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Abstract 

Noise, vibration and harshness (NVH) problems in vehicle engineering are always challenging in both traditional vehi-
cles and intelligent vehicles. Although high accuracy manufacturing, modern structural roads and advanced suspen-
sion technology have already significantly reduced NVH problems and their impacts; off-road condition, obstacles 
and extreme operating condition could still trigger NVH problems unexpectedly. This paper proposes a vehicular 
electronic image stabilization (EIS) system to solve the vibration problem of the camera and ensure the environ-
ment perceptive function of vehicles. Firstly, feature point detection and matching based on an oriented FAST and 
rotated BRIEF (ORB) algorithm are implemented to match images in the process of EIS. Furthermore, a novel improved 
random sampling consensus algorithm (i-RANSAC) is proposed to eliminate mismatched feature points and increase 
the matching accuracy significantly. And an adaptive Kalman filter (AKF) is applied to improve the adaptability of the 
vehicular EIS. Finally, an experimental platform based on a gasoline model car was established to validate its perfor-
mance. The experimental results show that the proposed EIS system can satisfy vehicular performance requirements 
even under off-road condition with obvious obstacles.

Keywords:  Electronic image stabilization, Environment perceptive function, Feature point, Adaptive Kalman filter, 
Gasoline model car

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

1  Introduction
NVH problems are increasingly important issues in the 
automobile industry, for implications on environmen-
tal noise pollution, comfort perceived by passengers and 
vehicle performance. Although high accuracy manufac-
turing, modern structural roads and advanced suspen-
sion technology have already significantly reduced NVH 
problems and their impacts, off-road condition, obsta-
cles and extreme operating condition could still trigger 
NVH problems unexpectedly. Specific to the visual envi-
ronment perception function of a running vehicle, the 
inevitable bumping and shaking induce jitter of the image 
sequences captured by the vehicular camera, which goes 
against the subsequent observation and interpretation 

of information in the images. The induced jitter can be 
mitigated by introducing a mechanical damping struc-
ture or EIS. Based on the image processing method that 
costs less than additional mechanical structures, EIS has 
become a common solution. Dated back to the 1980s, 
Jean et al. [1] developed an EIS system for the reconnais-
sance vehicle at the resolution of 640*480. At present, 
EIS has been widely used in the industry. The real-time 
EIS technology launched by AMD in 2017 can process 
online video in real-time and can be compatible with any 
rendering mode [2]. Huawei combined artificial intel-
ligence algorithm with EIS and named it AIS [3], which 
first appeared on its P20 series mobile phones. With this 
technology, the viewfinder frame can be static under the 
premise of small vibration amplitude, allowing for multi- 
frame synthesis. Most of the achievements in the indus-
try focus on improving the whole system, while most of 
the attention in academia is on enhancing the perfor-
mance of a certain part of the EIS system.
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Ignoring the preprocessing such as graying in EIS sys-
tem, EIS mainly consists of three parts: ① estimating the 
image transformation matrix of the current frame with 
respect to the reference frame; ② filtering the state vari-
ables derived by transformation matrix; ③ inverse com-
pensation and output of the current frame [4].

Estimation of the image transformation matrix is the 
most important step. When calculating the transforma-
tion matrix of the current frame with respect to the ref-
erence frame, the relevant parameters are often used to 
derive a vector known as global motion vector. The pro-
cess of calculating global motion vector is motion estima-
tion. Motion estimation methods mainly include block 
matching method, gray projection method, phase cor-
relation matching method, bit plane matching method, 
gray projection method, feature matching method, opti-
cal flow method and so on [5]. Block matching method 
and feature matching method are considered to have 
higher matching accuracy. However, when using block-
matching method, a large matching block search area 
is needed to prevent the search results from falling into 
the local optimum, which sacrifices the image processing 
speed. Therefore, this paper focuses on EIS based on fea-
ture matching method. Image features include point fea-
ture, line feature, edge feature and so on [6]. Point feature 
has become a widely used feature description method 
because of its easy subsequent matching process. The 
Harris feature point detection algorithm was first pro-
posed by Harris et al. [7] in 1988. It performs convolution 
calculation on the image through the derivative of the 
Gaussian function. Harris algorithm is relatively stable in 
dealing with rotation and brightness changes, but it does 
not have scale invariance. Lowe [8] proposed scale-invar-
iant feature transform (SIFT), which has excellent scale 
invariance and has been widely used in related fields. 
Based on the SIFT, Bay et  al. [9] proposed the speeded 
up robust features algorithm (SURF). This algorithm uses 
a fast Hessian matrix to detect feature points, and uses 
an integral image method to reduce the calculation time. 
In this way, the efficiency of the algorithm is improved 
greatly. Features from accelerated segment test (FAST) 
algorithm was proposed by Edward et  al. [10] in 2006. 
FAST determines feature points by detecting the pixel 
values around the image. These four feature point extrac-
tion algorithms are the most widely used methods. Based 
on these four methods, various EIS algorithms have been 
developed [11–14].

