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Tooth Position and Deformation 
of Flexspline Assembled with Cam in Harmonic 
Drive Based on Force Analysis
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Abstract 

Deformation of the flexspline is the basis of analyzing tooth trajectory and designing tooth profile. Considering the 
tooth influence on the position of equivalent neutral layer, a piecewise method for calculating the deformation of 
flexspline assembled with a cam wave generator is presented in this paper. Firstly, a mechanic model of a ring of 
uniform thickness in contact with a rigid cam is established. The displacements of the ring inside and outside an 
unknown wrapping angle are determined by the geometric constraints of the cam profile and the equilibrium rela-
tionship, respectively. Meanwhile, the wrapping angle is solved according to the boundary conditions. The assembly 
forces are derived to investigate the circumferential elongation and strain. Then, considering the tooth effects on 
the neutral layer of flexspline, the tooth is positioned on the equivalent neutral layer, which is the non-elongation 
layer within one gear pitch but offset from the geometric mid-layer. The equivalent neutral layer is positioned by the 
empirical formula of the offset ratio, which is summarized by the orthogonal simulation on finite element models 
of racks. Finally, finite element models of a ring-shaped and a cup-shaped flexspline assembled with elliptical cam 
are established to verify the effectiveness and accuracy of the piecewise method. The results show that, compared 
with the geometric method, the tooth positioning deviation calculated by the piecewise method can be reduced 
by about 70% with a more accurate deformation description from the geometric condition and mechanic condition 
inside and outside the wrapping angle.
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1  Introduction
Harmonic drive is a transmission mechanism invented by 
Musser [1]. It consists of three main components: wave 
generator (WG), flexspline (FS), and circular spline. The 
rotating WG drives the FS producing oval-shaped defor-
mation periodically to realize the meshing between the 
FS tooth and the circular spline tooth and to transfer 
torque and motion. Harmonic drives possess a number of 
advantages: compact size, light in weight, large gear ratio 
in one stage, high load-carrying capacity, small moment 

of inertia of the mechanism and backlash. Thus, har-
monic drives are widely used in fields requiring precision 
transmission, such as aerospace, instruments, industrial 
robots, medical equipment, and military and national 
defense equipment [2]. For FS is a thin-walled compo-
nent, the research of torsion measurement [3] and hys-
teresis characteristics [4] are essential means to evaluate 
its working performance. In addition, the deformation of 
the FS not only causes structural stresses [5, 6], but also 
is an essential basis for the tooth positioning and mesh-
ing trajectory [7], tooth profile design [8, 9], and backlash 
calculation [10, 11].

The positioning of the tooth depends on the accurate 
description of the FS deformation. In order to calculate 
the FS deformation, Ivanov [7] proposed a ring model, 
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which lays a theoretical foundation for the analysis of 
deformation and force of the FS. Based on this, Ivanov 
[7] and Shen [10] conducted a more detailed study on the 
FS deformation under the action of various WGs such as 
four-rollers WG, double-discs WG, and cam WG. Dong 
et al. [12] calculated the assembly deformation of a cup-
shaped FS and fitted the loaded deformation results with 
cubic spline curves. Ma et  al. [13] developed an experi-
mental apparatus that integrates a special-fabricated 
micro-displacement platform and a pair of laser sensors 
to measure the radial displacement of the FS and investi-
gated the effect of the driving speed on the deformation 
characteristics of the FS.

At present, the theoretical analysis of FS deformation 
is still based on the assumption of small deformation 
and non-elongation of the neutral layer. Chen et al. [14] 
found that due to the assumption of small deformation, 
the arc length of the deformed neutral curve expressed 
by the displacements is a little longer than the original 
arc. Yang et  al. [15] conducted a more rigorous discus-
sion on the deformed neutral curve, which described by 
displacements, and pointed out that the correct curve 
length can be obtained by the integration on the curve’s 
geometric shape of the deformed neutral layer, which can 
be expressed by the equidistant line of cam WG profile. 
The cam WG not only makes the FS maintain a more sta-
ble deformation and ideal meshing state under transmis-
sion torque but also produces the FS deformation to any 
shape through a proper design of the cam profile. There-
fore, the cam WG is the most widely used form in the 
harmonic drive.

With the assumption of FS tightly fitted with the cam 
WG, the FS deformation under the action of cam is usu-
ally determined directly by the geometry of the cam, 
which dramatically simplifies the design process. Maiti 
[16] provided a cam formed by splicing arcs at the major 
axis and elliptical arcs at the minor axis to make the 
standard involute tooth work normally. Gravagno [17] 
used a cam follower system to study the influence of the 
cam WG profile on the meshing performance of the FS. 
In addition, Routh et  al. [18] studied the effect of tooth 
pitch variation on the contact between the teeth pairs on 
the elliptic pitch curve of FS that formed by the action 
of elliptical cam. In fact, there is a certain gap between 
the cam and the FS. Routh et  al. [19] and Li et  al. [20] 
considered the clearance caused by the taper deforma-
tion of cup-shaped FS and by the roughness between the 
FS-cam contact surface, respectively, when studying the 
hydrodynamic lubrication.

In addition, in order to reduce the FS stresses, a clear-
ance fit is usually designed between the FS and the WG. 
Therefore, the assumption that the WG and the FS con-
tact over the entire circumferential area is inappropriate. 

