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Abstract 

To improve the ride comfort and safety of a traditional adaptive cruise control (ACC) system when the preceding 
vehicle changes lanes, it proposes a target vehicle selection algorithm based on the prediction of the lane-changing 
intention for the preceding vehicle. First, the Next Generation Simulation dataset is used to train a lane-changing 
intention prediction algorithm based on a sliding window support vector machine, and the lane-changing intention 
of the preceding vehicle in the current lane is identified by lateral position offset. Second, according to the lane-
changing intention and collision threat of the preceding vehicle, the target vehicle selection algorithm is studied 
under three different conditions: safe lane-changing, dangerous lane-changing, and lane-changing cancellation. 
Finally, the effectiveness of the proposed algorithm is verified in a co–simulation platform. The simulation results show 
that the target vehicle selection algorithm can ensure the smooth transfer of the target vehicle and effectively reduce 
the longitudinal acceleration fluctuation of the subject vehicle when the preceding vehicle changes lanes safely or 
cancels their lane change maneuver. In the case of a dangerous lane change, the target vehicle selection algorithm 
proposed in this paper can respond more rapidly to a dangerous lane change than the target vehicle selection 
method of the traditional ACC system; thus, it can effectively avoid collisions and improve the safety of the subject 
vehicle.
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1  Introduction
The problems of traffic congestion have become more 
and more serious. As a result, adaptive cruise control 
(ACC), as a key technology of advanced driver assistance 
systems (ADASs), has been widely studied and gradually 
introduced into the lives of ordinary people. According to 
statistical reports, lane changes are the main cause of car 
crashes [1–4]. When the preceding vehicle changes lanes, 
traditional ACC systems simply declare the target vehi-
cle (i.e., the vehicle that the subject vehicle follows) as the 

closest one currently in the subject vehicle’s lane; thus, 
these systems cannot comprehensively consider lane-
changing vehicles. Under these condition, large fluctua-
tions in longitudinal acceleration can occur; these greatly 
reduce ride comfort and may even present collision risks 
[5, 6]. To prevent this, one key technology is that of reli-
able lane-changing intention prediction, which can rec-
ognize that the preceding vehicle intends to change 
lanes before it crosses the lane line. This allows the 
subject vehicle to respond in advance of the preceding 
vehicle’s lane-changing action, thereby reducing accel-
eration fluctuations and minimizing collision risks. The 
most relevant methods thus far reported for predicting 
the preceding vehicle’s lane-changing intention can be 
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roughly classified into four categories: fuzzy logic-based, 
support vector machine (SVM)-based, hidden Markov 
model (HMM)-based, and deep learning-based.

The fuzzy logic-based method uses relative motion 
information between the subject and preceding vehicles 
as the input variable; with this, the lane-changing inten-
tion of the preceding vehicle can be obtained, to effec-
tively realize human control strategies and experience. 
Moon et  al. [7, 8] introduced a lane-changing intention 
predictor based on fuzzy logic; this used the relative lat-
eral distance and relative lateral speed between the pre-
ceding and subject vehicles as the input, and it used fuzzy 
rules to determine the lane-changing probability of the 
preceding vehicle. This method assumed that the vehi-
cles with smaller lateral relative distances and larger lat-
eral relative speeds were more likely to change lane. The 
fuzzy rules presented in the literature are primarily based 
on the fitting curve of relative speed and relative distance 
under the preceding vehicle’s cut-in condition. However, 
the fuzzy logic controller largely depends on human 
experience, and it cannot objectively identify lane-chang-
ing intentions.

The SVM-based method selects the appropriate feature 
vector using relative motion information, and it obtains 
the optimal SVM parameters through training, to predict 
the lane-changing intention of the preceding vehicle. Ma 
et al. [9, 10] used data collected from actual traffic envi-
ronments as training samples, to identify cut-in maneu-
vers for adjacent-lane vehicles based on fuzzy support 
vector machines (FSVMs). To improve the training accu-
racy of the cut-in identifier, a fuzzy membership coeffi-
cient was introduced for each sample to solve the FSVM, 
and a grid optimization was conducted on the FSVM 
parameters. Woo et al. [11] defined the feature vector as 
comprising the distance from the centerline, the lateral 
velocity, and the potential feature. The potential feature 
characterizes the likelihood of lane-changing by analyz-
ing the location relationship between the preceding vehi-
cle and its surrounding vehicles. By adding the potential 
feature, the proposed SVM algorithm can eliminate the 
false predictions produced by zigzag driving.

The HMM-based method mostly uses the observed 
state information of the preceding vehicle to identify 
independent and invisible lane-changing intentions. 
Ma established a mixed Gaussian-HMM to describe the 
lane changing behavior of adjacent vehicles. The driver’s 
decision states were segmented and described by the 
model parameters [12]. Furthermore, the lateral distance 
between the preceding vehicle and the center of the host 
vehicle was used to characterize the changes in decision 
states. Using results from Ref. [12], Zhang [13] classi-
fied lane-changing maneuvers into the safe and danger-
ous lane-changing processes, according to collision risk. 

Based upon the characteristics of lane keeping and lane 
changing, as well as the characteristics of safe and dan-
gerous lane changes, the HMM-based lane-changing 
identification method was designed to use a sliding time 
window, and the driving state of each time window was 
judged in turn. Mitrovic proposed a simple and reliable 
method for identifying driving events using a HMM [14]. 
By collecting real-vehicle experimental data and manu-
ally selecting observation sequences for training and veri-
fication, each observation sequence was classified into 
specific types of events, and the HMM model param-
eters of each driving event were trained separately. The 
observation sequence from the training set was evalu-
ated using multiple models. By comparing the probabil-
ity of the observation sequence calculated by each HMM 
model, the event corresponding to the highest HMM 
model was selected as the estimated result.

The deep learning-based method predicts the preced-
ing vehicle’s lane-changing intention or driving trajec-
tory using a neural network. This method requires a huge 
dataset for parameter training to improve prediction 
results. Zhang et  al. [15] used the speech-recognition 
framework as an example, and they mapped the behav-
ior of the preceding vehicle (i.e., lane-changing or lane-
keeping) to different speech words. Because the motion 
information of the preceding and surrounding vehicles 
was both continuous and time-varying, words of differ-
ent sizes corresponded to different driving styles during 
lane changes. The speech recognition model could be 
effectively applied to recognize the preceding vehicle’s 
lane-changing behavior. Yoon et  al. [16] calculated the 
lane-change likelihood of multiple target lanes and trajec-
tories of surrounding vehicles using a radial basis func-
tion network (RBFN). The RBFN prediction algorithm 
used the classification distribution and future trajectory 
in parallel to estimate the probability of each lane becom-
ing the driver’s target lane, and it converted the RBFN 
into a probability model which incorporated uncertainty. 
Lee et al. [17] proposed a lane-changing intention recog-
nizer based on a convolutional neural network (CNN). 
This method transformed real-world driving data into 
a simplified bird’s-eye view, which facilitated a CNN-
based inference approach with low computation cost and 
robustness against noisy inputs.