The process of filtering the state variables derived from 
the transformation matrix is motion filtering. Its pur-
pose is to distinguish the subjective motion from the 
non-subjective jitter, so as to compensate for the non-
subjective jitter in the subsequent image processing. 
Commonly used filter algorithms in EIS include mean 

filter, least square fitting filter, B-spline curve fitting filter, 
Kalman filter (KF). Mean filtering and least square filter-
ing cannot be operated in real-time. The method based 
on B-spline curve relies on kinematic model [15]. The 
method based on KF has become the mainstream method 
in various pieces of research [16–18]. However, the effect 
of KF is sensitive to the noise parameter settings of sys-
tem, the frequency and amplitude of random motion, etc. 
[19]. Researchers have done a lot of work on these prob-
lems. Park et al. [20] proposed a new image stabilization 
method based on finite impulse response filter, which is 
more robust against mistuning on the model parameters 
than the KF. Choi et al. [21] used extend Kalman filter in 
aerial airborne imaging to remove the jitter of the cam-
era and retain scanning motion. Yang et al. [22] proposed 
a novel stabilization algorithm based on particle filter in 
EIS. Zhu et al. [23] made further improvements based on 
his research. Besides, Ioannidis et  al. [24] proposed the 
basic features of the Hilbert-Huang transform in order 
to separate the local motion signals, which is a novel 
method in the field of EIS.

The last step of EIS is to compensate and output the 
current frame inversely. After the image is inversely com-
pensated according to the filtered global motion vector, 
there is a blank part in the image. The blank part needs 
to be cut before output of the current frame. Although 
this step is an indispensable step in the EIS system, due 
to its relatively low importance, this paper does not 
review it too much. From the above studies, the following 
research trends and shortcomings can be summarized: 
① the existing EIS systems are mainly used for handheld 
recording devices and are rarely constructed from the 
perspective of vehicles; ② the filtering has a great impact 
on the performance of EIS. Irregular road excitation 
is easy to lead to filter divergence, especially for the KF 
with fixed system noise, which is rarely mentioned in the 
existing studies; ③ the real-time performance of EIS has 
become a concern of many researchers, especially in the 
feature detection and filtering. However, the real-time 
performance of the matching process has not been paid 
close attention to.

The image sequence captured by the vehicle camera 
vibrates due to vehicle vibration or harsh road condi-
tions. This paper mainly studies the use of EIS technology 
to solve inter-frame blur, a form of video blur. In Sec-
tion  2, the image stabilization technology based on fea-
ture point detection and matching is selected, and ORB 
algorithm is used to meet the real-time requirements. 
Furthermore, in order to enhance the instantaneity and 
accuracy of the elimination of mismatched point pairs, 
the random sampling consistency algorithm (RANSAC) 
is improved in Section 3. In Section 4, aiming to adapt to 
various dithering conditions in-vehicle scene, this paper 
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adopts AKF algorithm to solve the problem that the clas-
sical KF is sensitive to initial values. To verify the perfor-
mance of EIS, a gasoline model vehicle with remarkable 
vibration characteristics is refitted for experiment in Sec-
tion  5. After the process of the EIS proposed in this 
paper, the average peak signal to noise ratio (PSNR) of 
the video is improved by 1.26 dB as shown in Section 6, 
which proves the proposed EIS system can satisfy vehicu-
lar performance requirements even under extreme con-
ditions. Finally, conclusions are provided in Section 7.

