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Abstract 

The vibration signals of rotating machinery usually contain various natural oscillation modes, exhibiting multi-scale 
features. This paper proposes a Multi-Branch one-dimensional deep Convolutional Neural Network model (MBCNN) 
that can extract multi-scale features from raw data hierarchically, thereby improving the diagnostic accuracy of gear-
box faults in noisy environments. Meanwhile, the algorithms for multi-branch generation and algorithms of the con-
volution and pooling for each branch are deducted. The MBCNN integrates multiple branches with interrelated 
convolution kernels of different widths, and each branch can extract the high-level features of the signal. The network 
parameters of each branch are adjusted by the loss function, which makes the features of the branches complemen-
tary. Through the design of MBCNN, the local, global, deep layer and comprehensive information can be obtained 
from the raw data. On the widely used Case Western Reserve University Bearing Dataset, this paper conducted a per-
formance comparison between the proposed MBCNN and other baselines including the shallow learning methods, 
1D-CNN, and multi-scale feature learning methods. Moreover, our gearbox dataset was conducted on a fault diagno-
sis platform, and a series of experiments were conducted to verify the effectiveness and superiority of the MBCNN. 
The results indicate that the MBCNN can identify the faults in the gearbox with an accuracy of higher than 92%, 
and the average validation time per sample is less than 3.2 ms. In a noisy environment, the diagnostic accuracy 
can reach 90%. The proposed MBCNN provides an effective and intelligent detection method to identify the faults 
of rotating machinery in the manufacturing processes.

Keywords  Fault diagnosis, Multi-scale features, Convolutional neural network, Rotating machinery, Anti-noise ability

1  Introduction
Rotating machinery is one of the most common and 
essential equipment in modern industry. It is used in 
many important machines, like gearboxes, steam tur-
bines, gas turbines, fans, and generators. Rotating 
machines usually work under tough conditions and are 
prone to faults, so their predictive maintenance is sig-
nificant for guaranteeing safe operations and reduc-
ing economic costs. Faults in the vital components, like 
gears and rolling-element bearings, are the main causes 

of rotating machine failures [1], including damages and 
fractures in bearings, as well as scratches, wear, and frac-
tures in gears.

A typical fault diagnosis is carried out in three steps: 
data collection, feature extraction, and fault classifica-
tion. Measured data should be processed before the 
extraction of features of potential faults. In terms of fea-
ture extraction, several methods have been proposed, 
such as fast Fourier transform (FFT) [2], empirical 
mode decomposition (EMD) [3], wavelets multiresolu-
tion analysis (WMRA) [4], and wavelet packet analysis 
(WPA) [5]. Strömbergsson et  al. [6] found that, in the 
vibration analysis of bearing faults of fan gearbox, the 
wavelet packet transform (WPT) could detect faults 
earlier and more clearly than FFT and the discrete 
wavelet transform (DWT). Meanwhile, many machine 
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learning algorithms have been utilized to imple-
ment fault diagnosis, such as the K-nearest neighbor 
(KNN) method [7], fuzzy neural networks (FNN) [8], 
multi-layer perceptron (MLP) [9], and support vector 
machine (SVM) [10]. Gong et al. [11] used SVM at the 
end of the LSTM network to diagnose small faults in a 
multi-sensor monitoring environment. Yang et  al. [12] 
proposed to combine the energy entropy of set empiri-
cal mode decomposition (EEMD) with an artificial neu-
ral network (ANN) for fault diagnosis of asynchronous 
motor. Despite the superiorities of these methods, their 
diagnostic accuracy is limited. They usually extract 
shallow features and need human intervention, like 
expert experiences or prior knowledge, and the process 
is time-consuming. Moreover, since the feature extrac-
tion and fault classification are conducted separately, 
the suboptimal combination of the two steps may not 
provide promising fault diagnosis performance.

Deep learning can integrate feature extraction and 
classification, and it has become an effective method for 
intelligent diagnosis. The convolutional neural network 
(CNN), one of the typical deep learning algorithms, can 
automatically extract local features and integrate them. 
Its feature extraction and generalization capability is 
improved with an increasing number of layers. CNN 
has been widely used in the fields of computer vision 
[13] and natural language processing. Meanwhile, some 
attempts using 2D-CNNs have also been conducted in 
fault diagnosis. For instance, Chen et  al. [14] estimated 
the 2D cyclic spectral coherence maps of vibration sig-
nals and employed 2D-CNNs to process and classify 
maps to diagnose bearing faults. Pham et  al. [15] uti-
lized 2D-CNN to diagnose multi-output bearing faults, 
which achieved higher accuracy and efficiency than tra-
ditional CNNs. Although 2D-CNN can learn complex 
objects and modes and process various 2D signals (such 
as images and video frames), it is difficult to adapt to 1D 
signals. 1D-CNN performs only 1D convolutions with a 
simple and compact configuration, making it feasible to 
achieve real-time performance and low-cost hardware 
implementation [16]. Yan et al. [17] extended the method 
based on 1D-CNN to fault diagnosis of chillers. Ince 
et al. [18] developed an integrated fault diagnosis system 
that uses 1D-CNN to monitor the conditions of a motor. 
Wang et  al. [19] proposed a one-dimensional memory-
augmented convolutional neural network (1D-MACNN) 
and a one-dimensional memory-augmented convolu-
tional long short-term memory (1D-MACLSTM) net-
work, which have been successfully used in the field of 
structural health monitoring. These methods utilized the 
1D-CNN and extracted high-level features from raw sig-
nals without involving other processing for hand-crafted 
feature transformation.