Most of the current literature has sought to predict the 
lane-changing intention of the preceding vehicle in the 
adjacent lane (as shown in Figure 1); however, the predic-
tion results for the lane-changing intention of the preced-
ing vehicle in the current lane (as shown in Figure 2) also 
determine the longitudinal acceleration of the subject 
vehicle. For example, when the preceding vehicle in the 
current lane changes lanes and a low-speed commercial 
vehicle or stationary object appears ahead in the current 
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lane, the subject vehicle will also experience acceleration 
fluctuations or even collision risks. Therefore, this paper 
studies the lane-changing intention prediction algorithm 
for both the preceding vehicle in the adjacent lane and 
the preceding vehicle in the current lane. Because most 
of the previous studies used SVMs to identify the lane-
changing intention of the preceding vehicle, they only 
selected a certain feature vector and kernel function of 
the SVM, and they failed to explain the reasons for their 
selections. This study compares the prediction accuracies 
of different types of SVM, selects the RBF as the kernel 
function, and analyzes the influence of different slid-
ing window sizes on the prediction accuracy. Moreover, 
most previous research has only studied the successful 
lane changes of the preceding vehicle, without consider-
ing the failure or cancellation thereof. This work studies 
target vehicle selection when the preceding vehicle fails 
to change lanes.

The remainder of this paper is structured as follows: 
Section  2 illustrates the system architecture, Section  3 
introduces the lane-changing intention prediction algo-
rithm, Section  4 introduces the target vehicle selection 
algorithm, Section  5 studies the longitudinal motion 
control algorithm, Section 6 evaluates the proposed algo-
rithm in a simulation, and Section 7 concludes the paper.

2 � System Architecture
The overall framework proposed in this paper is shown 
in Figure 3. It is primarily divided into three components: 
lane-changing intention prediction, target vehicle selection, 
and longitudinal motion control. First, the lane-changing 
intention of the preceding vehicle was primarily predicted 
by the sliding window SVM algorithm. We used the Next 
Generation Simulation (NGSIM) dataset to train the 
parameters of the SVM and determine the size of the slid-
ing window. The lane-changing intention of the preceding 

vehicle in the current lane was predicted via the lateral rela-
tive distance offset. The next step was to select the target 
vehicle. The target vehicle selection determines the target 
vehicle under three different conditions: safe lane-chang-
ing, dangerous lane-changing, and lane-changing can-
cellation. The longitudinal motion control generated the 
actuator control value using the state information of the 
target vehicle. The actuator control quantity was composed 
of two components: the feedforward and feedback control 
quantities.

Figure 1  Schematic diagram of the lane change for a preceding 
vehicle in adjacent lane

Figure 2  Schematic diagram of lane change for a preceding vehicle 
in current lane

Use the NGSIM data set to train the SVM of 
the lane-changing intention predictor for the 

preceding vehicle

Prediction of the Lane-changing intention for 
the Preceding vehicle 
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Figure 3  Overall framework of longitudinal control algorithm based 
on prediction of the lane-changing intention for the preceding 
vehicle
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3 � Lane‑changing Intention Prediction Algorithm 
based on Sliding Window SVM

When the preceding vehicle changes lanes, the tradi-
tional ACC system cannot comprehensively consider the 
preceding vehicle in the current lane as well as the lane-
changing vehicle. Large fluctuations arise in longitudinal 
acceleration under this condition, which greatly reduces 
the ride comfort and may even cause collision risks. To 
avoid the violent fluctuation in longitudinal acceleration 
caused by the jump of the target vehicle, the sliding win-
dow SVM algorithm was adopted to identify the lane-
changing intention of the preceding vehicle.

3.1 � NGSIM Dataset Preprocessing
This study used the public dataset recorded by the 
NGSIM program (initiated by the Federal Highway 
Administration in 2002) to train the sliding window SVM 
[18]. This program used high-definition cameras installed 
above the road to record vehicle driving data, and it used 
video processing software to obtain the vehicle trajectory 
data at intervals of 0.1 s. The lane-changing vehicle data 
on the US101 highway in the NGSIM dataset were used 
to train the lane-changing intention prediction SVM in 
this work.

The study area schematic and camera coverage of the 
NGSIM US101 highway data are shown in Figure 4. After 
simple filtering, 6100 individual vehicle driving data 
points were obtained. We studied the free lane-changing 
behavior of passenger cars; thus, reasonable lane-chang-
ing vehicle data must meet the following constraints:

(1)	 Because this work studies the free lane changing of 
cars, it is necessary to restrict the types of vehicles 
to 2-cars.

(2)	 Lanes 7 and 8 of US101 highway are both ramps, 
Lane 6 is the auxiliary lane of the ramp entrance, 
Lane 1 is the leftmost lane, and Lane 5 is the right-
most lane, adjacent to Lane 6. To avoid the influ-
ence of the forced lane-changing behavior data 
produced by vehicles entering and exiting the ramp, 
the lane-changing vehicle data used in this paper 
exclude the vehicle trajectories containing Lanes 6, 
7, and 8 in their driving lane ID, and we ensure that 
the lane ID in the vehicle trajectory data undergoes 
a change.

(3)	 To prevent vehicle lane ID changes caused by vehi-
cles driving near the lane line at all times, we com-
pared the deviations of lateral position between the 
start and end of the lane change, ensuring that this 
deviation exceeded 2.75 m.

Through artificial selection, 184 reasonable lane-
changing vehicle trajectories were obtained. Because 
the subject vehicle can only obtain the relative position 
and speed information of the preceding vehicle through 
its sensors, it was necessary to calculate the relative lat-
eral distance and lateral speed of the preceding vehicle 
relative to the road centerline of the target lane. By sub-
tracting the local coordinates of the target lane center-
line from those of the lane-changing vehicle, the relative 
lateral distance of the lane-changing vehicle relative to 
the centerline of the target lane was obtained. To reduce 
the influence of NGSIM dataset measurement errors, 
Kalman filter was used to calculate the relative lateral 
velocity vy and relative lateral acceleration ay of the pre-
ceding vehicle relative to the road centerline of the target 
lane. The estimated relative lateral velocity vy and accel-
eration ay are shown in Figures 5 and 6, respectively.