2 � Feature Point Detection Based on ORB Algorithm
2.1 � Selection of Image Matching Algorithm
Image matching is the first and the most important step 
in estimating image transformation matrix, for its impli-
cations on the accuracy and instantaneity of the deriva-
tion of global motion vectors. At present, a large number 
of algorithms for image matching have been proposed, 
including block matching algorithm, gray projection 
algorithm, optical flow algorithm and feature match-
ing algorithm. Optical flow method and gray projection 
method cannot adapt to complex scene changes. Block 
matching algorithm and feature matching method are 
better choices for the vehicle demands. For block match-
ing algorithm, to satisfy the unique needs of the vehicle, 

a large search area for the matching blocks is required. 
Otherwise, the search results may fall into the local opti-
mum easily. However, the search area size for the match-
ing blocks positively correlates with search time. Under 
the real-time requirements of the vehicle, the accuracy 
of the block matching algorithm is limited. Based on the 
above discussion, feature matching algorithm is the most 
suitable for vehicle demands.

It has been mentioned in Section  1 that Harris, SIFT, 
SURF and ORB are the most widely used feature point 
extraction algorithms. The results for the processing time 
of one frame at the resolution of 480*480 pixels using 
these algorithms are shown as Table 1.

ORB algorithm has significant advantages in process-
ing time. Besides, the number of extracted points is about 
the same as that of other algorithms.

2.2 � ORB Algorithm Principle
ORB algorithm, used to detect and describe the fea-
ture points, is the combination of FAST and improved 
binary robust independent elementary features algorithm 
(BRIEF) [25].

FAST algorithm finds key points in the image, such as 
corner points. Generally, feature points possess the char-
acteristic of sharply varying pixel values among the sur-
rounding pixels. As shown in Figure 1, by comparing the 
gray value of point P with the gray values of 16 surround-
ing points, whether P is a corner point is determined.

The output of FAST corner detection algorithm is 
the coordinates of corner points. In order to match the 
corners detected in the current frame and the refer-
ence frame, it is necessary to determine a descriptor to 
describe the nature of the corner points. ORB algorithm 
uses BRIEF algorithm to describe feature points, and 
BRIEF algorithm utilizes a feature descriptor of binary 

Table 1  Comparison of the performance of different algorithms

Algorithm Processing time (ms) Number 
of feature 
points

Harris 65.3 481.7

SIFT 507.3 502.8

SURF 256.9 566.1

ORB 6.0 483.7
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Figure 1  Corner point and the 16 surrounding points
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string. n pairs of pixels pi, qi(i = 1, 2, ..., n) are selected in 
the neighborhood of a feature point P. Generally, n is 128, 
256 or 512, which is set to 256 in this paper. The size of 
the neighborhood is S × S . pi and qi obey the Gaussian 
distribution of N (0, S2/25) . Then the gray values of each 
point pair are compared. If I(pi) > I(qi) , the i th bit in 
the binary string is 1, otherwise it is 0, i.e. [25]

where X denotes the feature point detected; Y  denotes 
the points to be compared.  I denotes the gray value of 
the point. i represents the ith bit in the BRIEF descrip-
tor. By connecting the bits of the N  pixels, a bit string is 
obtained. To solve the problem that the BRIEF does not 
define the main direction, BRIEF is improved by gray 
centroid method.

where x , y are the pixel coordinates in the neighborhood 
around the feature point. The feature of grayscale cen-
troid can be determined by

Therefore, ORB has rotation invariance, which is essen-
tial for the demands of on-board working condition.

2.3 � Results of Feature Points Detection and Matching
It is found that the average processing time of each 
frame is 6.01 ms, and the average number of detected 

(1)descriptor(X ,Y , i) =

{

1 I(X) ≥ I(Y ),
0 I(X) < I(Y ),

(2)mpq =
∑

x,y

xpyqI
(

x, y
)

,

(3)θ = arctan

(

m01

m10

)

.

points in each frame is 483.7. The average amount of 
matched feature point pairs is 223.4. It should be noted 
that there exist some mismatched points as shown in 
Figure 2.

3 � Elimination of Mismatched Feature Points
3.1 � Image Transformation Matrix
The essence of judging whether a point pair is mis-
matched is to judge whether this point pair obeys the 
image transformation matrix H  . Therefore, H  needs 
to be determined before the mismatched points are 
eliminated.