Though CNNs have demonstrated their capacity, cur-
rent studies only focused on a fixed time scale rather 
than multiple scales, thus limiting their further applica-
tions. When operated at changing speeds or heavy loads, 
rotating machinery is vulnerable to many tiny variations, 
and fluctuation of instantaneous loads, faults of a com-
ponent, and noise from the environment can lead to the 
superposition of non-stationary signals. Thus, the vibra-
tion signals of rotating machinery are complex and have 
multi-scale features. The features extracted from an 
extended time span can reflect the overall trend of the 
signals, while those from a shorter time span can indicate 
subtle local changes.

The principle of multi-scale learning is to learn features 
on both long-term and short-term time scales that com-
plement each other. The multi-scale CNN (MSCNN) is 
developed adopting this idea. Huang et al. [20] designed 
a multi-scale fusion layer in an original convolutional 
neural network, and enhanced the ability to distinguish 
different fault states by fusing multi-scale information 
of raw signals. Jiang et  al. [21] provided a multi-scale 
coarse-grained operation, which reduced the complexity 
and computation and was easier to implement than the 
method in Ref. [22].

The current methods that inherit MSCNN have dem-
onstrated the capability of learning features on different 
time scales, but they usually use simple down-sampling 
and cannot learn raw signals effectively, which easily 
results in the loss of feature information. In this study, 
a fault diagnosis model called multi-branch one-dimen-
sional convolutional neural network model (MBCNN) 
is proposed. Multi-branch CNN has been used in some 
fault diagnosis studies [23, 24], but in these studies, mul-
tiple branches of the network have the same structure, or 
only the optimal branch is selected for diagnosis accord-
ing to the value of loss. The MBCNN model proposed in 
this paper can effectively learn features on multiple time 
scales through multiple branches with different convolu-
tional layers and can extract features ranging from multi-
ple time scales.

When the gearbox works, the interaction between the 
components and the coupling with other subsystems 
such as the generator make the vibration signal have vari-
ous natural oscillation modes, showing multi-scale fea-
tures. 1D-CNN can achieve end-to-end fault diagnosis, 
but it lacks multi-scale feature extraction ability.

The MBCNN proposed in this paper improves 
1D-CNN with multi-scale learning. In the MBCNN, dif-
ferent branches adopt convolution kernels of different 
sizes and different convolution strides, and the first con-
volutional layer in each branch adopts a large convolution 
kernel and a large stride, thereby effectively extracting 
multi-scale features in the vibration signal. Moreover, the 
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branches containing different numbers of convolution-
pooling blocks can also hierarchically extract high-level 
features and capture rich information for diagnosis.

2 � MBCNN Model
The MBCNN works in three consecutive stages: multi-
branch generation, local convolution of each branch and 
fully connected classification. Figure  1 illustrates the 
framework of MBCNN with two branches (2b-CNN). 
The input of the model is the raw vibration data, and the 
output is fault types.

2.1 � Algorithm of Multi‑branch Generation
The multiple branches containing features on different time 
scales are obtained through the convolution kernels with dif-
ferent widths on the first layer. Suppose the input of the l-th 

convolution-pooling block is X l,c
b =

{

xl,cb,1, x
l,c
b,2, · · · , x

l,c
b,n

}T
 . 

The channel output in the b-th branch via a convolutional 

operation is Y l,c
b =

{

yl,cb,1, y
l,c
b,2, · · · , y

l,c
b,m

}T
 , and the output 

length is calculated as

(1)m = ml
b =

n−Wl
b + 2× Pl

b

Slb
+ 1,

where Wl
b , S

l
b and Pl

b are the width of convolution ker-
nel, the stride of convolutional operation and the pad-
ding width, respectively; b = 1, 2, · · · , l = 1, 2, · · · , and 
lb denotes the number of the layers of the b-th branch; c 
denotes the channel number ( c = 1, 2, · · · , clb ).

