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Abstract

Multilayer nanospheres with alternating 2H-MoS2 and C layers were studied as a cathode base for lithium power
sources. Interesting hierarchical structure, synergetic effect, and the presence of defects as supplementary active
sites, introduced by the additional annealing at 773 K in Ar atmosphere, have determined the conductivity, referred
to symmetric hopping or random barrier model, and led to achieve the high values of specific capacity of 3700,
1390, and 790 A h kg−1 at currents 0.1, 0.3, and 0.5 C. Such unusual result was never reported before and could be
explained by combining of the faradaic and non-faradaic accumulation processes within electrode material.
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Background
Since the batteries were introduced in 1980s as new
high-energy density power sources, one of the most
promising materials used as electrode materials for
further commercialization was MoS2. Being a layered
transition metal dichalcogenide compound, it pos-
sesses the ability to accommodate Li ions within
interlayer spaces that are due to the noncovalent Van
der Waals forces between S-Mo-S packages. Taking
into account its low cost, owing to the natural abun-
dance, the first MoS2-based commercial batteries were
developed by Moli Energy Ltd., (British Columbia,
Canada) in 1989 and have the specific energy values
100 W h kg−1 [1, 2]. In spite of few failures in oper-
ating such systems, the study of MoS2 as an electrode
material still is continuing.
Theoretically, the capacity of MoS2 is about

167 A h kg−1, when in conversion reaction, only one
mole of Li+ takes part per mole of MoS2, but re-
ported typical capacity value even for bulk material is
more than 600 A h kg−1 and became a reason to
consider at least four Li+ ions intercalated per MoS2
unit. According to [3], it takes around six lithium
ions during the first discharge cycle. However, the
first discharge process capacity of the MoS2 quickly

decreases by several times. Most of the intercalated Li+

ions remain localized in the crystal structure within
the interlayer space between S-Mo-S packages after
the first discharge in nanostructures despite that the
Li+ diffusion path is significantly shortened in com-
parison to bulk material. Both bulk and exfoliated
materials exhibit capacity reduction upon cycling;
moreover, for exfoliated MoS2, this decrease can be
more sharp [4, 5]. The initial discharge capacity of
exfoliated MoS2 is typically more than 1000 A h kg−1,
and capacity gain is caused by the Li2S formation and
Mo metal reduction. MoS2 can be additionally exfoli-
ated via lithium intercalation with a metastable phase
formation: electron transfer from lithium during the
intercalation causes the change in the electron density
and the additional deformation of crystal structure, in
particular, in Mo symmetry—from trigonal prismatic
(2H) to octahedral. The increasing of MoS2 structural
disorder leads to the possibility for more Li+ ions to
reversibly penetrate into the expanded interlayer
spaces. But still, the capacity of exfoliated MoS2
dramatically decreases with the increasing of cycle
number.
The electrochemical performance of MoS2 as an

electrode for lithium batteries was believed to be sig-
nificantly influenced by morphology, structure, and
particle size. In order to shorten the Li+ diffusion
path for improving the performance, many research
efforts have been directed to prepare nanostructured
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MoS2 for application as electrode material. The most
popular approach to increase the capacity is to en-
large the interlayer distance and lower the barrier for
Li+ intercalation. A good example is MoS2 nanoplates
[6], consisting of disordered graphene-like layers, with
a thickness of ∼30 nm and interlayer distance of
0.69 nm (for bulk, it is 0.62 nm), that showed revers-
ible capacity of 700 A h kg−1 even at 50 C. Another
way is to play on morphology effect; 3D MoS2
nanospheres [7] and flower-like structures [8] have
been demonstrated with the reversible capacity of
>850 A h kg−1 however at low current rates. In the
same time, 1D nanoribbons and nanotubes possess
776 A h kg−1 [9, 10].
But the latest tendency is a combination of MoS2

with carbon materials (as nanotubes, carbon coating,
and graphene). Being a good conductor and chem-
ically stable substance, it contributes to the overall
conductivity of the composite, facilitating the charge
transfer within the material, and prevents the volume
expansion and restacking of MoS2. The synergetic
effect between these two materials improves the electro-
chemical performance of the composite in Li batteries.
Indeed, a MoS2/GNS (graphene nanosheets) composite
with a Mo to C mole ratio of 1:2 that delivered the highest
specific capacity (1300 A·h·kg-1), although the specific
capacity of samples with mole ratios of 1:1 and 1:4 (i.e.,
1001 A·h·kg-1and 1132 A·h·kg-1, respectively) still exhib-
ited high specific capacity and better cycling stability than
pure MoS2 and GNS[11]. One of the largest reported
value of specific capacity is 1549 A·h·kg-1 for 2D MoS2
grown on the surface of 1D multiwall carbon nanotubes
[12]. At the same time, it should be taken into account the
possibility of pseudocapacitive mechanism of charge
storage with electron transfer and oxidation/reduction of
Mo4+ [13]. In some cases, the contribution of pseudocapa-
city is dominant and has significant impact on the electro-
chemical performance [14].
Here, we present hierarchically structured nano-

spheres with alternating layers of MoS2 and carbon as
an electrode base for lithium power sources. Studied
nanocomposite showed the very high specific capacity
during Li+ intercalation and interesting conductivity
features.