An appropriate motion model, which calculates the 
global motion vector, is essential for a good image sta-
bilization effect. Although this kind of motion model 
desires high calculation capability, a relatively complex 
model is still necessary to describe the motion captured 
by the image. The motion model adopted should be able 
to adapt to possible working conditions of vehicle body 
shaking with large scale. The 4-parameter similarity 
transformation model is used to describe the rotation 
and translation motion with good prediction accuracy 
provided and takes the form

where (x1, y1) and (x2, y2) represent the coordinates of the 
reference frame and the current frame, respectively. �θ 
represents the roll angle between two frames. �x and �y 
denote the lateral displacement and the vertical displace-
ment of the current frame with respect to the reference 
frame, respectively. s represents the scaling factor.

(4)
(

x2

y2

)

= s

(

cos�θ −sin�θ

sin�θ cos�θ

)(

x1

y1

)

+

(

�x

�y

)

,

Figure 2  Feature point detection and matching results
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3.2 � Improved RANSAC Algorithm
The image transformation matrix of the current frame 
with respect to the reference frame can be derived 
by fitting method like least squares fitting, utilizing 
the matched feature points. However, the accuracy of 
transformation matrix is affected by the mismatched 
feature points. The RANSAC algorithm divides all 
points into two types: inliers and outliers. Inliers refer 
to points which can satisfy the model, while the outliers 
refer to the interference points. In this way, it prevents 
the calculation results from being affected by outliers.

The specific implementation process of RANSAC 
algorithm is shown as follows [26].

Step 1: Set the minimum number of point pairs s 
which can be used to derive H  between two frames. 
Select s pairs of points without repeating to form a 
point set Sr.

Step 2: Set the number of iterations k . Suppose the 
amount of point pairs is n , and the amount of inliers 
is m . Obviously, the probability of all points in set Sr 
being inliers is

Within k iterations, the probability of at least one Sr 
only containing inliers is p . k and p satisfy

Then k can be derived from the inequality above

Step 3: Determine the number of inliers that satisfies 
H  , with the judgment criteria given by

where pi
′ and pi represent the coordinates of the current 

frame and the reference frame, respectively. e refers to 
the error threshold to distinguish inliers and outliers. The 
total number of liners is counted as M.

Step 4: The transformation matrix H  corresponding 
to the maximum M is the best matrix to be found.

Although RANSAC algorithm has certain robust-
ness, few defects exist in practical engineering: ① If the 
matching accuracy is not high enough, a large number 
of outliers lead to an increase in the number of itera-
tions. ② If the random points are too concentrated, the 
transformation matrix’s accuracy is seriously affected. 
③ If the selected feature points contain outliners, the 
entire iteration is also performed once, which signifi-
cantly wastes calculation time.

(5)w =
m

n
·
m− 1

n− 1
· · ·

m− s + 1

n− s + 1
.

(6)(1− w)k ≤ 1− p.

(7)k ≥
lg(1− p)

lg(1− w)
.

(8)�pi
′

−Hpi� < e.

The RANSAC algorithm is improved in this paper, in 
consideration of the shortcomings above. The specific 
implementation steps of i-RANSAC are as follows.

Step 1: Rank the point pairs by Hamming distance DH . 
Remove this pair of points, if

where E denotes the mean Hamming distance of point 
pairs and σ denotes their variance. K  can be used to 
adjust the amount of removed points.

Step 2: Set the minimum number of point pairs s which 
can be used to derive H . Select s pairs of points without 
repeating in different grids to form a set Sr.

Step 3: Calculate the number of iterations.
Step 4: Select 3 pairs of points. Determine the amount 

of inliers. If the amount is less than 2, jump out of this 
iteration and proceed to the next iteration.

Step 5: The transformation matrix H corresponding to 
the maximum M is the best matrix.

3.3 � Results of Eliminating Mismatched Feature Points
The image transformation matrix between two frames 
should be an identity matrix when the vehicle is static. 
However, the running cars, pedestrians or even swing-
ing leaves exert some mismatch points, which changes 
the transformation matrix from identity matrix. Exploit-
ing this feature, the performance of i-RANSAC can be 
detected (Figure 3).