The relative lateral velocity calculated by Kalman fil-
ter was essentially identical to that obtained by the local 
coordinate Y’s difference in the original NGSIM dataset; 
however, the spike was effectively suppressed. By com-
paring the relative lateral accelerations computed via 
Kalman filter of the acceleration data obtained by velocity 
difference, we found that such filtering could well restrain 
the fluctuation generated by the difference.

3.2 � SVM Algorithm Design
3.2.1 � SVM Algorithm
SVM is a very popular algorithm in machine learn-
ing. It is mainly used to identify a suitable hyperplane 
in a multi-dimensional space as a classification plane, to 
maximize the minimum spacing of positive and negative 
samples in the sample space. The samples that satisfy the 

Figure 4  Study area schematic and camera coverage of NGSIM 
US101 highway data
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minimum spacing are called support vectors. For linearly 
inseparable cases, the SVM can use the kernel function to 
transform the nonlinear classification scenario into a lin-
early separable situation in the high–dimensional sample 
space [19–21]. Commonly used kernel functions include 
the polynomial and Gaussian kernel functions.

We assume that the classification function is

where g(z) =
{

1 if z ≥ 0

0 if z < 0
 , w and b are the training 

parameters, and x is the feature vector.
In the model that predicts the lane-changing inten-

tion of the preceding vehicle, hw,b(x) = 1 indicates 
that the preceding vehicle intends to change lanes, and 
hw,b(x) = 0 indicates that the preceding vehicle does not 

(1)hw,b(x) = g
(

wTx + b
)

,

intend to change lanes and will continue to drive in the 
original one. The optimization objective of the SVM is to 
maximize the geometric margins between the positive 
and negative samples. The definition of geometric margin 
γ (i) is

where m represents the number of samples in the train-
ing set, and γ denotes the smallest margin. The original 
optimization problem of the SVM is as follows:

The non-convex constraint �w� = 1 in the original opti-
mization problem means that the original problem is 
very difficult to solve. Thus, it must be transformed into a 
convex optimization problem:

Through Lagrange duality, the above convex optimiza-
tion problem can be transformed into a quadratic pro-
gramming problem, expressed as

where 
〈

x(i), x(j)
〉

 represents the kernel function value of 
x(i) and x(j) , and � represents the Lagrange multiplier.

3.2.2 � SVM Feature Vector Selection
The feature vectors selected in Ref. [10] include the 
longitudinal relative distance between the subject and 
preceding vehicles, lateral relative distance, longitu-
dinal relative speed, lateral relative speed, longitudi-
nal relative acceleration, lateral relative acceleration, 
and subject vehicle speed; these are shown in Figure 7. 
However, the training samples are limited and cannot 
cover all feature vectors that may arise in the SVM; for 
example, the present speed of the subject vehicle never 
appears in the training sample; furthermore, the cur-
rent longitudinal relative distance, longitudinal relative 

(2)











γ (i) = y(i)
�
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�w�
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x(i) + b
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,

γ = min
i=1,2,...,m

γ (i),

(3)
maxγ ,w,b γ

s.t. y(i)
(

wTx(i) + b
)

≥ γ , i = 1, . . . ,m
�w� = 1.
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2
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Figure 5  Kalman filtering results for relative lateral velocity

Figure 6  Kalman filtering results for relative lateral acceleration
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speed, and longitudinal relative acceleration exceed 
the range of the feature vector in the training sample. 
In the above cases, the accuracy of the lane-changing 
intention prediction obtained via the SVM is very low. 
Ref. [11] selected the lateral relative distance, lateral 
relative speed, and potential feature of the preceding 
vehicle (relative to the centerline of the subject vehicle’s 
driving lane) as the feature vector. The potential fea-
ture, which analyzes the position relationship between 
the preceding vehicle and its surrounding traffic vehi-
cles, represents the lane-changing risk degree of the 
preceding vehicle. This feature is added to reduce false 
predictions when the preceding vehicle is performing 
zigzag driving in its original lane. However, millimeter–
wave radar and cameras, as the main sensor systems 
of ADAS, do not obtain comprehensive and accu-
rate motion state information for traffic vehicles sur-
rounding the preceding vehicle. In addition, this paper 
assumes that the preceding vehicle’s zigzag driving in 
the original lane does not necessarily indicate it as fail-
ing to change lanes. It may indicate the inexperienced 
driving of novice drivers, or that the target vehicle is 
in the target lane adjustment stage after a lane change. 
The potential feature cannot be used to solve all zigzag 
driving misjudgments.

The feature vectors selected in this work include the 
lateral relative distance dy and lateral relative speed vy 
of the preceding vehicle relative to the centerline of 
the subject vehicle’s driving lane as shown in Figure 8. 
When using only the relative motion information at the 
present moment as the feature vector, a short-term mis-
judgment often occurs owing to the jump of the motion 
state. However, the lane-changing intention prediction 
of the preceding vehicle at the current moment is often 
related to the relative motion information over several 
previous cycles. Therefore, this paper takes the relative 
motion information of the preceding vehicle relative to 
the centerline of the subject vehicle’s driving lane in the 

previous k cycles as the feature vector. The feature vec-
tor xt at time t can be expressed as

where Dy is the feature of the lateral relative distance, and 
V y is the feature of the lateral relative speed with respect 
to the centerline of the subject vehicle’s driving lane.

Selecting the relative motion information of the pre-
ceding vehicle relative to the centerline of the subject 
vehicle’s driving lane as the feature vector (instead of the 
relative motion information of the preceding vehicle rela-
tive to the subject vehicle) can, on the one hand, mitigate 
the influence of the subject vehicle’s lateral movement 
on the lane-changing intention prediction. On the other 
hand, it is very convenient to convert the relative lateral 
distance into d coordinates under Frenet coordinates 
when driving in curves [22, 23].

3.2.3 � SVM Parameter Training
To resolve the influences of different feature units, the 
z-score normalization was used to standardize the fea-
tures. The mean value of each feature after processing 
was zero, and the standard deviation was 1. Prior to SVM 
parameter training, the NGSIM dataset was divided into 
training and test set samples in the ratio 7:3. The num-
bers of training and test set samples were 10080 and 
4273, respectively. SVMs with different parameters were 
trained using training set samples, and the SVM predic-
tion accuracy was tested by test set samples. Meanwhile, 
we used the cross-validation method to divide the train-
ing set data into N copies (N = 5 in this paper). In each 
training process, N − 1 of these were selected for train-
ing, and the remaining copy was used as the validation 
set. Through n-training, the group of parameters with 
the highest accuracy from the validation set was selected 
as the final training result. The flow chart of the SVM 
parameter training is shown in Figure 9.