The relationship between receptive fields of the adja-
cent pooling layers can be described as

where Rl
b is the receptive field of the l-th pooling layer in 

the b-th branch; dlb is the size of the pooling kernel of the 
l-th pooling layer in the b-th branch ( dlb = 2).

Except for the first convolution layer, the parameters 
of other convolution layers are fixed. When l > 1 , then 
Slb = 1 , Wl

b = 3 , the last pooling layer satisfies Rlb
b = 1 , 

thus

Generally, suppose W 1
b = 4S1b and d1b = 2 , then the 

receptive field of the neurons that are fed into the fully con-
nected layer at the input signals is

(2)Rl−1
b = Slb(d

l
b × Rl

b − 1)+Wl
b,

(3)R1
b = 2(lb−1) × 3− 2.

(4)R0
b = S1b · (2

lb × 3− 1).

2
1

3
4

Convolution Pooling Global average pooling

1st convolution-
pooling layer

Multi convolution-
pooling layer

Fully connected 
layer

Input 
layer

Output 
layer

1,1
1Y

1
11,

1
cY

1,1
2Y

X

1
21,

2
cY

2,1
2Y

pn

,1
1
blY

1
1Y

1
2Y

Flatten and 
concatenate

Z

Ŷ
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Figure 1  Framework of 2b-CNN
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The MBCNN needs to learn the features that are irrela-
tive to the phase shift of the signals, so the receptive field 
of the neuron which is input to the fully connected layer of 
the branch with the widest kernel (usually refers to the first 
branch), which is supposed to be greater than the num-
ber of signals in one cycle. Suppose that the number of the 
measured signals in one cycle is Lc and the length of the 
total input signal is L (usually L = (3 ∼ 4)Lc ), then

The stride of the first layer in the first branch can be cal-
culated as

To obtain more time-scale information through fewer 
parameters, this model requires the strides of the first layer 
in other branches to meet the following condition:

Each branch of the MBCNN is generated through multi-
ple sets of convolution operations. The convolution kernel 
has the same function as the window function in short-
time Fourier transform (STFT). Thus, the process of multi-
branch generation can be regarded as an STFT where the 
window widths are different and the window function is 
automatically adjusted according to the training data. This 
process will cause information duplication in the multiple 
channels. To reduce the possibility of overfitting, the drop-
out layer is adopted to randomly set part of the data that 
are fed into the first convolutional layer as zero.

2.2 � Algorithm of Convolution and Pooling for Each Branch
The kernels for different channels in the same layer of 
the same branch have the same width, but the weights of 
the kernels are different. A channel is obtained by slid-
ing convolution with the same kernel, and the network 
parameters of the convolutional layer can be reduced by 
letting the convolution units at different positions share 
the same kernel. The convolution operation is expressed 
as

and

where K l,c′
b  denotes a kernel (the size of the matrix is 

cl−1
b ×Wl

b ), k
l,c′
b,j′ is the j′-th weight of this kernel; j 

denotes the position of the convolution units; 
{

X
l,c′
b

}

 is 

(5)Lc ≤ R0
1 ≤ L.

(6)Lc ≤ S11 · (2
l1 × 3− 1) ≤ L.

(7)S1b =
S1b−1
2 (b = 2, 3, . . .) .

(8)yl,cb,j =

cl−1

b
∑

c′=1

(

K
l,c′
b ·

{

X
l,c′
b

}

j

)

=

cl−1

b
∑

c′=1

Wl
b

∑

j′=1

(

kl,c′b,j′ × xl,c′b,(Pj+j′)

)

,

(9)X
l+1,c
b = Y

l,c
b ,

the j-th convolution unit, Pj = Slb ×
(

j − 1
)

 and xl,c′b,(Pj+j′) 
is the j′-th datum in this unit.

At the first convolutional layer (when l = 1 ), c0b = 1 , c′ = c , 
and the input X1,c

b  in Eq. (8) is the input of the model, that is 

X={x1, x2, . . . , xL}
T . So X j=

{

xPj+1, . . . , xPj+W 1
b

}T
 . The 

multi-branch is generated by

A convolution-pooling block is also used in each 
branch to extract high-level features, as shown in Fig-
ure 2. The relationship between the lengths of the con-
volutional output channels of each branch is

where a latter branch will have one more convolution-
pooling block than its previous branch in the MBCNN 
model.

The batch normalization layer can speed up the con-
vergence while suppressing the over-fitting to a certain 
extent.

Flattening data for multi-branches will result in 
excessive parameters, slow training speed, and overfit-
ting. To tackle this problem, the model replaces the last 
pooling layer with a global average pooling layer, which 
is expressed as

where Y c
b is the output of the average pooling layer of the 

c-th channel in the b-th branch.