At the same time, slight circumferential elongation of the 
FS neutral layer under the action of the assembly force 
may lead to separation on a small scale. Therefore, it must 
be more realistic to consider that they are only in con-
tact in some areas around the major axis of WG. Chen 
et al. [14, 21] conducted theoretical studies on the neu-
tral layer elongation of FSs under the action of double-
disks WG and four-roller WG and verified the elongation 
by finite element simulation. The research confirms that 
the circumferential elongation of the FS neutral layer 
exists, but it is far less than the extra length obtained by 
the integration the displacement under the assumption of 
small deformation. Considering a ring model in contact 
with WG in partial along the circumferential direction, 
mechanic analysis in contact region will help us to find a 
more realistic details of the deformation and the internal 
forces inside and outside of the more reasonable wrap-
ping angle.

At present, the mid-layer radius of the ring model used 
to calculate the FS deformation is considering the same 
with the radius of the geometric mid-layer (GML) of FS 
tooth rim, which ignored the tooth. However, the tooth 
not only affects the stress [22, 23] and meshing [24, 25] 
of the FS but also causes the change of the actual neutral 
layer (ANL) on position and shape. Kondo [9] performed 
a bending test on an enlarged simple trapezoidal rack to 
obtain the ANL distribution. His research shows that the 
ANL of rack is not a straight line, and its position devi-
ates from the GML. The shape and position change of 
the ANL makes the previous ring model have a certain 
model deviation. Considering the influence of the tooth 
to improve the ring model can reduce the deviation of 
the FS deformation results and improve the positioning 
accuracy of the tooth.

This paper is aiming to calculate the displacement of FS 
accurately. The forces and displacements on the equiva-
lent neutral layer (ENL) of the FS are studied under the 
action of a cam WG. In Section 2, the existing methods 
for tooth positioning based on the deformation of FS are 
described, and the causes of tooth position deviation are 
analyzed. In Section 3, the actual contact state and forces 
between the cam and the ring are analyzed, and a piece-
wise method of calculating the ring’s displacement is 
proposed, which is verified by finite element analysis of 
a ring-cam assembly model with shell elements. In Sec-
tion 4, a bending rack model is established with 2D solid 
elements to analyze the influence of the tooth geometric 
parameters on the shape and position of ANL. The con-
cept of ENL is introduced, and an empirical formula of 
ENL offset ratio is fitted through orthogonal simulations. 
The mid-layer of the ring model is migrated to the posi-
tion of FS’s ENL. In Section 5, validation models of a ring-
shaped FS and a cup-shaped FS, which all assembled with 
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an elliptical cam, are introduced. In Section 6, The simu-
lations of the validation models are carried out, and the 
ring-shaped FS is used to verify the theoretical method of 
this paper. The deformation and force characteristics of 
cup-shaped FS are also discussed. Finally, some conclu-
sions of this paper are summarized in Section 7.

2 � Tooth Positioning Methods and Deviations
Ivanov [7] constructed the tooth profile coordinate sys-
tem to position the tooth on the mid-layer of the FS and 
calculated the radial and circumferential displacements 
of the tooth based on the deformation and puts forward a 
graphical method for calculating the tooth trajectory and 
the backlash between the teeth pairs. Shen [10] proposed 
an envelope method for conjugate tooth profile design 
based on the deformation curve ρ(ϕ ) constructed by the 
displacement on the mid-layer of the FS to position the 
tooth. Figure 1 shows the correspondence relationship in 
the envelope method.

Figure 1 illustrates that the mid-layer circle (dash line) 
of the FS with a radius of rm is deformed into a curve 
shape (heavy line). Coordinate system {O-XY} is fixed on 
the WG, and the Y and X axes coincide with the major 
and minor axes, respectively. Coordinate system {O1-
X1Y1}, fixed on the FS tooth, is located on the deformed 
curve of the initial circle, and the Y1-axis coincides with 
the tooth symmetry line. Coordinate system {O-X2Y2}, 
located at the rotating center, is fixed on the circular 

spline. As the FS deformed, its tooth positioning point 
O1 (at polar angle ϕ to the Y-axis) moves to O1’ (at polar 
angle ϕ1 to the Y-axis) with the following displacements 
and orientation: radial displacement w(ϕ ), circumfer-
ential displacement v(ϕ ), and the normal rotation angle 
θ(ϕ ). By using the theories of material mechanics, Ivanov 
[7] and Shen [10] performed rigorous force analysis on 
various deformed models, such as four-rollers model 
and double-discs model, under the assumptions of small 
deformation and non-elongation on mid-layer, and 
derived the expressions and relationships of w, v, and θ.

Generally, the deformed shape of the mid-layer is 
expressed in polar coordinates:

The deformed curve of the mid-layer expressed by Eq. 
(1) in the envelope method [10] is used to position the 
tooth. In general, Eq. (1) is also used to construct equidis-
tant cam profiles to maintain the designed curve defor-
mation. However, the expression of the curve by Eq. (1) 
is not accurate enough. It can be seen in Figure 1 that the 
polar angle corresponding to the polar diameter ρ should 
be ϕ1, not ϕ . Therefore, ρ(ϕ ) in Eq. (1) only describes the 
polar diameter accurately, but do not describe the polar 
angle clearly. Chen et  al. [14] obtained the deformed 
curve length of the mid-layer by integrating ρ(ϕ ) with 
respect to ϕ and found that the deformed curve length is 
larger than the arc length calculated on the initial circle. 
Moreover, the geometric elongation is much more signif-
icant than the elongation caused by the circumferential 
assembly force. Considering this deviation, the current 
design manual [11] has made the following approximate 
correction to the polar angle:

