.
For some features, especially at the higher levels of the

CATH and EC hierarchies, and the GO annotation at
the aspect level, all datasets were found to be unbiased.
For other features, no one dataset was found unbiased.
These features were CATH at the Topology and
Homology level, EC at the 4th level, Pfam and GO at the
terms level.

ML methods are trained to generalize based on the
given examples. Reliable, high-quality and representative
datasets are essential for this. Evaluation of the effect of
the lack of representativeness on ML method performance
is difficult. This is because, in addition to the dataset and
its qualities, many other factors contribute, including how
the ML method is trained, tested, implemented, which
features are used and how they have been selected. Fur-
ther, other aspects of the datasets in addition to represen-
tativeness also contribute to the predictor performance.
We recently addressed the relevance of SAAS data for sta-
bility prediction [43].
The VariBench database contains training datasets that

have been used for several tolerance predictors. There
are datasets both for PON-P [18] (DS4 and DS5) and
PON-P2 [13] (DS10 and DS11). The SwissVar dataset
(DS24) and HumVar selections (DS22 and DS23) have
been used several times, including MetaLR and
MetaSVM [17], MutationTaster2 [11], PolyPhen-2 [12],
PROVEAN [7] and SNP&GO [44]. The performances of
these tools have been assessed several times and with
different test datasets, many of which were included to
the analyses [12, 13, 28–30]. MetaLR, MetaSVM and
PON-P2 have been among the best tools.
The datasets used for training the predictors do not

show clear correlation between representativeness and
performance. The PON-P2 training sets are smaller than
those based on SwissVar. Similarly, the coverage of the
PON-P2 datasets is smaller than for the SwissVar datasets
on all the investigated features. Representativeness is but
one of the features for benchmarks [1]. SwissVar, which is
the second largest dataset, contains in addition to
disease-causing variants in Mendelian disorders also vari-
ants that have been identified in complex diseases includ-
ing cancers. Tests for the relevance of these variants in
diseases are usually missing. Recently it was shown that
only 14% of the variants in COSMIC database [45] are
likely harmful [46]. Therefore, datasets based on SwissVar
likely contain benign variants, which have a detrimental
effect on the performance of methods trained on these
datasets. These variants have been filtered away from the
PON-P and PON-P2 datasets, which could partly describe
why these tools have better performance despite smaller
training datasets. This implies the importance of the
benchmark relevance criterion.
Although the best methods trained with the tested

datasets have high performance, it is likely that more
representative datasets would improve their perform-
ance. There are two areas where major improvements
would be expected. First, variants of unknown signifi-
cance could be classified more reliably. However, it is
important to notice that there are not just two extremes,
there is indeed a continuum of pathogenicity [39]. An-
other area where better representativeness would have

Table 10 Number of unique Gene Ontology (GO) terms
allocated to each dataset, Kolmogorov-Smirnov 2-sample test
statistics (KS) on term level and on GO aspect level (molecular
function, cellular component, biological process)

dataset number of
unique
GO terms

KS statistic
term level

KS statistic
aspect level

DS1 17,343 0.27 (< 10− 4)a 0.33 (0.97621)

DS2 12,869 0.40 (< 10−4) 0.33 (0.97621)

DS3 8118 0.62 (< 10−4) 0.67 (0.31972)

DS4 12,510 0.29 (< 10−4) 0.33 (0.97621)

DS5 7858 0.60 (< 10−4) 0.67 (0.31972)

DS6 11,134 0.37 (< 10−4) 0.33 (0.97621)

DS7 7515 0.64 (< 10−4) 0.67 (0.31972)

DS8 10,893 0.38 (< 10−4) 0.33 (0.97621)

DS9 7329 0.62 (< 10−4) 0.67 (0.31972)

DS10 11,041 0.37 (< 10−4) 0.33 (0.97621)

DS11 7434 0.63 (< 10−4) 0.67 (0.31972)

DS12 3194 0.82 (< 10−4) 0.33 (0.97621)

DS13 1587 0.91 (< 10−4) 0.67 (0.31972)

DS14 9149 0.48 (< 10−4) 0.33 (0.97621)

DS15 6739 0.62 (< 10−4) 0.67 (0.31972)

DS16 2597 0.85 (< 10−4) 0.33 (0.97621)

DS17 1459 0.92 (< 10−4) 0.67 (0.31972)

DS18 10,345 0.54 (< 10−4) 0.33 (0.97621)