2.3 � Fully Connected Classification
The features that have been extracted through convolu-
tion and pooling from Eq. (12) are connected as

where A denotes the input of the fully connected layer, 
and lf denotes the number of this layer. Then the activa-
tion function of SoftMax transforms the output neurons 
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Figure 2  A convolution-pooling block
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into a probability distribution with a sum of 1, and the 
fault type is obtained. Assume that the number of fault 
types is np , then the final output of the model is

where ŷp is the prediction labels of fault types; K  and B 
are the parameters of fully connected layer; zp is the log-
its of the p-th output neuron. The cross-entropy between 
the predicted label and the real label is taken as the loss 
function which is expressed as

where yp denotes the real labels of the fault type.

3 � Experiments and Analysis
This study constructed an MBCNN with four branches 
(4b-CNN) for fault diagnosis of a rotating machine. The 
convolution stride of the first layer in the last branch ( S14 ) 
was initially set to 2. So, according to Eq. (7), the convo-
lution stride of the first layer in the first branch ( S11 ) was 
16, and the width of the convolution kernel ( W 1

1  ) was 64. 
Substituting the number of the measured signals in one 
cycle ( Lc ) and S11 into Eq. (6), it could be found that the 
number of layers of the first branch ( l1 ) is 4 or 5. The 
length of an input signal sample was set to 2048. Through 
Eq. (1), the output length was calculated, and it is 1 until 
the fifth convolution and pooling. Therefore, l1 was set 
to 5. The number of channels was determined with the 
goal of reducing the loss, and it was set to 32 in the first 
branch.

The architecture and parameters of the 4b-CNN are 
shown in Figure 3.

In the following experiments, the programs were 
run on a computer equipped with an Intel i7-11700F 
6-Core 2.50 GHz processor with 16 GB of RAM and 
an NVIDIA GeForce 3060 GPU. According to gen-
eral parameter selection, the learning rate, the batch 
size, and the dropout ratio in the training were set to 
0.0001, 512, and 0.1 separately. Meanwhile, a dataset 
was adopted to validate the model and compared it 
with other models based on signal processing, deep 
learning, CNN and MSCNN.

3.1 � Fault Diagnosis for Bearing
The rolling bearing dataset [25] from Case Western 
Reserve University (CWRU) was used to compare the 

(14)

ŷp = Softmax(K lf · Alf−1 + B
lf)

= Softmax(Z lf) =
ezp

np
∑

p=1

ezp

,

(15)Loss = −

np
∑

p=1

(yp × logŷp), yp =

{

1 p,
0 others,

results between this method and other methods. The 
fault types were the defects in rolling elements, outer 
ring and inner ring, and the diameters of the defects 
were 0.007, 0.014 and 0.021 inches. Thus, a total of 
nine fault types were detected in this dataset. To 
facilitate comparison, the data measured under load 
conditions of 0, 1, 2, 3 and 0–3 hp formed the sub-
datasets a, b, c, d, and e, respectively. Similarly, 2048 
pieces of data were encapsulated into a sample. Each 
of the sub-datasets included training samples, testing 
samples, and validation samples. In machine learning, 
if there is only training and testing, the data are gener-
ally divided at a ratio of 7:3. If there is validation and 
the amount of data is below ten thousand pieces, the 
data is generally divided at a ratio of 6:2:2. The fault 
labels and sample number in each sub-dataset are 
illustrated in Table 1.

Some researchers have applied different methods to 
fault diagnosis including the local feature-based gated 
recurrent unit (LFGRU) network [26], unsupervised fea-
ture learning (UFL) [27], energy-fluctuated multi-scale 
feature learning (EMFL) [28], semi-supervised distance-
preserving SOM (SS-DPSOM) learning [29], and SVM 
optimized by inter-cluster distance (ICDSVM) [30]. 
Their results were compared with those of our MBCNN 
and the 1D-CNN, as listed in Table 2, and the structural 
parameters of the 1D-CNN are shown in Table 3. It can 
be seen that the classification accuracy of the MBCNN 
can reach 99.9% under a single load condition; under 
mixed load conditions, the MBCNN also achieved bet-
ter performance, and the accuracy was even 4.17% and 
2.07% higher than those of the shallow machine learning 
methods, respectively.

Further, the stabilities of MBCNN and 1D-CNN were 
compared, and the results are illustrated in Figure  4. 
Figure  4 shows that the MBCNN performed more sta-
ble than the 1D-CNN on fault diagnosis. This may be 
because the multi-branches in the MBCNN can obtain 
the robust features of different scales from the input sig-
nals, while the 1D-CNN only obtains the features on a 
single scale.