Chen et al. [26] derived the relationship between ϕ1 and 
ϕ according to the assumption of non-elongation on the 
mid-layer,

and substitute ϕ1 for ϕ to position the tooth more accu-
rately in the conjugate equation [10]. However, the 
object of integration in Eq. (3) is still ρ(ϕ ), so the devia-
tion caused by geometric elongation still exists. Yang 
et  al. [15] proposed that the deformed curve length of 
the mid-layer under the action of an elliptical cam should 
be integrated with polar diameter ρ(ϕ1), which is directly 
expressed by its real polar angle, ϕ1, to determine the 
relationship between ϕ1 and ϕ:

(1)ρ(ϕ) = rm + w(ϕ),

(2)ϕ1 = ϕ +
v(ϕ)

rm
,

(3)

ϕ =
∫ ϕ1

0

√

[

1+
w(ϕ)

rm

]2

+
[

ẇ(ϕ)

rm

]2

dϕ = F(ϕ1),

Figure 1  Schematic diagram of the positional relationship between 
cam, flexspline and circular spline
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The relationship between ϕ1 and ϕ expressed by Eq. 
(4) is more accurate than that in Eq. (3). Based on the 
assumption of non-elongation of the mid-layer, the FS 
is assumed to be closely attached to the cam after defor-
mation. Then the tooth can be positioned directly by ρ(ϕ
1). When calculating the tooth trajectory and backlash 
between tooth pairs, the tooth displacements are calcu-
lated as follows:

The calculation in Eq. (5) can be performed according 
to the Geometric Equation [7] that satisfies the non-elon-
gation assumption. It does not involve complicated force 
analysis and calculation, which can significantly simplify 
the design process. However, if the FS is not closely con-
tacting with the cam, the deviations of displacements cal-
culation will occur.

Besides, it is noted that the independent variable ϕ1 
of the displacements w1, v1, and θ1 in Eq. (5) is the polar 
angle of ρ(ϕ1). However, in the existing geometric rela-
tionship of the displacements, the independent variable 
of w, v, and θ is the polar angle ϕ on the mid-layer circle 
without deformation [7, 10]. The descriptions of the dis-
placements in terms of the deformed geometry will also 
cause displacement calculation deviations.

As mentioned above, factors such as the differences in 
the independent variables of deformation and displace-
ment, the elongation of the FS under the assembly force, 
and the change in the contact state between the cam and 
the FS will cause deviations in the calculation of the FS 
deformation, and then affect the tooth positioning accu-
racy. Proposing a displacement calculation method based 
on force analysis of the FS and cam assembly might not 
only reveal the actual contact state of them but also 
reduce the deviations of displacement calculation and 
improve the accuracy of tooth positioning.

3 � Model and Methodology Based on Force 
Analysis

At first, the model and methodology of deformation and 
force analysis of the FS is presented using the uniform 
thickness ring proposed by Ivanov [7], the tooth effect 
will be discussed in Section 4 later. As the calculation of 
the ring model is carried on the mid-layer, the cam pro-
file is defined as contacting the ring on the mid-layer.

(4)ϕ =
1

rm

∫ ϕ1

0

√

ρ2(ϕ1)+ ρ̇2(ϕ1)dϕ1,

(5)























w1 = ρ(ϕ1)− rm,

v1 = −
� ϕ1

0

w1dϕ1,

θ1 =
1

rm
(v1 − ẇ1).

3.1 � Ring Deformation Calculation Piecewise 
with Wrapping Angle

The analytical model of the ring deformed by the cam is 
shown in Figure  2 (due to the symmetry of the model, 
only the first quadrant is illustrated here). In Figure  2, 
the radius of the mid-layer of the ring (arc AC) is rm, the 
expression of the cam profile (curve A’C’) is ρ(ϕ1), the 
y-axis coincides with the cam’s major axis, and the x-axis 
coincides with its minor axis. Under the assumption that 
the ring is in close contact with the cam, the deformed 
arc AC will coincide with curve A’C’, so its deformed 
shape can also be expressed by ρ(ϕ1).

In this case, the tooth positioning can be achieved by 
ρ(ϕ1) and Eq. (5). For the convenience of description, this 
method for calculating the displacement of the ring is 
named the Geometric Method. According to the content 
of Section 2, the ring and the cam may only be in contact 
partially, so the concept of wrapping angle is introduced 
to analyze the ring model.

Suppose that the segment AB (in Figure 2) on the ring 
continuously contacts the cam to form a curve A’B’ after 
deformation, and the segment BC’s deformed shape 
B’C’ does not contact the cam. Then only the deformed 
shape A’B’ can be determined with the expression of 
ρ(ϕ1). Based on the assumption of non-elongation in 
the circumferential direction, the polar angle γ (cor-
responding to undeformed arc AB) and the polar angle 
γ1(corresponding to deformed curve A’B’) have the 
relationship in Eq. (4). Define γ and γ1 as the wrapping 

Figure 2  Schematic diagram of the piecewise deformation of a ring 
under a cam
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angles of ring AB before and after deformation, respec-
tively. Therefore, the ring inside the wrapping angle  
(0 ≤ ϕ1 ≤ γ1) is in close contact to the cam, so the curve 
A’B’ is constrained on the geometric profile of the cam, 
and its displacement can be calculated by Eq. (5); the arc 
BC, outside the wrapping angle (γ ≤ ϕ ≤ π/2), needs to 
solve the bending differential equation [7] to obtain the 
deformation calculation formula:

where w2 is the radial displacement, v2 is the circum-
ferential displacement, θ2 is the normal rotation angle; 
E is the elastic modulus, and I is the moment of iner-
tia of cross area. The unknown coefficients B1, B2, X1, 
and X2, can be determined by boundary conditions (in 
Section  3.2.2). For the convenience of description, the 
method of calculating the ring displacement segmented 
with wrapping angle by the Eq. (5) and Eq. (6) is named 
the Piecewise Method.