We propose a novel definition, feature points match-
ing accuracy (FPMA) of a specific segment of a processed 
video, to assess the performance of the mismatched 
points elimination algorithms. Denoted by Am , FPMA is 
defined as Eq. (10).

where kmax denotes the total number of frames of the 
processed video segment.

Obviously, �y should be 0 theoretically. It indicates 
that the Am closer to 0 corresponds to an algorithm with 
better performance. Since the averages of FPMA after the 
process of RANSAC and i-RANSAC are 0.068 and 0.020 
respectively, the improved RANSAC proposed in this 
paper has better performance. In addition, the average of 
processed frames per second of i-RANSAC increases by 
32.4% compared with that of RANSAC, which demon-
strates better real-time performance of i-RANSAC.

4 � Filter of the Image Transformation Matrix
4.1 � Kalman Filter
The purpose of filtering the image transformation 
matrix is to distinguish the subjective motion from the 

(9)DH > E + K ∗ σ orDH < E − K ∗ σ ,

(10)Am =

∣

∣�yk
∣

∣

kmax
k ∈ [1, 200],
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non-subjective jitter, so as to compensate the non-subjec-
tive jitter in the subsequent image processing. Commonly 
used filters in EIS include mean filtering, least-square 
fitting filtering, B-spline curve fitting filtering, and KF. 
Mean filtering and least-squares filtering require image 
observation states from multiple frames. Therefore, their 
implementation has a lag, making it difficult to meet 
vehicle requirements. The method based on the B-spline 
curve relies on the kinematics model. The method based 
on KF has become the mainstream method in this 
research field.

Both process noise variance Q and observation noise 
variance R need to be set in advance in classical KF. As 
shown in Figure 4, the filter effect is completely different 
when the noise variance settings are Q = 0.01,R = 0.1 
and Q = 0.1,R = 0.1 , respectively. Therefore, considering 
vehicle conditions, the fixed noise variance matrix can-
not adapt to various vibration conditions, especially con-
cerning extreme dynamics.

4.2 � Adaptive Kalman Filter
AKF is applied to improve the adaptability of vehicular 
EIS. Correcting the parameters of the model and the noise 
covariance in real-time, AKF reduces the influence of 
model error during the prediction of state variables. This 

paper mainly introduces the Sage-Husa AKF algorithm [27] 
into the proposed EIS and makes certain improvements.

Generally, the process noise variance Q and the obser-
vation noise variance R vary widely in operation and can-
not be determined accurately. If the pre-defined Q and R 
are less than the actual noise variance, the resulting small 
uncertainty range of the true value leads to biased estima-
tion and filtering divergence. Conversely, if the pre-defined 
Q and R are larger than the actual noise variance, the state 
estimation error increases and the filtering divergence is 
caused statistically. Therefore, the construction of AKF 
and online adjustment of Q and R are of great significance 
in improving the accuracy and stability of the filter. On this 
basis, the forgetting factor is introduced to endow Sage-
Husa AKF with the ability to estimate the unknown time-
varying noise in real-time. Using the measurement data 
for recursive filtering, the adaptive filtering algorithm esti-
mates and corrects the statistical characteristics of process 
noise and measurement noise in real-time. Sage-Husa AKF 
method is simple in principle and good in real-time, so it 
has been widely used in engineering fields.

In KF, the state equation and observation equation are 
given by

(11)Xk = ∅k ,k−1Xk−1 +Wk−1,

0 50 100 150 200
-3

-2

-1

0

1

2

3

Figure 3  Matching results of RANSAC and i-RANSAC
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where Xk is the state vector, and ∅k ,k−1 is the state transi-
tion matrix. Zk is the observation vector. Hk is the obser-
vation matrix. Wk−1 and Vk denote the system noise 
and the observation noise, respectively. Wk−1 obeys 
N
(

0,Qk−1

)

 distribution and Vk obeys N (0,Rk).

With the state vector Xk = [x, ẋ, y, ẏ, θ , θ̇ ]
T , x , y 

denote the lateral and vertical displacements of the 
current frame concerning the reference frame, respec-
tively. θ denotes the roll angle of the current frame with 
respect to the reference frame. ∅k ,k−1 and Wk−1 are 
given by

where x,y and θ are predicted states.