3.2 � Fault Diagnosis for Gearbox
The gearbox dataset was collected from the Gearbox 
Dynamics Simulator (GDS) shown in Figure 5. The sam-
pling frequency of the raw vibration signal was 12.8 kHz. 
It contains 15 different working conditions, where the 
speed range is 1600–2400 r/min with an interval of 400 
r/min and the load range is 0–160 lb-in with an interval 
of 40 lb-in. Nine fault types for the bearing and gear are 
shown in Table  4. Thus, the fault diagnosis is a 10-type 
classification task (including a health type). The dataset 
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1@2048×1, raw vibration data

32@64×1

64×1 conv, 
S=16

32@64×1

32@32×1

32@32×1

32@16×1

32@16×1

32@6×1

192

Fully connected

Flatten and concatenate

32@128×1

Maxpool

3×1 conv, S=1

Maxpool

3×1 conv, S=1

32×1

3×1 conv, S=1

3×1 conv, S=1

Maxpool

32@8×1

Maxpool

Global average

32@128×1

32×1 conv, 
S=8

32@128×1

32@64×1

32@64×1

32@32×1

32@32×1

32@16×1

32@256×1

Maxpool

3×1 conv, S=1

Maxpool

3×1 conv, S=1

32×1

3×1 conv, S=1

3×1 conv, S=1

Maxpool

32@16×1

Maxpool

32@8×1
Maxpool

32@6×1
3×1 conv, S=1

Global average

64@256×1

16×1 conv, 
S=4

64@256×1

64@128×1

64@128×1

64@64×1

64@64×1

64@32×1

64@512×1

Maxpool

3×1 conv, S=1

Maxpool

3×1 conv, S=1

64×1

3×1 conv, S=1

3×1 conv, S=1

Maxpool

64@32×1

Maxpool

64@16×1
Maxpool

64@16×1
3×1 conv, S=1

64@8×1

64@6×1
3×1 conv, S=1

Global average

Maxpool

64@512×1

8×1 conv, 
S=2

64@512×1

64@256×1

64@256×1

64@128×1

64@128×1

64@64×1

64@1024×1

Maxpool

3×1 conv, S=1

Maxpool

3×1 conv, S=1

64@8×1

3×1 conv, S=1

3×1 conv, S=1

Maxpool

64@64×1

Maxpool

64@32×1
Maxpool

64@32×1
3×1 conv, S=1

64@16×1

64@16×1
3×1 conv, S=1

Maxpool

Maxpool

64×1

64@6×1

3×1 conv, S=1

Global average

b=1 b=3b=2 b=4

l1=5

l2=6

l3=7

l4=8

Fault types

Figure 3  Architecture of a 4b-CNN
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has been kindly provided at https://​github.​com/​Ruiju​
nLiang/​GDSda​tasets.

Since one-dimensional fault signals are sequent and 
periodic, segmenting them by an equal distance fails to 
represent their global information. To this end, this paper 
proposed overlapping segmentation by using sliding win-
dows to refine the dataset, as shown in Figure  6. 2048 

pieces of data were selected at every other 1000 pieces of 
data by a sliding window, and each group of the selected 
data was encapsulated as a sample. Then, 4500 samples 
were collected for each fault type including a health state, 
with 45000 samples in total. These samples were divided 
into a training dataset, a testing dataset and a validation 
dataset at a ratio of 6:2:2. The training dataset was under 
the load of 0, 80, and 160 lb-in, while the testing and vali-
dation datasets were under the load of 40, and 120 lb-in. 

Table 1  Fault label and sample number in the bearing dataset

Fault None Rolling element fault Inner ring fault Outer ring fault Load (hp)

Size (inch) 0 0.007 0.014 0.021 0.007 0.014 0.021 0.007 0.014 0.021

Label Normal B007 B014 B021 IR007 IR014 IR021 OR007 OR014 OR021

a Training: testing: validation = 4500:1500:1500 0

b Training: testing: validation = 4500:1500:1500 1

c Training: testing: validation = 4500:1500:1500 2

d Training: testing: validation = 4500:1500:1500 3

e Training: testing: validation = 18000:6000:6000 0–3

Table 2  Classification accuracy of bearing fault using different 
methods (%)