Linear, quadratic, cubic, and radial basis functions were 
selected as the kernel function to train the SVM. Mean-
while, to determine the size of the sliding window, we 
trained the SVM with four different kernel functions in a 
window size range of 0–5 s with an interval of 0.2 s. The 
training results are shown in Figure 10.

In Figure 10(d), we can see that when the sliding win-
dow size was 0.4 s, the test set accuracy of the linear 
kernel function SVM reached the maximum value of 

(6)xt =
[

Dy,V y

]

,

(7)Dy =
[

dy,t−(k−1), dy,t−(k−2), · · · , dy,t
]

,

(8)V y =
[

vy,t−(k−1), vy,t−(k−2), · · · , vy,t
]

,

Figure 7  Schematic diagram of feature vector selected in Ref. [10]

Figure 8  Schematic diagram of feature vector selected in this work
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0.676. Because the quadratic, cubic, and RBF kernel 
functions can map sample features to higher spaces 
and achieve nonlinear classification, the validation and 
test set accuracies of the above three kernel function 
SVMs were improved to different degrees compared 
with the linear kernel function SVM. The RBF kernel 
function SVM had the most prominent improvement. 
The test set accuracy of the RBF kernel function SVM 
reached 0.935 when the sliding window was 2.2 s. 
Therefore, we selected the RBF kernel function SVM 
to predict the lane-changing intention of the preceding 
vehicle.

Comparing the accuracies of the test and verifica-
tion sets, we found that the test set accuracies of the 
above three kernel function SVMs were lower than 
the validation set accuracy to some extent. When the 
size of the sliding window was increased, the number 
of features increased, and overfitting occurred during 
SVM training. When the size of the sliding window 
increased, the validation set accuracy could be contin-
uously improved. However, when the sliding window 

size exceeded a certain range, the test–set prediction 
accuracy decreased when the size of the time win-
dow increased (this was particularly clear for the RBF 
kernel function SVM); that is, in terms of the size of 
the sliding window, longer does not necessarily entail 
better.

As shown in Figure  10(a), when the sliding window 
size was 2.2 s, the test set accuracy of the RBF kernel 
function SVM was maximal. Therefore, we selected the 
RBF kernel function SVM with a sliding window size 
of 2.2 s to predict the lane-changing intention of the 
preceding vehicle. After determining the SVM kernel 
function and sliding window size, we combined the test 
and training set samples to form a new training set, and 
trained using this set to obtain the final lane-changing 
intention prediction SVM. The parameters of the final 
SVM for the preceding vehicle lane-changing inten-
tion prediction are shown in Table 1. Here, KernelScale 
is the parameter γ of the RBF, where the RBF has the 

Figure 9  Flow chart for the SVM parameter training
Figure 10  Validation accuracy and test accuracy of SVM with four 
different kernel functions in the sliding window size range of 0–5 s 
with an interval of 0.2 s
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following form: K
(

x(i), x(j)
)

= exp
(

−γ
∥

∥x(i) − x(j)
∥

∥

)

 . 
BoxConstraint is a positive value that controls the pen-
alty imposed on observations with large residuals [24].

3.3 � Prediction Results of Lane‑changing Intention 
for Preceding Vehicle in the Adjacent Lane

The prediction results of the lane-changing intention for 
the preceding vehicle in the adjacent lane are shown in 
Figure  11: (a) SVM features, (b) lane-changing intention 

prediction obtained by SVM_2.2 s, and (c) lane-changing 
intention prediction obtained by SVM_0 s. It can be seen 
from Figure  11(a) that the preceding vehicle performed 
zigzag driving in the original lane within 4.3–7 s of the 
start of the simulation. Furthermore, the lane change 
began at 10.5 s and ended at 15 s. The overall lane chang-
ing time was 4.5 s. It can be seen from Figure 11(b) that the 
lane-changing intention prediction SVM based on the slid-
ing window designed in this study (denoted as SVM_2.2 s) 
predicted that the preceding vehicle had a lane-changing 
intention at 11.9 s. From Figure 11(a), we see that the pre-
ceding vehicle passed through the lane line of the lane in 
which the subject vehicle was located at 13.2 s; thus, the 
lane-changing intention prediction SVM based on the slid-
ing window identified the lane-changing intention of the 
preceding vehicle 1.3 s in advance. Figure 11(c) shows the 
prediction results of the SVM that used only the motion 
state information of the current moment as the feature 
vector (denoted SVM_0 s). Short-term misjudgments 
were observed at 4.9 s and 6 s. SVM_0 s only used the 
motion state information at the current moment as the 
feature vector; hence, it easily made misjudgments when 
the motion state jumped during zigzag driving. The lane-
changing intention prediction SVM designed in this paper 
employed the motion state information of the entire slid-
ing window (the window size was 2.2 s); thus, it could deal 
with the disturbance of motion state changes produced by 
zigzag driving.

Compared with the traditional ACC target vehicle selec-
tion algorithm, the time advantage of the SVM-based lane-
changing intention prediction output was related to many 
factors, including the initial relative lateral distance when 
the preceding vehicle began to change lanes, the overall 
lane-changing time, and more. Figure 12 shows the predic-
tion results of the preceding vehicle’s lane-changing inten-
tion under three different overall lane-changing times, 
with the overall lane-changing times of 3.1 s, 5.0 s, and 6.9 
s corresponding to Figure 12(a), (b), and (c), respectively; 
the lane-changing intention prediction SVM designed 
in this study identified the lane-changing intention of 
the preceding vehicle 0.9 s, 1.7 s, and 2.3 s, in advance of 
the traditional ACC target vehicle selection algorithm as 
shown in Table  2. When the overall lane-changing time 
increased, the advance time increased accordingly. There-
fore, the advance time cannot be used as the only criterion 
to judge the quality of the lane-changing intention predic-
tion SVM.