3.2 � Wrapping Angle and Ring Force Calculation
To determine the wrapping angle of the ring to the cam 
and the force condition of the ring, a force analysis of the 
ring deformed under the action of the cam is required. 
Inside the wrapping angle, the ring bears the radial exter-
nal load caused by the contact of the cam, while there is 
no external load outside the wrapping angle, so the force 
analysis of the ring is segmented by the wrapping angle.

3.2.1 � Force Analysis of Ring
According to the deformation analysis in Section  3.1, 
the shape change of the ring inside the wrapping angle 
(0 ≤ ϕ1 ≤ γ1) from AB to A’B’ is known, then its curva-
ture change can be obtained for calculating the bending 
moment M1 (Figure 3a) on any cross-section by using the 
elastic equation [7]. In addition, there are also a circum-
ferential force FN1, a shear force FS1, and a radial external 
load qr on any section within the A’B’ segment. Mγ, FNγ, 
and FSγ are the corresponding forces in the cross-section, 
which is on the wrapping boundary.

According to the equilibrium equation [7], the assem-
bly forces on the ring inside the wrapping angle can be 
calculated as follows:

(6)



















































w2 = B1 sin ϕ + B2 cosϕ −
r2m
EI

(X1 + X2rm)

−
r3m
2EI

X2ϕ cosϕ,

v2 = −
� ϕ

π/2

w2dϕ,

θ2 =
1

rm
(v2 − ẇ2),

where FN0 is the integral constant to be determined.
Although the deformed shape of the ring outside the 

wrapping angle is unknown, it should meet the condition 
of force balance. Before deformed, this segment is an ini-
tial arc within γ ≤ ϕ ≤ π/2. When deformed, it has a cir-
cumferential force FN2, a shear force FS2, and a bending 
moment M2 in any cross-section (Figure 3b). The cross-
section on the minor axis has bending moment X1 and 
circumferential force X2. The forces of the ring outside 
the wrapping angle can be calculated as following [14]:

(7)























































M1 = −
EI

r2m
(ẅ1 + w1),

FN1 = −
M1

rm
+ FN0,

FS1 =
Ṁ1

rm
,

qr = −
M̈1 +M1

r2m
+

FN0

rm
,

(a) Forces inside the wrapping angle

(b) Forces outside the wrapping angle
Figure 3  Free body diagram of the ring



Page 6 of 20Yao et al. Chin. J. Mech. Eng.          (2021) 34:104 

3.2.2 � Determine Wrapping Angle with Boundary Conditions
Since the wrapping angle γ (or γ1) is unknown, the above-
mentioned piecewise calculation conditions of deforma-
tion and force are currently incomplete. Based on the 
deformations and forces of the whole ring, the wrapping 
angle can be determined according to reasonable bound-
ary conditions. Besides the wrapping angle, there are the 
other four unknown quantities: B1, B2, X1, and X2 (Eq. 
(6)). Refer to the boundary conditions of analyzing of the 
wrapping angle of the ring to the double-discs, there are

1)	 ẇ2|ϕ=π/2 = 0;
2)	w1|ϕ1=γ1 = w2|ϕ=γ ;
3)	 ẇ1|ϕ1=γ1 = ẇ2|ϕ=γ ;
4)	 M1|ϕ1=γ1 = M2|ϕ=γ ;
5)	v1|ϕ1=γ1 = v2|ϕ=γ .

Substituting Eqs. (5)‒(8) into the boundary condi-
tions 1)–4), the following formulae can be obtained after 
simplification:

where C1 = 2γ − π+ 2 cos γ sin γ , 
C2 = 2γ − π− 2 cos γ sin γ .

As γ and γ1 has the relationship in Eq. (4), B1, B2, X1, 
and X2 can be converted into variables about γ1. Then the 
wrapping angle can be solved with the following formula 
according to boundary condition 5):

When γ1 obtained from Eq. (10), the corresponding γ 
can be determined by Eq. (4). It can be noted from Eq. 
(10) that the wrapping angle only depends on the shape of 

(8)







M2 = X1 + X2rm(1− sin ϕ),
FN2 = X2 sin ϕ,
FS2 = −X2 cosϕ.

(9)



















































B1 =
1

C1

�

[2 cos γ − (2γ − π) sin γ ]ẅ1|ϕ1=γ1

+[4 sin γ + (2γ − π) cos γ ]ẇ1|ϕ1=γ1

�

,

B2 =
π

C1

�

cos γ ẅ1|ϕ1=γ1 + sin γ ẇ1|ϕ1=γ1

�

,

X1 = −
EI

C1r2m

�

(C2 + 4 cos γ )ẅ1|ϕ1=γ1 + C1w1|ϕ1=γ1

+4 sin γ (1− sin γ )ẇ1|ϕ1=γ1

�

,

X2 =
4EI

C1r3m

�

cos γ ẅ1|ϕ1=γ1 + sin γ ẇ1|ϕ1=γ1

�

,

(10)

1

C1

[

4 cos2 γ + C2

(

π

2
− γ

)]

ẅ1|ϕ1=γ1

+
[

1

C1
(2π− 4γ ) cos2 γ + 3

]

ẇ1|ϕ1=γ1

+
(

π

2
− γ

)

w1|ϕ1=γ1 +
∫ γ1

0

w1dϕ1=0.

the cam profile. As the wrapping angle is obtained, then 
B1, B2, X1, and X2 can be determined by Eq. (9). Further-
more, the ring displacement outside the wrapping angle 
can be determined by Eq. (6), and the assembly forces 
expressed by Eq. (7) and Eq. (8) can also be determined.