Methods
The synthesis procedure was based on the hydrothermal
method described in [15]. XRD study confirmed the
formation of 2H-MoS2 (P63/mmc) (Fig. 1); TEM,
SEM, and EDS investigations (FEI Technai G2 X-
TWIN and VEGA 3 TESCAN microscopes) showed
that the obtained nanocomposite consists of mostly
spherical particles with a size of near 40–70 nm com-
posed of alternating layers of 2H-MoS2 and carbon

(Fig. 2a, Fig. 3). Additional annealing led to partial
rupture of the spherical particles due to gas releasing
during the surfactant decomposition (Fig. 2b), but the
relative contents of Mo, S, and C atoms, received
from EDS analysis, remain unchanged (Table 1).
Electrical conductivity σ as a function of frequency

(0.01–100 kHz range) and temperature were measured
by the method of impedance spectroscopy (Autolab,
PGSTAT12, FRA-2 software). All samples were made
in pellet form with the diameter of 1.7 × 10−2 m and
thickness of 0.6 × 10−3 m under pressure of 34 MPa.
Taking into account the nature of ultrafine material
to avoid, the probable oxidation of the air at it was
chosen to conduct the conductivity evaluation is in
the narrow temperature range of 293–333 K with
precision of ±1 K.
The galvanostatic and potentiodynamic measure-

ments were conducted in two electrode cells with Li
as a counter electrode and 1М LiPF6 in a 50:50 (w/w)
mixture of ethylene carbonate and diethyl carbonate
as an electrolyte. The working electrode consists of a
test material (MoS2/C multilayered nanospheres), car-
bon black, and polyvinylidene difluoride (PVDF) in a
weight ratio of 8:1:1 coated on Cu foil.

Results and Discussion
Frequency dependence of the real part of the con-
ductivity of the MoS2/C nanosphere samples dried at
353 K (Fig. 4a) has the typical look of condensed dis-
ordered dielectrics and semiconductors: asymptotic
approximation to a certain value at constant current
and constant power dependence at high frequencies.
Meanwhile, as it is seen in Fig. 4b, the frequency
dependence of conductivity of MoS2/C annealed in
Ar atmosphere at 773 K differs. TEM confirmed that
heat treatment led to partial destruction of multilayer
nanospheres; however, the XRD patterns are similar

Fig. 1 XRD patterns of MoS2/C multilayer nanospheres
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indicating on the rigidity of 2H-MoS2 structure of the
material. The morphology changes dramatically affect
the electrical properties of the material and the value
of conductivity, being increased from 0.4 × 10−4 to
1.95 × 10−4 Sm−1. The typical conductivity of MoS2 is
in the range of 10–6–10–8 Sm–1 [16, 17], and the
achieved conductivity growth in our case should
have an influence on the overall electrochemical
performance. The conductivity of the annealed samples
increases by an order at high frequencies with the

next saturation. With the increase of the annealing
temperature, the equilibrium conductivity character-
istic value decreases and its saturation is achieved at
relatively lower frequencies. According to Dyre and
Schrøder [18], the dependences σ(ω) of such type are
characteristic for the case of materials disordered at
the microscopic level.
All the experimentally obtained σ(ω) curves were

approximated by Jonscher’s power law in a form as
(1) [19–21]

Fig. 2 TEM images of as-prepared MoS2/C (a) and annealed in Ar at 773 K (b)

Fig. 3 SEM image of MoS2/C
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σ ωð Þ ¼ σdc 1þ ω

ωh

� �s� �
; ð1Þ

where σdc is a conductivity at constant current; ωh is
a charge carrier hopping frequency; and s is an expo-
nent, which characterizes the system deflection of the
properties provided by Debye model, and is a meas-
ure of interparticle interactions, 0 < s < 1. From the
received data, we have plotted the temperature depen-
dences of σdc, ωh and s. It is found that in the case
of as-prepared nanocomposite, MoS2/C parameter s

varies nonlinearly with increasing temperature, getting
the minimum value at 313 K and determining the
change of carrier hopping frequency (Fig. 5a). The
observed temperature dependence of s parameter
even for such a narrow range of T change indicates
the conduction mechanisms other than quantum
tunneling of electrons and is a typical for good crys-
talline samples of MoS2 [22]. Apparently, the ob-
served features are the result of the carbon presence.
Probably, the temperature in the vicinity of 313 K ac-
tivates the electron transition from the impurity levels
in the forbidden zone. The results allowed to build
the Arrhenius plot and determine the activation en-
ergy for the conduction of the material in the given
temperature range, which is evaluated as 0.192 ±
0.010 еV and is in good agreement with published
data for МоS2. Conductivity of bulk MoS2 is typically
nonlinear dependent on temperature, in particular,
the conductivity activation energy at the temperatures
lower than room temperature lies in the range of

a)

b)