DS19 10,393 0.58 (< 10−4) 0.67 (0.31972)

DS20 10,468 0.41 (< 10−4) 0.33 (0.97621)

DS21 14,492 0.41 (< 10−4) 0.33 (0.97621)

DS22 13,318 0.38 (< 10−4) 0.33 (0.97621)

DS23 9739 0.54 (< 10−4) 0.67 (0.31972)

DS24 16,180 0.36 (< 10−4) 0.33 (0.97621)
ap-value between brackets
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an impact is in the performance on hard to predict cases
[47], especially when dealing with sequences with a
small number of related ones or unique human proteins.
The independent test sets (DS12 and DS13, and their
derivatives DS16 and DS17) used in method develop-
ment, are very small and therefore not very representa-
tive regarding the proteome properties. This problem
can only be overcome by generating larger high-quality
datasets.

Conclusions
The analysis revealed that none of the available variant
datasets is fully representative. The larger datasets are
typically better with higher coverage. Datasets for neu-
tral variants are better than the pathogenic datasets.
Despite the lack of representativeness, many datasets
cover a large number of the categories in the investi-
gated features. Correlation was not observed between

the dataset representativeness and the performance of
methods trained on them. Several additional features
are of importance as well. High-quality benchmark
datasets are expensive to produce, and the amount of
available verified cases is still limited. We suggest that
in the future method developers and assessors should
take the dataset representativeness into account. It
would likely improve performance especially in the pre-
diction of variants in difficult, even unique genes and
proteins, as well as help in further grouping of unclassi-
fied variants.

Additional files

Additional file 1: Tables S1-S24 with the chromosomal distributions of
variants in datasets DS2-DS24. (PDF 122 kb)

Additional file 2: Reference data for 5734 Pfam domains and their
frequencies in the entire human proteome. (TSV 56 kb)

Table 11 Summary of all the test results

dataset no. of
chromosomesa

CATH
Class
level

CATH
Architecture
level

CATH
Topology
level

CATH
Homology
level

EC
1st
level

EC
2nd
level

EC
3rd
level

EC
4th
level

Pfam GO
terms
level

GO
aspect
level

score without
chromosomesb

DS1 7 1c 1 0d 0 1 1 1 0 0 0 1 6

DS2 8 1 1 0 0 1 1 1 0 0 0 1 6

DS3 3 1 1 0 0 1 1 0 0 0 0 1 5

DS4 9 1 1 0 0 1 1 1 0 0 0 1 6

DS5 5 1 1 0 0 1 1 0 0 0 0 1 5

DS6 9 1 1 0 0 1 1 1 0 0 0 1 6

DS7 3 1 1 0 0 1 1 0 0 0 0 1 5

DS8 7 1 1 0 0 1 1 1 0 0 0 1 6

DS9 6 1 1 0 0 1 1 0 0 0 0 1 5

DS10 9 1 1 0 0 1 1 1 0 0 0 1 6

DS11 5 1 1 0 0 1 1 0 0 0 0 1 5

DS12 9 1 0 0 0 1 0 0 0 0 0 1 3

DS13 3 1 0 0 0 1 0 0 0 0 0 1 3

DS14 11 1 1 0 0 1 1 0 0 0 0 1 5

DS15 5 1 1 0 0 1 1 0 0 0 0 1 5

DS16 13 1 0 0 0 1 0 0 0 0 0 1 3

DS17 6 1 0 0 0 1 0 0 0 0 0 1 3

DS18 6 1 1 0 0 1 1 0 0 0 0 1 5

DS19 5 1 1 0 0 1 1 0 0 0 0 1 5

DS20 11 1 1 0 0 1 1 0 0 0 0 1 5

DS21 4 1 1 0 0 1 1 1 0 0 0 1 6

DS22 11 1 1 0 0 1 1 1 0 0 0 1 6

DS23 3 1 1 0 0 1 1 0 0 0 0 1 5

DS24 2 1 1 0 0 1 1 1 0 0 0 1 6
anumber of chromosomes with unbiased distribution of variants
bsum of scores in all categories tested
ccategory has score 1 if distribution was unbiased
dcategory has score 0 if distribution was biased
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Additional file 3: Distribution of the datasets to EC classes. (XLSX 192 kb)

Additional file 4: Mapping of 19,137 UniProt entries to GO terms.
(TSV 8810 kb)
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