3.2.3 � Circumferential Strain and Elongation
In the theoretical calculation of the ring displace-
ment, the circumferential non-elongation assumption 
is adopted, which is considered that the deformation 
is mainly formed by the shape change under bending 
moment rather than the elongation caused by the cir-
cumferential force. In fact, under the circumferential 
forces FN1 and FN2 shown in Figure  3, the ring will be 
extended with a specific elongation. This elongation is 
often ignored because it is too small, but it is enough to 
change the actual contact state of the FS to the WG, thus 
causing a specific tooth positioning deviation.

Since the circumferential force is continuous, the inte-
gral constant FN0 can be determined by the circumferen-
tial force in the cross-section at wrapping angle:

According to the circumferential forces in Eqs. (7) and 
(8), the circumferential strain of the ring

where χ1 = −(ẅ1 + w1)
/

r2m , (denotes the curvature 
change)

The curvature change is the derivative of the normal 
angle to the arc length, i.e., χ1 = θ̇1

/

rm . Therefore, by 
integrating the circumferential strain εN along the arc 
length, the circumferential elongation of the ring can be 
obtained

(11)FN0 = X2 sin γ+
1

rm
M1|ϕ1=γ1 .

(12)

εN =







δ20
12rm

�

χγ − χ1 + 4C3

r2mC1
sin γ

�

, 0 ≤ ϕ1 ≤ γ1,

δ20C3

3C1r3m
sin ϕ, γ ≤ ϕ ≤ π

2 ,

χγ = −
1

r2m

[

ẅ1|ϕ1=γ1 + w1|ϕ1=γ1

]

,

C3 = cos γ ẅ1|ϕ1=γ1 + sin γ ẇ1|ϕ1=γ1 .

(13)

ΔlN =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�2
0

12

�
4C3 sin �

r2
m
C1

�1 + �1�� −
�1

rm

�
, 0 ≤ �1 ≤ �1,

�2
0

12

⎡⎢⎢⎢⎢⎣

4C3

r2
m
C1

�
�1 sin � + cos � − cos�

�

+�1�� −
��

rm

⎤⎥⎥⎥⎥⎦
, � ≤ � ≤

π

2
.
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3.3 � Forces and Displacements of Flexspline Assembled 
with Elliptical Cam

Segment analysis of ring deformation and force based on 
wrapping angle has previously always been the concept 
related to the double-disk WG. Because the radius of the 
eccentric disk is smaller than the radius of the ring, so the 
ring cannot be wrapped entirely on the disk. The formu-
lae obtained from the present analysis is also applicable 
to solving the FS cases with a double-disk (Appendix 1).

To the best authors’ knowledge, the deformation of FS 
assembled with cam has not been investigated based on 
force analysis. Take elliptical cam for calculation. The 
model parameters are tabulated in Table  1. The elastic 
modulus of the ring E = 196 GPa. The polar diameters 
on the major axis and minor axis of the elliptical cam in 
Table 1 are calculated by Cмиpнoв formula [10]

and the expression of the cam profile is

To save computer time, the contact model between 
elliptical cam and ring is established by shell elements 
in ANSYS environment, and the cam is simplified as a 
rigid ring with its elliptical shape. The contact elements 
are established between the inner surface of the flexible 
ring and the outer surface of the rigid elliptical ring (rep-
resents the cam). As the contact pressure of the model 
is illustrated in Figure 4, it can be seen that the contact 
between the elliptical cam and the ring exists only in a 
part of the area near the major axis of the cam, which 
indicates that the wrapping angle of the ring to the ellipti-
cal cam does exist.

According to Eq. (10), the wrapping angle γ1 = 35.29° 
(γ = 35.56°) of the ring to the elliptical cam is obtained. 
Substituting it into Eq. (9), then B1 = 2.553, B2 = 3.486, 
X1 = − 9.127 N·mm, X2 = 0.58 N is determined. In the 

(14)







ρa = rm + w0,

ρb =
(12rm − 7ρa)+ 4

√
ρa(3rm − 2ρa)

9
,

(15)ρ =
ρaρb

√

ρ2
a sin

2 ϕ1 + ρ2
b cos

2 ϕ1

.

finite element model (FEM), the bending moment of the 
ring at the minor axis is − 9.196 N·mm, and the circum-
ferential force is 0.594 N. Compared with the finite ele-
ment results, the deviations of the numerical solutions of 
X1 and X2 are 0.75% and 2.4%, respectively, which indi-
cates that the numerical solutions are very close to the 
finite element results.

3.3.1 � Displacements of Ring under Elliptical Cam
Calculate the displacements of the ring in Table 1 by the 
geometric method and the piecewise method and extract 
the displacement results from the FS for reference. Fig-
ure 5 illustrates the comparisons between two numerical 
and simulation results about the radial displacement, the 
circumferential displacement, and the normal rotation 
angle.