(12)Zk = HkXk + Vk ,

(13)
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,

The observation state vector is Zk = [x, y, θ]T . Hk and 
Vk are given by

In AKF, the averages of observation noise and predic-
tion noise are not considered as 0, but as q̂k and r̂k. The 
superscript ̂ is adopted to distinguish the prediction 
state from the observation state. Then, the state Eq. (11) 
and observation Eq. (12) are given by

where E
[

q̂k−1

]

= qk , E
[

r̂k
]

= rk . The other parameters 
correspond with the Eqs. (11) and (12). Then, the pro-
cesses of AKF are given as follows:

Step 1: Calculate one-step prediction state ̂Xk ,k−1 and 
noise covariance matrix Pk ,k−1.

(14)
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(15)Xk = ∅k ,k−1Xk−1 +Wk−1 + q̂k−1,

(16)Zk = HkXk + Vk + r̂k ,

(17)̂Xk ,k−1 = ∅k ,k−1
̂Xk−1 + q̂k−1,
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Figure 4  The effect of KF under different Q and R 
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Step 2: Update filter gain Kk:

Step 3: Calculate the residual εk

Step 4: Update the state vector and the noise covariance 
matrix

Step 5: Calculate the weigh factor dk

In Eq. (23), b is the relaxation factor, b ∈ (0, 1).
Step 6: Update q̂k , ̂Qk , r̂k , ̂Rk

(18)Pk ,k−1 = ∅k ,k−1Pk−1∅k ,k−1
T + ̂Qk−1.

(19)Kk = Pk ,k−1Hk
T

[

HkPk ,k−1Hk
T

]

+ ̂Rk−1.

(20)εk = Zk −Hk
̂Xk ,k−1 − r̂k−1.

(21)̂Xk = ̂Xk ,k−1 + Kkεk ,

(22)Pk = (I− KkHk)Pk ,k−1.

(23)dk =
1− b

1− bk+1

(24)q̂k = (1− dk)q̂k−1 + dk

(

̂Xk −∅k ,k−1
̂Xk−1

)

,

Considering that the measurement accuracy has a posi-
tive correlation with the number of points, ̂Rk is updated 
as

where r is a parameter to indicate the influence of the 
number of points on the measurement accuracy.

The larger r indicates the greater impact of the num-
ber of points on measurement accuracy. Through this 
method, this paper improves AKF under the scenarios of 
vehicular EIS system.

As shown in Figure  5, AKF retains the subjective 
motion vector and filters out vibration. More importantly, 

(25)
̂Qk = (1− dk)

̂Qk−1 + dk

(

Kkεkεk
TKk

+Pk −∅k ,k−1Pk−1∅k ,k−1
T

)

,

(26)r̂k = (1− dk)r̂k−1 + dk

(

Zk −Hk
̂Xk ,k−1

)

,

(27)

̂Rk = (1− dk)̂Rk−1 + dk

(

εkεk
T −HkPk ,k−1Hk

T

)

.

(28)

̂Rk =

[

(1− dk )
̂Rk−1 + dk

(

εkεk
T −HkPk ,k−1Hk

T

)]

∗

[

E(nk )

nk

]r

,
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Figure 5  The effect of AKF under different Q and R 
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the initial noise setting has almost no effect on the filter-
ing results, which means that AKF has the ability to adapt 
to various types of system noise.

5 � Experimental Platform
5.1 � Framework of the Model Car
In order to verify the adaptability of the developed EIS 
system to various conditions, an experimental platform 
able to provide extreme scenarios is desired. Accordingly, 
a gasoline model car possessing abundant NVH charac-
teristics was established, with which off-road condition, 
obstacles and extreme operating condition can be easily 
implemented. The framework of the gasoline model car 
is shown in Figure 6. The model car is controlled by two 

control servos, namely the steering servo and the throt-
tle servo. The control algorithm is programmed in the 
STM32 microcomputer placed in the front of the model 
car. An encoder is installed under the chassis to collect 
the speed signals.