Method Sub-dataset

a b c d e 

SS-DPSOM – – – – 95.8

ICDSVM – – – – 97.9

LFGRU​ – – – – 99.6

UFL – – – – 99.6

EMFL 98.8 98.8 99.4 99.4 99.8

1D-CNN 98.78 98.33 97.69 99.33 98.38

MBCNN 99.97 99.97 100 99.93 99.97

Table 3  Structural parameters of the 1D-CNN

Layer Kernel / Stride Output

Convolutional layer 1 6 × 1 × 8/2 × 1 1024 × 8

Pooling layer 1 2 × 1 512 × 8

Convolutional layer 2 6 × 1 × 16/2 × 1 256 × 16

Pooling layer 2 2 × 1 128 × 16

Convolutional layer 3 3 × 1 × 16/1 × 1 128 × 16

Pooling layer 3 2 × 1 64 × 16

Convolutional layer 4 3 × 1 × 32/1 × 1 64 × 32

Pooling layer 4 2 × 1 32 × 32

Convolutional layer 5 3 × 1 × 32/1 × 1 32 × 32

Pooling layer 5 2 × 1 16 × 32

Convolutional layer 6 3 × 1 × 64/1 × 1 16 × 64

Pooling layer 6 2 × 1 8 × 64

Convolutional layer 7 3 × 1 × 128/1 × 1 6 × 128

Pooling layer 7 2 × 1 3 × 128

Figure 4  Stabilities of fault diagnosis by MBCNN and 1D-CNN
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Figure 5  Gearbox dynamics simulator (GDS)
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The fault label and the sample number are shown in 
Table 5.

To reduce the errors caused by the random selection 
of the initial weights, the training and the testing pro-
cesses were repeated ten times, and the average clas-
sification accuracy of the multi-testing was taken as 
the result. The accuracy of the fault diagnosis by the 
1D-CNN, and the MBCNN with various numbers of 
branches (2b-CNN, 3b-CNN, and 4b-CNN) is shown in 
Figure 7. Figure 8 displays the confusion matrixes in a 
certain test. From Figures  7 and 8, it can be seen that 
the MBCNN outperforms the 1D-CNN in accuracy by 

about 14% at most. Meanwhile, the accuracy increases 
with the number of branches in the MBCNN, indicat-
ing that the more branches, the more multi-scale infor-
mation of vibration signals can be learned.

Then, this study evaluated the training time, which 
was the average of over 50 epochs, and the test-
ing time for the 1D-CNN and the MBCNNs, and the 
results are listed in Table 6. It can be seen that MBCNN 
requires more training time than 1D-CNN. This can 
be explained that with the increase in the number of 
branches, the model needs to learn more time scale 
information and introduce more parameters to be 
trained. However, when the number of branches was 
increased to 4, although the diagnostic accuracy was 
improved, the training time was significantly increased. 
Therefore, it is suggested to balance between time 
and accuracy for the fault diagnosis instead of blindly 
increasing the number of branches. Moreover, since 
the models are trained offline, the training time will 
not directly affect the diagnostic performance. Both 
the 2b-CNN and the 3b-CNN predict more accurately 
than the 1D-CNN, and they take nearly equal time (the 
difference is just 0.8 ms) to the 1D-CNN, which shows 
that the 2b-CNN and the 3b-CNN are applicable to 
diagnosis.

Table 4  Gear and bearing fault types

Fault type Description

Gear Miss Missing one of feet in the gear

Chipped Crack occurs in the gear feet

Root Crack occurs in the root of gear feet

Surface Wear occurs in the surface of gear

Eccentric Geometric center of the gear does not coin-
cide with rotating center of the shaft

Bearing Ball Crack occurs in the ball

Inner Crack occurs in the inner ring

Outer Crack occurs in the outer ring

Combination Crack occurs in the both inner and outer ring

Dataset

Sliding Ovelapping Length

Figure 6  Dataset enhancement method

Table 5  Fault label and sample number in the gearbox dataset

Type Sample number Label

Training Testing Validation

Health 2700 900 900 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Gear Miss 2700 900 900 [0, 1, 0, 0, 0, 0, 0, 0, 0, 0]

Chipped 2700 900 900 [0, 0, 1, 0, 0, 0, 0, 0, 0, 0]

Root 2700 900 900 [0, 0, 0, 1, 0, 0, 0, 0, 0, 0]

Surface 2700 900 900 [0, 0, 0, 0, 1, 0, 0, 0, 0, 0]

Eccentric 2700 900 900 [0, 0, 0, 0, 0, 1, 0, 0, 0, 0]

Bearing Ball 2700 900 900 [0, 0, 0, 0, 0, 0, 1, 0, 0, 0]

Inner 2700 900 900 [0, 0, 0, 0, 0, 0, 0, 1, 0, 0]

Outer 2700 900 900 [0, 0, 0, 0, 0, 0, 0, 0, 1, 0]

Combination 2700 900 900 [0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
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Figure 7  Classification accuracy of 1D-CNN and MBCNNs
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4 � Anti‑noise Ability Test
4.1 � Ensemble Learning Method
In Section 3, all data was collected in the lab. However, 
in practice, the environments are more complicated due 
to random noises. To further verify our model, an envi-
ronment was simulated by adding Gaussian white noise 
to the bearing dataset. This study chose the sub-dataset 
d where the load was 3 hp, as described in Table  1, for 
testing. Figure 9a displays a raw signal sample in 10 types. 
Then, a noise disturbance with the signal-to-noise ratio 
(SNR) of −4 dB was added, and the maximum energy 
of the raw signal was adopted as a standard. Figure  9b 
shows the polluted, which look almost the same, so it is 
difficult to identify them and extract features.