3.4 � Prediction Results of Lane‑changing Intention 
for Preceding Vehicle in the Current Lane

When the preceding vehicle in the current lane changes 
lanes, if a low-speed vehicle or stationary object appears 
ahead in the current lane, the subject vehicle will 

Table 1  Parameters of the final SVM for the lane-changing 
intention prediction of the preceding vehicle

Parameters Value

SVM kernel function RBF

Sliding window size 2.2 s

KernelScale 8.5

BoxConstraint 20.5

Figure 11  Prediction results of the lane-changing intention for the 
preceding vehicle in the adjacent lane
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experience acceleration fluctuations or collision risks. 
Therefore, it is important to identify the lane-changing 
intention of the preceding vehicle in the current lane. 
However, because the lane-changing intention predic-
tion SVM designed in this paper used the lateral rela-
tive distance and lateral relative speed of the preceding 
vehicle (relative to the centerline of the target lane) as 
the feature vector, it cannot be directly applied to pre-
dict the lane-changing intention of the preceding vehi-
cle in the current lane. To solve this problem, the lateral 

relative distance of the preceding vehicle in the current 
lane was offset left and right, respectively. The offset dis-
tance was one lane width, as shown in Figure 13.

The lateral relative distance offset does not affect the 
magnitude of lateral relative velocity. By inputting the 
offset lateral relative distance and lateral relative speed as 
feature vectors into the lane-changing intention predic-
tion SVM, the lane-changing intention of the preceding 
vehicle in the current lane (with the left and right adjacent 
lanes as the target lane) could be identified. When the lane 
width was shifted to the left, the target lane of the preced-
ing vehicle changed from the right adjacent lane to the 
current one, and the right lane-changing intention of the 
vehicle in the current lane was identified using the lane-
changing intention prediction SVM. Likewise, when the 
lane width was shifted to the right, the target lane of the 
preceding vehicle changed from the left adjacent lane to 
the current lane, and the left lane-changing intention of 
the vehicle in the current lane was identified. The predic-
tion results of the lane-changing intention for the preced-
ing vehicle in the current lane are shown in Figure 14: (a) 
features of the left lane-changing intention prediction 
SVM, (b) left lane-changing intention prediction, (c) fea-
tures of the right lane-changing intention prediction 
SVM, and (d) right lane-changing intention prediction.

Because the relative lateral distance after shifting 
to the left by one lane width varied as 3.7–7.5 m, the 
prediction results of the right lane-changing inten-
tion for the preceding vehicle were always zero, which 
means that the preceding vehicle did not have a right 
lane-changing intention. However, when the lateral 
relative distance offset to the right and the lateral rela-
tive velocity were taken as the feature vector, the left 
lane-changing intention of the preceding vehicle could 
be identified by the SVM at 10.6 s. Compared with the 
traditional ACC target vehicle selection algorithm, the 
lane-changing intention of the preceding vehicle in the 
current lane could be identified 1 s in advance.

Figure 12  Prediction results of lane-changing intention for the 
preceding vehicle under three different overall lane-changing times

Table 2  Advance time for different overall lane-changing times 
(s)

Overall lane-changing time Advance time

3.1 0.9

5.0 1.7

6.9 2.3

Figure 13  Schematic diagram of relative lateral distance offset
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4 � Target Vehicle Selection based on the Prediction 
of the Lane‑Changing Intention 
for the Preceding Vehicle

This study neglects the situation in which both the preced-
ing vehicle in the current lane and that in the adjacent lane 
change lanes simultaneously; it only considers the situation 
in which one of them changes lane; here, we take the lane 
change of the preceding vehicle in the adjacent lane as an 
example to illustrate the target vehicle selection process.

To select the target vehicle, it is necessary to calculate the 
collision risk of each target. The collision risk is represented 
by TTC−1 in this study [25, 26]. TTC−1 can be calculated as

where dx is the longitudinal relative distance, vx is the 
longitudinal relative speed between the preceding and 
subject vehicles, which equals the difference between the 
longitudinal speed of subject vehicle vsubject and that of 
the preceding vehicle vpreceding , as shown in Figure 15.

(9)TTC−1 = −
vx

dx
,

When TTC−1 exceeds zero, it means that the preced-
ing vehicle is approaching and there is a risk of collision. 
The collision threat increases with the increase of TTC−1 . 
When TTC−1 is less than zero, it indicates that the pre-
ceding vehicle is far from the subject vehicle and there is 
no collision risk.

According to the lane-changing intention (denoted as 
Intention) and the collision threat of each target, the tar-
gets in the adjacent lane can be classified into three types; 
these are represented by DriveStatue [7], as shown in 
Figure 16.

Area 1 indicates that the preceding vehicle has no 
lane-changing intention (Intention = 0). In this case, 
the DriveStaue is equal to zero. Area 2 indicates that 
the preceding vehicle has a lane-changing intention 
but there is no collision risk (Intention = 1, TTC−1 < 
ThTTC​); in this case, the DriveStaue is equal to 1. Area 
3 means that the preceding vehicle has lane-changing 
intention and there is a risk of collision (Intention = 1, 
TTC−1 ≥ ThTTC​). In this case, the DriveStaue is equal 
to 2.

Because there may be multiple vehicles with lane-chang-
ing intention in the adjacent lane ahead, it is necessary to 
select the "most threatening" of them as the target vehicle 

Figure 14  Prediction results of the lane-changing intention for the 
preceding vehicle in the current lane

Figure 15  Schematic diagram of the longitudinal relative distance 
and longitudinal relative speed

Figure 16  Schematic diagram of DriveStatue for effective target
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in the adjacent lane. Firstly, according to the DriveStatue of 
the targets in the adjacent lane, we can obtain the driving 
status with the highest priority RDS at the current time as 
the representative DriveStatue, expressed as

where n is the number of targets in the adjacent lane.
Among the targets whose DriveStatue is the RDS in 

the adjacent lane, that with the smallest longitudinal 
relative distance from the subject vehicle is selected as 
the target vehicle in the adjacent lane. According to the 
different RDS values, the fusion methods for the target 
vehicle in the adjacent lane and the target closest to the 
subject vehicle in the current lane (i.e., the target vehicle 
obtained by the traditional ACC target vehicle selection 
algorithm, referred to as the target vehicle in the current 
lane) also differ. The values dx,inlane and vx,inlane represent 
the longitudinal relative distance and speed, respectively, 
between the target vehicle in the current lane and the 
subject vehicle; dx,adjacent lane and vx,adjacent lane represent 
the longitudinal relative distance and speed, respectively, 
between the target vehicle in the adjacent lane and the 
subject vehicle.

Case 1: RDS = 0, there is no vehicle in the adjacent 
lanes with lane-changing intention; thus, the target vehi-
cle in the current lane can be directly selected as the tar-
get vehicle; that is,

Case 2: RDS = 1, the target vehicle in the adjacent lane 
has a lane-changing intention and there is no risk of col-
lision, which means the target vehicle in the adjacent lane 
changes lanes safely. In this case, the target vehicle selec-
tion must fuse the target vehicle in the current lane with 
that in the adjacent lane, using

where dy,Init is the lateral relative distance of the target 
vehicle in the adjacent lane (relative to the center line of 
the lane in which the subject vehicle is located) when that 
vehicle is first detected as having a lane-changing inten-
tion, and dy,adjacentlane is the lateral relative distance of the 
target vehicle in the adjacent lane relative to the center 
line of the subject vehicle’s lane.