In Figure 5, wt1, vt1, and θt1 are numerical results of the 
radial displacement, the circumferential displacement, 
and the normal rotation angle calculated by the geomet-
ric method, respectively. wt2, vt2, and θt2 are the numeri-
cal results of the corresponding displacements calculated 
by the piecewise method. UX, UY, and ROTZ are the 
simulation results of the FS. Figure 5 illustrates that the 
displacements calculated by the two theoretical meth-
ods are very close to the results of the FS. Also, the two 
numerical results of each displacement are entirely the 
same inside the wrapping angle, but slightly different out-
side the wrapping angle.

Based on the finite element results, two numerical 
results are used to minus the corresponding result of 
the FS to obtain the deviations of the displacements. As 
shown in Figure 6, Δwt1, Δvt1, and Δθt1 illustrate the radial 
displacement deviation, the circumferential displacement 
deviation, and the normal rotation angle deviation of the 
geometric method. Δwt2, Δvt2, and Δθt2 illustrate the cor-
responding deviations of the piecewise method.

Table 1  Structural parameters of ring and elliptical cam (mm)

Parameter Value

Ring radius on mid-layer rm 50

Ring thickness δ0 1

Ring width b 10

Maximum radial displacement in design w0 0.5

Polar diameters on the major axis ρa 50.5

Polar diameters on the minor axis ρb 49.4975

Figure 4  Nephogram of the contact pressure between the ring and 
elliptical cam
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Figure  6a illustrates that Δwt2 almost monotonously 
increases and Δwt1 (absolute value) increases rapidly out-
side the wrapping angle. Figure  6b shows that Δvt2 first 
increases and then decreases, reaching the maximum at 
the wrapping angle, while Δvt1 increases rapidly outside 
the wrapping angle. This is because vt2 is integrated from 
the minor axis to the major axis (Eq. (6)), so Δvt2 accu-
mulates to zero at the minor axis. However, vt1 is still an 
integral starting from the major axis to the minor axis, 
even outside the wrapping angle (Eq. (5)), so its devia-
tion Δvt1 is accumulated from the major axis to the minor 
axis. Figure 6c shows that Δθt2 fluctuates near zero and 

finally reduced to zero, while Δθt1 fluctuates greatly and 
does not decrease to zero at the minor axis.

Figure  6 shows that, in general, the deviations of the 
two numerical results of each displacement are the same 
inside the wrapping angle, which are mainly caused by 
the independent variable deviation and circumferential 
elongation. Moreover, the calculation deviation of the 
piecewise method outside the wrapping angle is smaller 
than that of the geometric method. The calculation devi-
ation of the piecewise method is mainly caused by the 
circumferential elongation, while the geometric deviation 

(a) Radial displacement

(b) Circumferential displacement

(c) Normal rotation angle
Figure 5  Displacements of ring assembled with elliptical cam

(a) Radial displacement deviation

(b) Circumferential displacement deviation

(c) Normal rotation angle deviation
Figure 6  Displacement deviations of ring assembled with elliptical 
cam
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is formed under the combined action of circumferential 
elongation, independent variable deviation and non-con-
tact state outside the wrapping angle. It can be seen from 
Figure  6 that, overall, the piecewise method eliminates 
the displacement calculation deviation caused by these 
factors to a certain extent, so it has a higher calculation 
accuracy.

3.3.2 � Assembly Force of Ring under Elliptical Cam
Calculate the numerical results of the assembly force of 
the ring, according to Eqs. (7), (8), and (11), and com-
pared with the bending moment M11, tensile force N11, 
and shear force Q13 of the FS on unit width. There is 
no direct corresponding simulation result for the radial 
external load qr, so the load on the unit width of the ring 
is compared with the contact pressure of the FS.

Figure  7 shows that the numerical results of the 
assembly forces of the ring are in good agreement with 
the finite element results. Among them, the bending 

moment M changes continuously and monotonously 
from the major axis ( ϕ = 0°) to the minor axis ( ϕ = 90°), 
and changes the direction at ϕ = 45° (Figure 7a); the shear 
force FS increases monotonously at first, then decreases 
monotonously after a sudden increase within a small 
range of about 2°‒5° (Figure 7b), the area where the shear 
force suddenly changes is the wrapping angle position; 
the circumferential force FN increases monotonously 
from the major axis to the minor axis, and the growth 
rate increases at first and then slows down (Figure  7c). 
In Figure  7d, the external load qr of the ring decreases 
monotonously inside the wrapping angle, and most of 
the contact pressure of the FS of the ring inside the wrap-
ping angle is basically consistent with that of qr. Different 
from the phenomenon that qr drops to zero directly out-
side the wrapping angle, the contact pressure increases 
sharply near the wrapping angle and then rapidly 
decreases to zero, which is due to the additional pressure 
caused by the shear jump at the wrapping angle of the FS. 

(a) Results of bending moment

(b) Results of shear force

(c) Results of circumferential tension force

(d) Results of radial external load
Figure 7  Assembly force of ring under elliptical cam
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The results in Figure 7 show that the piecewise method is 
basically accurate on the force analysis and calculation of 
the ring.

3.3.3 � Circumferential Strain and Elongation of the Ring 
under the Elliptical Cam

Figure 6 shows that the elongation of the ring under the 
assembly force has a specific effect on the displacement 
deviation, especially on the circumferential displacement 
deviation. Calculate the circumferential strain and elon-
gation of the ring, according to Eq. (12) and Eq. (13), and 
extract the corresponding results in the FS for compari-
son. The results are illustrated in Figure 8.