To test the branch in MBCNN, this study used the same 
model parameters as those in each branch in 4b-CNN to 
build four 1D-CNN models, namely the 1st branch, the 
2nd branch, the 3rd branch, and the 4th branch. The pol-
luted signals with different SNRs are input in these four 
models, and the fault classification accuracy of the four 
models is listed in Table 7.

            (a) 1D-CNN                        (b) 4b-CNN

Predicted Predicted

A
ct

ua
l

A
ct

ua
l

Figure 8  Confusion matrixes in a test

Table 6  Calculation time of 1D-CNN and MBCNNs

Model Training time (s) Validation 
time (ms)

1D-CNN 14.28 1.60

2b-CNN 21.75 2.44

3b-CNN 24.37 2.36

4b-CNN 47.75 3.16

(a) Raw signal  

(b) −4dB polluted signal
Figure 9  Raw signals and noise-polluted signals
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It can be seen from Table  7 that all models could 
achieve high classification accuracy under a low noise 
disturbance; while all models obtain a low classification 
accuracy when they encounter severe noise disturbance. 
Thus, this study proposed an ensemble learning method 
to judge the fault mode from the ensemble of the four 
models’ classification results, and it can be regarded as an 
embedding of 1D-CNN models in different input scales. 
The process of the proposed ensemble learning method is 
shown in Figure 10. The final diagnosis result is obtained 
according to the majority rule, i.e., firstly, the four models 
obtain four judgment results from a test sample respec-
tively, and the final result is the majority among the four 
results. If the four results are different from each other 
or the four results are the same in pairs, the model 
that achieves the highest accuracy in the ensemble is 
preferred.

The four models and the ensemble learning method 
were applied to the polluted signals with different SNRs, 
and the results are presented in Figure 11. The ensemble 
learning method achieves the highest accuracy among all 
models, which may be because it can comprehensively 
judge the features learned by each model and can learn 
the information on different time scales

4.2 � MBCNN’s Anti‑noise Ability
The testing dataset of the polluted signals (as shown in 
Figure 9b) was fed into the MBCNN. The output features 
of the fully connected layer can be transformed into two 
dimensions by the t-SNE, and the visualized results are 
illustrated in Figure 12. It can be seen that increasing the 
number of branches can drive similar faults to be more 
concentrated while the distinct faults more separated, so 
the MBCNN has a strong capacity to extract features of 
signals, even signals with a low SNR. As the number of 
branches increases, the similar modes congregate closer, 
and the distinct modes separate further, which helps to 
better distinguish features of fault modes. Without any 
additional denoising, the MBCNN can adapt to the noise 
disturbance, demonstrating its potential for fault diagno-
sis in industrial fields.

Further, this study applied different methods includ-
ing 1D-CNN and MBCNN with two, three and four 
branches, and the ensemble learning method to iden-
tify signals under multiple SNRs from − 4 dB to 10 dB. 
The results are shown in Figure  13. The superiorities of 
the MBCNN are obvious: (1) the classification accuracy 
of the MBCNNs with different numbers of branches is 
all significantly higher than that of the 1D-CNN under 

Table 7  Classification accuracy of the different branch model (%)

Model SNR (dB)

−4 −2 0 2 4 6 8 10

1st branch 80.9 81.7 82.7 85.9 86.7 91.4 96.6 98.5

2nd branch 80.9 83 84.4 85.3 87.1 92.9 97.7 98.7

3rd branch 81.5 83.6 85.2 87.2 90.5 94.7 96.2 98.7

4th branch 82.3 85.3 87.8 89.9 93.3 94.1 97.7 99.5

1st branch

Testing

2nd branch 3rd branch

Classification set

Final diagnosis

Diagnose separately

Under the majority rule

Training

4th branch

Figure 10  Ensemble learning process
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Figure 11  Classification accuracy to noise-polluted signals
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different SNRs; (2) the classification accuracy of the 
ensemble 1D-CNN is similar to that of the 2b-CNN but 
lower than that of the 3b-CNN and 4b-CNN, which indi-
cates that even the ensemble method using the features 
from multiple models cannot compete with the MBCNN 
with more branches; (3) the 3b-CNN and the 4b-CNN 
exhibit obvious superiority under low SNRs (−4 to 0 dB); 
(4) the classification accuracy of the 4b-CNN can also 
reach 93.3% even when the SNR is −4 dB.

The MBCNN obtained a higher classification accuracy 
than the ensemble learning method. This is because the 
ensemble learning method cannot automatically adjust the 
parameters of each model although it judges the learned 
features comprehensively and learns information on differ-
ent time scales. The MBCNN not only integrates the feature 
information extracted by each branch but also adjusts the 
parameters of each branch according to the loss function 
and thus makes the features of branches complementary.