(10)RDS = max{DriveStatuei}, i = 1, 2, 3, . . . , n,

(11)dx,main = dx,inlane,

(12)vx,main = vx,inlane.

(13)dx,main = αdx,inlane + (1− α)dx,adjacent lane,

(14)vx,main = αvx,inlane + (1− α)vx,adjacent lane,

(15)α = min

{
∣

∣

∣

∣dy,Init
∣

∣−
∣

∣dy,adjacentlane
∣

∣

∣

∣

∣

∣

∣

∣dy,Init
∣

∣− 0.875
∣

∣

, 1

}

,

During the lane-changing process of the target vehicle 
in the adjacent lane, dy,adjacentlane changes from dy,Init to 
0.875 m (when the lateral relative distance of the target 
in the adjacent lane is less than 0.875 m, this target can 
be considered as the target in the current lane), and α 
smoothly transfers from zero to 1.

Case 3: RDS = 2, the target vehicle in the adjacent lane 
has a lane-changing intention and there is a risk of colli-
sion, which means the target vehicle in the adjacent lane 
changes lanes dangerously. In this case, the primary goal 
is to maintain the safety of the subject vehicle. Thus, the 
target vehicle in the adjacent lane is directly selected as 
the target vehicle; that is,

As shown in Figure 17, in certain cases, the preceding 
vehicle will cease changing lanes and return to its origi-
nal lane. When this cancellation is detected, if the target 
vehicle is directly changed back to the target vehicle in 
the current lane, the longitudinal acceleration of the sub-
ject vehicle will inevitably fluctuate due to the jump of 
the target vehicle.

When the lane-changing intention of the target vehi-
cle in the adjacent vehicle changes from 1 to zero, and 
dy,adjacentlane exceeds 0.875 m, it can be determined that 
the target vehicle in the adjacent vehicle has cancelled 
the lane change. Under lane-changing cancellation condi-
tions, the target vehicle state is calculated as

where dy,cancel is the lateral relative distance of the target 
vehicle in the adjacent lane relative to the center line of 
the lane in which the subject vehicle is located, and αcancel 
is the value of α when the target vehicle in the adjacent 
lane is first detected as canceling the lane-changing 
intention.

(16)dx,main = dx,adjacentlane,

(17)vx,main = vx,adjacentlane.

(18)dx,main = βdx,inlane + (1− β)dx,adjacent lane,

(19)vx,main = βvx,inlane + (1− β)vx,adjacent lane,

(20)β = αcancel ·max

{

2.875−
∣

∣dy,adjacentlane
∣

∣

∣

∣2.875−
∣

∣dy,cancel
∣

∣

∣

∣

, 0

}

,

Figure 17  Schematic diagram of the preceding vehicle’s 
lane-changing cancellation
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During the lane-changing cancellation process of the 
target vehicle in the adjacent lane, dy,adjacentlane varies 
from dy,cancel to 2.875 m (when the lateral relative dis-
tance of the target in the current lane exceeds 2.875 m, 
this target can be considered as the target in the adjacent 
lane), and β smoothly transfers from αcancel to zero.

5 � Longitudinal Motion Control Algorithm
Depending on whether a target vehicle is ahead, the lon-
gitudinal motion control can be divided into speed con-
trol and following control. When no target vehicle is in 
front of the subject vehicle, only speed control is applied. 
For speed control, only the subject vehicle’s speed vsubject 
must be kept at the set speed vset . Therefore, the control 
target in this mode is �v → 0 and the position error can 
be directly set to zero:

When a target vehicle is in front of the subject vehicle, 
the control is that of following control, which controls 
the speed of the subject vehicle to match that of the tar-
get vehicle, to thereby maintain a safe distance between 
the two. The constant time–gap safe distance is selected 
as the safe distance in this work [27]; it is calculated as

where τh is the time gap constant, generally set to 1.2–2 s. 
d0 is the distance constant, generally set to 2–3 m. In this 
study, τh was set to 2 s, and d0 was set to 3 m.

In the following control, the subject vehicle speed must 
be kept the same as that of the target vehicle, and the dis-
tance dx between the subject and target vehicles must be 
controlled as the safe distance ddes ; thus, the control tar-
get in this mode is �v → 0 , �d → 0 , where

A linear-quadratic regulator (LQR) controller was cho-
sen to calculate the desired acceleration of the subject 
vehicle in this study. The balance state in the longitudinal 
motion control is �v → 0 , �d → 0 ; thus, it is very suit-
able to use the LQR controller to calculate the desired 
acceleration of the subject vehicle. Meanwhile, the LQR 
controller can consider the weight of the input and state 
variables to ensure ride comfort during longitudinal 
motion control.

Time delays can arise between the actual acceleration 
aactual and inputted desired acceleration ades ; these can 

(21)�v = vset − vsubject ,

(22)�d = 0.

(23)ddes = vself τh + d0,

(24)�v = vx,

(25)�d = dx − ddes.

be approximately represented by a one–order inertia ele-
ment, as

where τd is the time delay between the actual acceleration 
aactual and the inputted desired acceleration ades , which 
was here set to 0.5 s.

Selecting the state variable as x = [�d,�v, aactual]
T 

and the input variable as ades , we can obtain the continu-
ous state space equation for longitudinal acceleration 
control as

where atar is the acceleration of the target vehicle, which 
represents an interference term.

Discretizing the above continuous state space equation, 
we obtain

where T  is the control cycle.
Because the ride comfort is sizably affected by the 

jerk (the derivative of the acceleration), the above-men-
tioned state space equation cannot take into account the 
weight of the jerk. Therefore, we expanded the discrete 
state space equation to an incremental form, and took 
the desired acceleration increment �ades as an input to 
incorporate the weight of the jerk. The expanded state 
space equation is as follows:

The objective function of the LQR controller is:

(26)aactual =
1

τds + 1
ades,

(27)
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where u is the desired acceleration increment �ades ; ql1 , 
ql2 , ql3 , ql4 , and rl represent the weight of �v , �d , aactual , 
ades , and �ades , respectively. Here, ql1 = 2 , ql2 = 1 , 
ql3 = 0 , ql4 = 3 , and rl = 3.