The circumferential strain in Figure  8a has the same 
trend as the circumferential force in Figure  7c and its 
numerical result is basically consistent with the finite ele-
ment result. The elongation of the ring obtained by inte-
grating the circumferential strain along the arc length 
monotonically increases, and its numerical result is basi-
cally the same as the simulation result (Figure 8b). In Fig-
ure 8b, when ϕ = 90°, the total elongation of the ring in 
the first quadrant under the assembly force is about 0.16 
μm.

Apply a 50 N tension force on the ENL (if the force is 
applied in other positions, the rack will bend) of the rack 
model (parameters in Table  2, Section  3.3), the elonga-
tion of the rack is 7.7 μm. Under the same conditions, 
the elongation of the smooth beam, which thickness is 
the same as the rack’s wall thickness, is 8 μm. The elonga-
tion of rack is only about 3.75% smaller than that of the 
smooth beam. Therefore, the forces of the ring can be 
regarded as that of the FS.

4 � Offset Correction of the Flexspline Equivalent 
Neutral Layer

In Section  3, the force and deformation analysis of the 
ring is based on the assumption of circumferential non-
elongation of the mid-layer, in which the radius rm is an 
important parameter. As the FS is simplified to a uniform 
thickness ring, the ENL is exactly its GML. However, 
when considering the tooth structure, there is an offset 
of the ENL, or even it is no longer in a cylindrical shape. 
The offset of the GML to the ENL will cause the offset 
deviation in both the geometric method and the piece-
wise method.

4.1 � Equivalent Neutral Layer of Flexspline
Kondo [9] conducted bending tests on simple trapezoi-
dal racks with gear modulus of m = 32 mm and with dif-
ferent rack thickness and found that the ANL of the rack 
fluctuates with the tooth structure (Appendix 2). As for 
the FS, its ANL will also fluctuate along the cylinder, 
so it is impossible to effectively calculate the deforma-
tion or stress based on such an ANL shape. Therefore, 
find a cylindrical surface on the FS: when the FS is bent, 
although the circumferential strain of the cylindrical 
surface is not always constant to zero, the strain integral 
within a gear pitch equals to zero, i.e., the arc length of 
the layer within a tooth pitch is maintained constant. 
This cylindrical surface is defined as the ENL of the ring 
gear, and its radius is ren.

Take a short section of the FS and reduce it to a straight 
rack model for bending analysis. Figure 9 shows the three 
layers when the rack model is bent: the ANL, the GML, 
and the ENL. In Figure  9, hn is the full tooth depth, hf 

(a) Results of circumferential strain

(b) Results of circumferential elongation
Figure 8  Circumferential strain and elongation of the ring under the 
elliptical cam

Table 2  Basic parameters of rack model

Parameter Formula Value

Gear modulus m (mm) – 0.5

Full tooth depth coefficient hn
* hn/m 2

Tooth root thickness coefficient Ks sf/πm 0.55

Dedendum arc radius coefficient ri
* ri/m 0.2

Rack thickness coefficient δ0
* δ0/m 2

Tooth profile angle at pitch line α (°) – 10
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is the dedendum height, sf is the tooth root thickness 
(defined as the thickness of the straight tooth profile 
extending to the tooth root), α is the tooth profile angle, 
rc is addendum arc radius, and ri is dedendum arc radius. 
dmn is the relative offset distance between the ENL and 
the GML.

In order to express the degree of relative offset between 
the GML and the ENL, the ENL offset ratio is defined as 
the ratio of the offset distance to half the wall thickness

As illustrated in Figure 10, Establish the FS of the rack 
by 2D solid elements in ANSYS environment, solve the 
model with a specific bending moment, for instance, 
50 N·m. Then perform the following operations in the 
post-processing: 1) Establish multiple paths parallel to 
the Y-axis (Figure 9), and map the X-strain results to the 
path, connect the points with zero strain result on each 
path to obtain the ANL distribution of the rack; 2) Estab-
lish a path parallel to the X-axis according to the initial 
Δmn, and map the X-strain results to the path; 3) integrate 
the strain in the X-direction to obtain the Elongation Δp 
within a gear path; 4) iterative the Y-coordinate of the 
path to make the elongation within a gear pitch approach 
to zero.

4.2 � Circumferential Strain and Elongation on Mid‑layer 
due to Offset from Equivalent Neutral Layer

When the FS is deformed by inserting a cam, the assem-
bly force, especially the circumferential force, will make 
both GML and the ENL producing a specified elonga-
tion. Besides, an amount of expansion or contraction 
produced by circumferential strain caused by bending 
will be superimposed on the GML due to the offset from 
the ENL. The circumferential strain on the GML caused 
by bending can be calculated according to the ENL offset 
ratio

(16)�mn =
2dmn

δ0
.

where the radial displacement w is applicable to be pro-
vided by any of the geometric method or the piecewise 
method. The addition elongation of the GML caused by 
ENL offset can be obtained by integrating εmn along the 
arc length

4.3 � Mid‑layer Offset Characteristics of Rack
By using the finite element method shown in Figure 10, 
the simple trapezoidal rack tested by Kondo [9] is 
modeled and calculated and then compared with the 

(17)εmn =
�mnδ0

2r2en
(ẅ + w),

(18)
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





















�mnδ0
2ren

� ϕ1
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Figure 9  Schematic diagram of rack structure and equivalent neutral 
layer

Figure 10  Flowchart for calculating neutral layer position and offset 
ratio
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experimental results. The simulation results show good 
agreement with the experimental results (Appendix 2), 
which verified the accuracy of the present simulation 
method. In order to analyze the mid-plane character-
istics of rack considering the ENL offset, a parametric 
rack model with detailed tooth profile features (Fig-
ure 9, Table 2) is established and the simulated accord-
ing to the flowchart illustrated in Figure  10. Elastic 
modulus of rack E = 196 GPa.