4.3 � Comparison Between the Proposed MBCNN 
and the MSCNN

The proposed MBCNN shares a similar structure with 
the MSCNN. They both contain multiple branches that 
conduct a local convolution operation, and they utilize 
a fully connected layer to output the features of all the 
branches. However, there are some differences. First, the 
MBCNN extracts multi-scale information through dif-
ferent convolutional layers with different convolution 
kernels, while the MSCNN adopts multi-scale opera-
tions for simple down-sampling (i.e., certain features of 
the raw signals may be ignored). Second, in the MBCNN 
model, the number of layers in different branches is dif-
ferent, and more advanced features of the signal can be 
extracted. However, in the MSCNN model, all branches 
contain the same number of layers, thus missing high-
level features.

To validate the superiority of the MBCNN model, the 
MBCNN with three and four branches (3b-CNN and 
4b-CNN) was compared to the MSCNN with three and 
four scales (3S-CNN and 4S-CNN) [22] on the bear-
ing failure dataset. The data were all polluted by noises 
with SNRs ranging from −4 dB to 10 dB, and the fault 
diagnosis accuracy shown in Figure  14 is the average 
result of ten times testing. It can be found that with the 
increase in the number of branches, more time-scale fea-
tures are extracted, and the accuracy is improved. For the 
same branch, the classification accuracy of the MBCNN 
is higher than that of the MSCNN, indicating that the 
MBCNN can extract more features than the MSCNN. 
The MBCNN has obvious superiority at a low SNR (−4 
dB to 2 dB), which indicates that the MBCNN can extract 
more high-level features from complex signals.

2b-CNN 3b-CNN 4b-CNN

Normal B_014
B_007 B_021

IR_007
IR_014

IR_021
OR_007

OR_014
OR_021

Figure 12  Visualization of the MBCNN’s fault classification

78
80
82
84
86
88
90
92
94
96
98

100

-4 -2 0 2 4 6 8 10

A
cc

ur
ac

y 
(%

)

SNR (dB)

1D-CNN
2b-CNN
3b-CNN
4b-CNN
Ensemble

Figure 13  Classification accuracy to the noise polluted signals
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Then, both the training time in one epoch and the test-
ing time of one testing sample were evaluated using the 
above-described models including 3b-CNN, 4b-CNN, 
3S-CNN and 4S-CNN, respectively. The results are 
given in Figure  15. For training speed, the MBCNN 
runs faster than the MSCNN (to the same number of 
branches in MBCNN with that of scales in MSCNN), 
because some branches of MBCNN have fewer lay-
ers. Meanwhile, the last pooling layer of each branch 
is a global average pooling layer, which can reduce the 
number of neurons to the fully connected layer. For 

the testing process, both MBCNN and MSCNN could 
achieve fast fault diagnosis in the noise environment.

5 � Conclusions
The paper proposes a CNN with multiple branches to 
identify complex multi-scale features of vibration sig-
nals of rotating machinery.

In terms of the structure of the MBCNN:
(1) The convolution kernels used in different branches 

have different widths and are related to each other, so 
the MBCNN can extract features containing the time 
scale of both a long-term and a short-term and reduce 
the number of model parameters.

(2) The last pooling layer of each branch is replaced 
with the global average pooling layer to avoid slow 
training speed and overfitting caused by too many 
model parameters.

Through experiments, the following conclusions are 
obtained:

(1) Comparing the ensemble learning method with 
the MBCNN, the former has a close classification accu-
racy with the 2b-CNN, but a lower classification accu-
racy than that of 3b-CNN and 4b-CNN. Even in low 
SNRs (from −4 to 0 dB), the diagnostic accuracy of the 
MBCNN is 7% higher. This is because the MBCNN can 
adjust the parameters of each branch according to the 
loss function and thus make the features of branches 
complementary, while the ensemble learning method 
comprehensively judges from the learned features, and 
the features have no information interaction.

(2) The visualization of the classification results dem-
onstrates that increasing the number of branches in the 
MBCNN can make the similar faults more concentrated 
and the distinct faults more separated, so the features 
are more linearly separable, but more time is needed 
for training and testing in this case. The 2b-CNN and 
the 3b-CNN have a higher diagnostic accuracy than the 
1D-CNN but they take nearly equal time (the difference 
is just 0.8 ms).

(3) Compared to the MSCNN, the MBCNN can not 
only learn more sufficient multi-scale information but 
also extract the higher-level features of signals from 
each branch. Therefore, the MBCNN can perform bet-
ter on polluted signals with low SNRs (from −4 to 2 
dB), and it is suitable for fault diagnosis in industries.
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