Fig. 4 The frequency dependence of the real part of the conductivity
of the nanocomposite MoS2/C with spherical multilayer particles,
obtained at temperatures of 293 (1), 303 (2), 313 (3), 323 (4), and 333 K
(5). a As-prepared material. b After annealing in argon at 773 K

a)

b)

Fig. 5 Temperature dependence of ωh and s parameters (a) and
ln(σ0) from (T− 0.33) (b), characterizing the properties of the as-prepared
nanocomposite MoS2/C with spherical particles

Table 1 The relative element contents received from EDS

MoS2/C as-prepared, at.% MoS2/C after annealing, at.%

Mo 15.8 ± 0.6 13.0 ± 0.6

S 27.0 ± 0.6 23.0 ± 0.5

C 46.8 ± 0.4 53.9 ± 0.5
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0.03–0.15 eV and above 760 K—0.4–0.9 еV [23].
Usually, such behavior is a characteristic of doped
semiconductors with impurity conductivity below
and intrinsic above 773 K.
Taking into account the system dimension, we have

plotted ln(σ0) from (T− 0.33) (Fig. 5b), using Eq. 2

σ Tð Þ ¼ σ0 Tð Þ exp −
T 0

T

� �p� �
; ð2Þ

where p = 1/(d + 1), and d is the dimensionality of the
system; thus, in our case, p = 1/4 [24]. The resulting
calculated value of the characteristic temperature T0

is 3.05 × 106 K, which is several times higher than for
atomically thin layers of MoS2 [25] and defines the
effective density of the states near the Fermi level of
the material, herewith the observed inverse depend-
ence of these parameters.
In the case of materials obtained after annealing at

773 K in a stream of argon, the σ(ω) dependences
(Fig. 4b) were approximated just partially to the
zone of inflection. It was found that parameter s for
this material is weakly dependent on the annealing
temperature, varying within the approximation error
within 0.33–0.37. Thus, we can assume that in this
case, we observe the displays of quantum mechanical
tunneling of charge carriers [23]. As it was already
mentioned, the curves σ(ω) have a distinctive look,
indicating a higher level of disorder. In this case, it
becomes possible to use the symmetric hopping model
(or random barrier model), whereby the charge trans-
fer is a jump between close equilibrium positions in
non-periodic potential [19]. In this model, the prob-
ability of hopping between individual positions is
considered as the same with the normal distribution
of potential barrier height, which provides no explicit
value of activation energy. Reducing the equilibrium
conductivity with increasing frequency and temperature
is explained as follows: energy comes into the system
as a result of both thermal excitation and application
of the external periodic potential. At lower temp-
eratures, the hops occur at higher frequencies, and
thermal excitation effect is small. Thus, the frequency
growth causes an increase of hop probability over the
barriers, the heights of whose are distributed by the
Gauss function, which explains the smooth curve
growth progress—a sharp increase (area corresponded
to the vicinity of mode value of the barrier height)—a
saturation. With increasing temperature, this situation
persists on providing the probability growth of carrier
scattering on phonons and saturation at relatively
lower frequencies.
For next study of electrochemical properties, we

decided to take the MoS2/C multilayer nanospheres

after thermal treatment, based on results described
above. Galvanostatic measurements for this material
as an electrode base for lithium power sources at
currents 0.1, 0.3, and 0.5 C gave the specific capacity
values at 3700, 1390, and 790 A h kg−1, respectively
(Fig. 6). The calculated specific energy values are

a)

b)

c)

Fig. 6 Charge/discharge curves at currents 0.1 (a), 0.3 (b), and 0.5 C (c)
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5380, 1370, and 702 W h kg−1. Coulumbic efficiencies
for the first and fifth discharge-charge cycles are 21.3
and 63.1 % at 0.3 C (Fig. 6b) and 46.6 and 63.4 % at
0.5 C (Fig. 6c). Such high values of specific capacity
were not achieved before for any MoS2-based system
presented in the literature.
In turn, cyclic voltammograms (Fig. 7) in the 0–3.0 V

potential window at different scanning rates (0.5, 0.4,
and 0.3 mV s−1) correspond to quasi-reversible system
and are very similar to CVs obtained for single-layered
ultrasmall nanoplates MoS2 embedded in carbon nano-
wires [26]. Two cathodic peaks in the vicinity of 1 and
0.6 V can be attributed to the intercalation of Li+ into
the interlayer spacing of MoS2 to form LixMoS2, accom-
panied by phase transformation from the 2H (trigonal
prismatic) to 1T (octahedral molybdenum coordination)
MoS2 structure [27–29]. Electron transfer from lithium
during intercalation changed the electron density

causing the deformation of crystal structure. A peak
at ~0.6 V is attributed to the following conversion
reaction (3):