5.2 � EE Architecture of the Platform
Figure 7 shows the EE architecture of the platform. Con-
cerning the computing platform, the upper computer 
uses Raspberry Pi 3B+ for capturing video. The photo 
sensitive chip of the camera used in this experiment is 
Sony IMX219, which is a CMOS chip. The camera cap-
tures video at the resolution of 480*480. The STM32 
microcomputer is used to control the model gasoline car 
through two PWM signals. Due to the load limitation of 
the model car, an offline calculation method is adopted 
for EIS. The calculation platform is a quad-core CPU, and 
the basic frequency is 3.2 GHz.

5.3 � Experimental Road Conditions
The platform includes an encoder to collect speed sig-
nals, and it is difficult for the encoder to work stably 
under harsh road conditions. Therefore, we installed 
bumps on both front wheels during the experiment to 
simulate the high unevenness road, which is shown in 
Figure 8(a) and (b). From the perspective of captured vid-
eos, this is equivalent to conducting experiments directly 
under harsh road conditions.

Figure 6  Framework layout of the model car
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Figure 7  EE architecture of the platform
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6 � Analysis of the Effect of Electronic Image 
Stabilization Algorithm

The effect of EIS is often measured by PSNR,

In Eq. (29), MSE is given by

where M and N  denote the length and the width of the 
frame, respectively. Io(m, n) denotes the pixel value of 
the coordinate point (m, n) in the original figure, while 
Ic(m, n) denotes that of the compensated figure. Figure 9 
shows the comparison of PSNR between the original 
video and processed video.

The average PSNR increases by 1.26 dB, which 
proves the positive image stabilization effect of the 
proposed EIS system. It is worth noting that, a 1.20 dB 
increment seems to be less than the results in other 
papers. Actually, it is meaningless to compare PSNR of 
different EIS, because if the filter parameters are set to 
make the filter results smooth enough, PSNR can be 
significantly improved. However, if doing so, the pur-
pose of preserving the subjective motion vector of the 
car is lost.

(29)PSNR = 10× lg

(

(2n − 1)2

MSE

)

.

(30)MSE =
1

MN

M
∑

m=1

N
∑

n=1

(Io(m, n)− Ic(m, n))2,

7 � Conclusions
NVH-related problems induced by off-road condition, 
obstacles and extreme operating condition still deserve 
more attention in modern intelligent vehicles. They dete-
riorate not only the driving performance but also the 
function of advanced driver assistance system (ADAS) 
in vehicles. For instance, different levels of jitter in the 
image sequences captured by a vehicular camera might 
happen and affect subsequent observation and interpre-
tation of information in the images. Aiming at this prob-
lem, a vehicular EIS system based on a gasoline model 
car platform is proposed. The gasoline model car exhib-
its abundant NVH characteristics, and is consequently a 
very convenient and appropriate experimental platform 
with which off-road condition, obstacles and extreme 
operating condition can be easily implemented. The con-
clusions on the proposed vehicular EIS and correspond-
ing experimental results are summarized as follows.

(1)	 Feature point detection and matching based on an 
ORB algorithm are implemented to match images 
in the process of EIS. It shows that the average pro-
cessing time of each frame is 6.0 ms. The average 
amounts of the detected points and the matched 
feature point pairs in each frame are 483.7 and 
223.4 respectively. It is proved that the ORB algo-
rithm satisfies the real-time processing require-
ments for vehicular application.

(2)	 A new i-RANSAC algorithm is proposed to elimi-
nate the mismatched feature points, and improve 
its instantaneity and accuracy under certain cir-
cumstances. And a novel definition, FPMA, is pro-
posed to quantify the performance of the algorithm 
proposed in a video. The i-RANSAC algorithm 
shows a significantly improved performance from 
the FPMA. Besides, the average of frames pro-
cessed per second in the i-RANSAC algorithm has 
increased by 32.4% compared with that number in 
the traditional RANSAC algorithm.

(3)	 A Sage-Husa-based AKF is applied to improve the 
adaptability of the vehicular EIS. Considering that 
the measurement accuracy has a positive correla-
tion with the number of feature points, the update 
of observation noise variance is improved. The 
average PSNR of the video processed with the EIS 
system has increased by 1.26 dB compared with 
that of the original video. The results show that the 
proposed EIS system can satisfy vehicular perfor-
mance requirements even under off-road condition 
with obvious obstacles.

Figure 8  Wheels of the model car
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