After the desired acceleration of the subject vehicle 
was calculated by the LQR controller, it was necessary 
to control the actuator of the subject vehicle (i.e., the 
throttle opening and brake master cylinder pressure) 
to ensure that the actual acceleration of the subject 
vehicle approached the calculated desired accelera-
tion. This paper first established the inverse dynamics 
model for the subject vehicle. Through this model, the 
feedforward control quantity of the actuator could be 
obtained. Owing to the deviation of the subject vehi-
cle’s inverse dynamics model parameters and the pres-
ence of interference, it was difficult to make the actual 
acceleration approach the desired one stably via open–
loop control alone. A large static error was produced. 
Therefore, to improve the accuracy and robustness of 
the longitudinal acceleration control, we took the devi-
ation value between the actual vehicle acceleration and 
desired acceleration as the input, and we used the pro-
portional-integral–derivative (PID) controller to calcu-
late the feedback control quantity of the actuator.

6 � Simulation and Discussion
Next, a co-simulation platform was built using Matlab/
Simulink, CarSim, and Prescan software, to verify the 
proposed algorithm. The scenario and sensor models 
were established in Prescan. The measurement data of 
the millimeter wave radar model in Prescan contain 
noise, which can simulate radar measurement data in 
the real world to a certain extent. The high-precision 

(30)J =
1

2

∫ ∞

0

[

ql1 ·�d2 + ql2 ·�v2 + ql3 · a
2
actual + ql4 · a

2
des + rl · u

2
]

dt,

vehicle dynamics model was established in CarSim, 
and the simulation environment integration and con-
trol algorithm was established in Matlab/Simulink, as 
shown in Figure 18. Simulations were conducted under 
three different conditions: safe lane-changing, danger-
ous lane-changing, and lane-changing cancellation.

6.1 � Simulation Results under Safe Lane‑Changing 
Condition

To verify the effectiveness of the target vehicle selec-
tion algorithm proposed in this paper under safe lane-
changing conditions, the following simulation conditions 
were designed in the co–simulation platform: Initially, 
the subject vehicle followed the preceding vehicle in the 
current lane at the set speed (25 m/s), and the longitudi-
nal relative distance between the subject and preceding 

Figure 18  Closed-loop block diagram of Matlab/Simulink, CarSim, 
and Prescan in the co-simulation platform

Figure 19  Simulation results of longitudinal control based on 
lane-changing intention prediction of preceding vehicle under safe 
lane-changing condition
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vehicle in the current lane was 50 m. A preceding vehicle 
was present in the left adjacent lane. The driving speed 
of the preceding vehicle in the adjacent lane at the start 
of the simulation was 18 m/s, and the longitudinal rela-
tive distance to the subject vehicle was 70 m. The pre-
ceding vehicle began to change lanes 5 s after the start of 
the simulation. The simulation results are shown in Fig-
ures 19 and 20.

At 6.6 s after the start of the simulation, the lane-chang-
ing intention prediction algorithm based on the sliding 
window SVM detected that the preceding vehicle in the 
adjacent lane intended to change lanes; here, the RDS 
was 1, which meant that the target vehicle in the adjacent 
lane had a lane-changing intention and there was no risk 
of collision, as shown in Figure 19(a)–(b). Therefore, the 
target vehicle selection algorithm fused the target vehi-
cle in the current lane with that in the adjacent one. The 
result of the fusion is shown in Figure 19(c)–(d). The tar-
get vehicle smoothly transitioned from the target vehi-
cle in the current lane (ID3) to that in the adjacent one 
(ID393). As shown in Figure  20(b)–(c), when using the 

target vehicle selection method of the traditional ACC 
system, the target vehicle jumped directly from the target 
vehicle in the current lane to that in the adjacent lane at 
7.8 s. The lane-changing intention prediction algorithm 
based on the sliding window SVM here designed identi-
fied the lane-changing intention of the preceding vehicle 
1.2 s earlier than the traditional target vehicle selection 
method. In addition, the state of the target vehicle in the 
current lane changed suddenly at 9.4 s, as shown in Fig-
ure 19(c)–(d). This was because the target vehicle in the 
current lane was blocked and could not be detected by 
the subject vehicle sensors when the lane change of the 
target vehicle in the adjacent lane was completed.

Figures 19(e) and 20(d) show the longitudinal accelera-
tion curve of the subject vehicle under safe lane-changing 
conditions. It can be seen from the simulation results that 
the maximum longitudinal deceleration of the subject 
vehicle was 2.62 m/s2 during the entire control process, 
when using the proposed target vehicle selection  algo-
rithm here. When using the traditional target vehicle 
selection method, the maximum longitudinal decelera-
tion of the subject vehicle was 3.90 m/s2. The target vehi-
cle selection algorithm here proposed responded faster 
(1.2 s earlier) to the lane change of the preceding vehi-
cle in the adjacent lane. Furthermore, the corresponding 
maximum longitudinal deceleration was reduced by 1.28 
m/s2. This can effectively reduce the subject vehicle’s lon-
gitudinal acceleration fluctuations caused by the safe lane 
change of a preceding vehicle in the adjacent lane, and it 
thereby improves the riding comfort.

6.2 � Simulation Results under Dangerous Lane‑changing 
Condition

Initially, the subject vehicle followed the preceding 
vehicle in the current lane at the set speed, the driving 
speed was 25 m/s, and the longitudinal relative distance 
between the subject and preceding vehicle in the current 
lane was 50 m. The driving speed of the preceding vehicle 
in the adjacent lane at the start of the simulation was 15 
m/s, and the longitudinal relative distance to the subject 
vehicle was 70 m. The preceding vehicle began to change 
lanes 4.5 s after the start of the simulation. The simula-
tion results are shown in Figures 21 and 22.

At 5.5 s after the start of the simulation, the lane-
changing intention prediction algorithm based on slid-
ing window SVM detected that the preceding vehicle in 
the adjacent lane had a lane-changing intention; here, 
the RDS was 2, which means that the target vehicle in the 
adjacent lane had a lane-changing intention and there 
was a risk of collision, as shown in Figure  21(a)–(b). In 
this case, priority should be given to the target vehicle in 
the adjacent lane. The result is shown in Figure 21(c)–(d). 

Figure 20  Simulation results of traditional ACC longitudinal control 
under safe lane-changing condition
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The target vehicle selection algorithm here proposed 
jumped directly from the target vehicle in the current 
lane to that in the adjacent one when the lane-changing 
intention was detected. According to Figure  22(b)–(c), 
when using the target vehicle selection method of the 
traditional ACC algorithm, the target vehicle jumped 
directly from the target vehicle in the current lane to that 
in the adjacent lane at 6.25 s when the target vehicle in 
the adjacent lane crossed the lane line. The lane-changing 
intention prediction algorithm based on the sliding win-
dow SVM identified the lane-changing intention of the 
preceding vehicle 0.75 s earlier than the traditional ACC 
target vehicle selection algorithm.