LixMoS2 þ 2−xð ÞLiþ þ 2−xð Þe−→Li2SþMo; ð3Þ
anodic peak at approximately 1.7 V is due to the re-
moval of Li+ ions and incomplete oxidation of Mo. The
peak 2.3 V, which in the literature data corresponds to
the formation of MoS2, is absent, signifying on the par-
tial reversibility of the processes that occurred in the
studied system. Moreover, Wang et al. [7, 27] assumed
that Li2S is likely to be oxidized into S during the anodic
scans. Thus, the possible reaction describes the Li stor-
age mechanism as

S þ 2Li↔Li2S: ð4Þ
The Randles-Ševcik Eq. (5) for such quasi-reversible

system at 298 K defines the diffusion coefficient D as a
slope of linear dependence of peak current Ip on the
square root of scan rate V (Fig. 8) [30]

Iquasip ¼ 2:65� 105n3=2ACD1=2V1=2; ð5Þ
where n is the electron transfer number in the elec-
trode reaction, A is the cathode surface, and C is the
bulk concentration of electroactive particles. It is cal-
culated in such manner that D = 1.65 × 10−10 cm2 s−1;
however, it should be noted that the intercept of the
resulted line does not equal zero, which signifies the
complex rate-limiting processes, i.e., a mixture of
diffusion and surface processes [31]. The studied
redox species are partially adsorbed on the electrode
surface or confined in a film matrix. This assumption
could also explain the overall cyclic voltammograms

Fig. 8 The dependence of current peaks on the square root of
scanning rates calculated from cyclic voltammograms

a)

b)

Fig. 7 Cyclic voltammograms at different scan rates (a, b)
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look: the Li+ accumulation at the interfaces results in
broadening and nearly rectangular shape between 0
and 1.4 V, which is a characteristic of supercapacitors
[27]. According to [14], the intercalation and the
pseudocapacity contributions can coexist. Thus, the
high capacity value of MoS2/C multilayered nano-
spheres is a result of faradaic charge transfer pro-
cesses and non-faradaic charge species storage at the
interfaces or possibly at the inner surfaces of hollow
multilayered nanospheres. The annealing caused nu-
merous breaches, increasing the edges sites that have
higher Li binding energies than the inner sites, imply-
ing a remarkable edge effect [9, 32, 33]. In particular,
the S edge of the MoS2 is more favorable to bind Li
than the Mo edge and favors the active material to
achieve a high specific capacity due to the increasing
number of intercalated Li atoms. In addition, the hol-
low spherical structure could effectively tolerate the
volume change caused by the discharge-charge pro-
cesses, reduce the diffusion distance of lithium ions,
and facilitate the charge diffusion due to carbon pres-
ence. But still, there is not good cycling performance
and capacity loss due to the electrolyte decomposition
and inevitable formation of solid electrolyte inter-
phase (SEI) and/or some lithium trapping inside the
lattice [7].

Conclusions
Spherical nanoparticles with alternating MoS2 and C
layers synthesized by hydrothermal method were studied
as an electrode base for Li power sources. It was deter-
mined that the obtained values of specific capacity
(3700, 1390, and 790 A h kg−1 at currents 0.1, 0.3,
and 0.5 C, respectively) are caused by synergetic ef-
fect of the following factors: (i) deformation, expanding,
and breaches of MoS2 crystal structure as a result of
carbon layers’ presence and thermal treatment; (ii) con-
ductivity growth for MoS2/C nanocomposite comp-
aratively to bulk materials; and (iii) combination both
faradaic and pseudocapacitive non-faradaic mechanisms
of charge accumulation. The conductivity character of the
obtained MoS2/C composite is being changed after
thermal treatment from typical for crystalline MoS2 to
symmetric hopping or random barrier model. The
conductivity saturation point, observed in the annealed
material, is balancing between temperature and frequency
of applied field and decreasing at higher temperatures.
Without modifying the 2H structure of MoS2, the anneal-
ing has introduced a number of defects—the supplemen-
tary active sites—where the redox reactions occur. This
together with spherical hollow structure of MoS2/C nano-
particles affected the results of galvanostatic and po-
tentiodynamic studies.
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