Figures 21(e) and 22(d) show the longitudinal accelera-
tion curve of the subject vehicle under dangerous lane-
changing conditions. Figures  21(f ) and 22(e) show the 
collision signal between the subject vehicle and the sur-
rounding traffic vehicles. The simulation results show 

that the maximum longitudinal deceleration of the sub-
ject vehicle under the target vehicle selection algorithm 
here proposed and the target vehicle selection method of 
the traditional ACC system both reached the maximum 
value of 4 m/s2. However, the proposed target vehicle 
selection algorithm responded faster (0.75 s earlier) to 
the lane change of the preceding vehicle in the adjacent 
lane. In Figures 21(f ) and 22(e), the subject vehicle can be 
seen to collide with the target vehicle in the adjacent lane 
at 7.56 s when using the target vehicle selection method 
of the traditional ACC system. Because of the proposed 
target vehicle selection method, the subject vehicle could 
decelerate 0.75 s in advance, and the minimum longitudi-
nal relative distance between the subject and target vehi-
cle in the adjacent lane was 4.5 m, effectively avoiding any 
collision.

Figure 21  Simulation results of longitudinal control based on 
lane-changing intention prediction of preceding vehicle under 
dangerous lane-changing condition Figure 22  Simulation results of traditional ACC longitudinal control 

under dangerous lane-changing condition
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6.3 � Simulation Results under Lane‑changing Cancellation 
Condition

Initially, the subject vehicle followed the preceding 
vehicle in the current lane at the set speed, the driving 
speed was 25 m/s, and the longitudinal relative distance 
between the subject and preceding vehicle in the current 
lane was 50 m. The driving speed of the preceding vehicle 
in the adjacent lane at the start of the simulation was 20 
m/s, and the longitudinal relative distance to the subject 
vehicle was 70 m. The preceding vehicle began to change 
lanes 4.5 s after the start of the simulation. The simula-
tion results are shown in Figures 23 and 24.

At 5.7 s after the start of the simulation, the lane-chang-
ing intention prediction algorithm based on the sliding 
window SVM detected that the preceding vehicle in the 
adjacent lane had a lane-changing intention; here, the 
RDS was 1, which means the target vehicle in the adja-
cent lane had a lane- changing intention and there was no 
risk of collision, as shown in Figure 23(a)–(b). Therefore, 
the target vehicle selection algorithm fused the target 

vehicle in the current lane with that in the adjacent lane. 
The result of the fusion is shown in Figure 23(c)–(d). The 
target vehicle smoothly transitioned from the target vehi-
cle in the current lane (ID3) to that in the adjacent lane 
(ID393).

Before the lane change was completed, the proposed 
lane-changing intention prediction algorithm detected 
that the target vehicle in the adjacent lane cancelled the 
lane change maneuver at 7.8 s, and α was 0.58 at this 
time, as shown in Figure  23(a)–(b). If the target vehicle 
directly switches back to the target vehicle in the current 
lane, it will inevitably lead to the jump of the target vehi-
cle. Therefore, it is necessary to select the target vehicle 
according to the target vehicle selection algorithm under 
the lane-changing cancellation condition, so that the 
target vehicle can smoothly transition back to the target 
vehicle in the current lane. The target vehicle information 
is shown in Figure 23(c)–(d).

When using the target vehicle selection method of 
the traditional ACC system, the target vehicle jumped 

Figure 23  Simulation results of longitudinal control based on 
lane-changing intention prediction of preceding vehicle under 
lane-changing cancellation condition

Figure 24  Simulation results of traditional ACC longitudinal control 
under lane-changing cancellation condition
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directly from the target vehicle in the current lane to 
that in the adjacent lane, because the target vehicle in the 
adjacent lane crossed the left lane line at 6.6 s. Further-
more, at 8.3 s, because the target vehicle in the adjacent 
lane crossed the left lane line and returned to its original 
lane, the target vehicle switched from the target vehicle 
in the adjacent lane back to that in the current lane. Fig-
ures  23(e) and 24(d) show the longitudinal acceleration 
of the subject vehicle under the lane-changing cancella-
tion condition. It can be seen from the simulation results 
that the maximum longitudinal deceleration of the sub-
ject vehicle was 1.94 m/s2 during the entire control pro-
cess, when using the target vehicle selection algorithm 
proposed in this paper. When using the target vehicle 
selection method of the traditional ACC system, the 
maximum longitudinal deceleration of the subject vehi-
cle was 3.70 m/s2. The maximum longitudinal decelera-
tion was reduced by 1.28 m/s2. However, the maximum 
acceleration was almost identical. This is because at the 
current speed, the acceleration of the subject vehicle was 
limited, which means that, within 8.5–10 s of the start of 
the simulation, the throttle opening of the subject vehicle 
had reached 100%. However, from the desired accelera-
tion curve, it can also be seen that through the smooth 
transition of the target vehicle, the maximum desired 
acceleration was reduced by 1.14 m/s2 when using the 
proposed target vehicle selection algorithm (the maxi-
mum desired acceleration was 2.24 m/s2) compared with 
the target vehicle selection method of the traditional 
ACC system (the maximum desired acceleration was 3.38 
m/s2).

7 � Conclusions
In this paper, a target vehicle selection algorithm based 
on the prediction of the preceding vehicle’s lane-chang-
ing intention was proposed. This lane-changing intention 
was identified by the lane-changing intention prediction 
algorithm based on the sliding window SVM, as trained 
on the NGSIM dataset. The lane-changing intention pre-
diction algorithm proposed in this paper was applicable 
to the preceding vehicle both in the current lane and in 
the adjacent one. Through comparisons with the target 
vehicle selection method of the traditional ACC system, 
the simulation results indicate that the target vehicle 
selection algorithm proposed in this paper can respond 
to the lane change of the preceding vehicle in advance, 
thereby effectively reducing the longitudinal acceleration 
fluctuation and avoiding collisions under dangerous lane-
changing conditions.

As future work, the trajectory of the preceding vehicle 
will be predicted, to further improve the driving safety of 
the subject vehicle. Meanwhile, the proposed algorithm 

will be verified on a real vehicle platform, to verify the 
real–time ability of the algorithm and its robustness to 
interference in real road environments.
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