The position of the ANL of the rack obtained by the 
process shown in Figure  10 is illustrated in Figure  11. 
because of the symmetry of the structure, the horizon-
tal axis is valued within half the tooth pitch (πm/2), 
from the tooth symmetry line to the tooth space sym-
metry line.

It can be seen from Figure 11 that: 1) the ANL of the 
rack has a wavy shape that deviates outward from the 
GML (> δ0/2); 2) the offset distance at different posi-
tions on the ANL varies continuously, and the maxi-
mum offset is achieved at the stress concentration 
position (near the connection between the dedendum 
arc and the root line); 3) the offset of the ANL at the 
position of the tooth slot symmetry line is more signifi-
cant than that at the tooth symmetry line. These results 
show that the offset position of the ANL is not only 
related to the tooth structure but also affected by the 
stress concentration at the tooth space. Thus, the tooth 
dedendum arc, which can significantly influence the 
stress concentration, should also be considered when 
analyzing the offset of the neutral layer.

4.4 � Induction of Equivalent Neutral Layer Offset Ratio 
Formula

According to Section  4.3, the geometric parameters 
of the tooth may affect the position of ANL. Analyze 
the sensitive parameters of the offset ratio of ENL by 
using the dimensional analysis, and then summarize 
the empirical formula of the offset ratio can provide a 

theoretical basis of the correction of the ring model for 
calculating the FS deformation and force.

4.4.1 � Sensitive Parameter Analysis
According to the rack shown in Figure  9, the structural 
parameters that may affect the ANL offset include tooth 
depth, tooth thickness, dedendum arc radius, tooth pro-
file angle, and rack thickness. Among them, in the uni-
variate analysis, if the tooth thickness is constant, the 
change of tooth profile angle can be reflected by the 
change of tooth root thickness, so the change of tooth 
profile angle and tooth thickness are considered together 
as the change of tooth root thickness.

Rack experiments [9] and simulations (Appendix 2) 
have shown that the rack thickness has a significant effect 
on the offset of the rack’s ANL. Therefore, three struc-
tural parameters: tooth depth, tooth root thickness, and 
dedendum arc radius, are taken to be analyzed here. Tak-
ing the parameters in Table  2 as the basis and perform 
univariate simulations. The change of the rack’s ANL 
with the three parameters is shown in Figure 12.

Figure 12a shows that when the tooth depth coefficient 
hn

* valued with 1.65, 2 and 3 (hn
* = 3 exceeds the standard 

value of tooth height coefficient 2.35, here only valued for 
the purpose of analyzing the influence of tooth depth), 
the ANL distribution of the rack is basically the same, 
indicating that the change in tooth depth has almost no 
effect on the ANL when the tooth depth is enough. Fig-
ure  12b and Figure  12c show that when the tooth root 
thickness coefficient Ks valued with 0.45, 0.55 and 0.65, 
or when the dedendum arc radius coefficient ri

* valued 
with 0.02, 0.4, and 0.8, the ANL of the rack is significantly 
raised and the shape changes. Besides the rack thickness, 
it is illustrated in Figure  12 that the sensitive parame-
ters of ANL offset also include tooth root thickness and 
dedendum arc radius.

4.4.2 � Dimensional Analysis of Equivalent Neutral Layer 
Offset Ratio

According to the Π theorem in dimensional analysis 
[27], Δmn as the dependent variable is a dimensionless 
quantity, and the three independent variables: δ0, sf, and 
ri, have the same dimension of L and with a power of 1. 
Since the independent variables have the same dimen-
sion, one of them can be taken as the basic quantity. 
In this problem, it is appropriate to take δ0 as the basic 
quantity. Then the functional relationship between the 
new dimensionless variables is

where Π1(Δmn) represents the ENL offset ratio, Π2(sf /δ0) 
reflects the relative thickness of the tooth (i.e., the width 
of the tooth root relative to the rack thickness), and Π3(ri 

(19)f
(

�1(�mn),�2

(

sf
/

δ0
)

,�3

(

ri
/

δ0
))

= 0,

Figure 11  Distribution of the actual neutral layer
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/δ0) reflects the size of the dedendum arc relative to the 
rack thickness.

In order to obtain the function f of Eq. (19), 25 finite 
element rack models are designed and established for 
orthogonal simulation according to the parameter 
value recommendations [7, 10]. The ENL offset ratio 
Δmn, tabulated in Table  3, is obtained by the method 
illustrated in Figure 10. Due to the coupling constraint 
between the maximum dedendum arc radius and the 
maximum tooth root thickness, the items ‘–’ in Table 3 
indicate that the group of parameters exceed the geo-
metric constraint.

Table  3 shows that the ENL offset ratio of the rack 
increases monotonously with the relative tooth root 
thickness and increases monotonically with the relative 
dedendum arc radius. The results in Table 3 expressed as 
contour lines illustrated in Figure 13. The offset ratio has 
a linear relationship with the relative root thickness and 
the relative dedendum arc radius. When expressed in the 
Cartesian coordinate system, the offset ratio will appear 
as a spatial plane.

Fit the ENL offset ratio Δmn in Table 3 with the general 
equation of the space plane as follows:

After fitting, the parameters in Eq. (20) are: 
Π0 = − 7.3191, A = 11.8458, B = 13.6256. The R-Square 
and Reduced Chi-Sqr of the fitting are 0.9891 and 
3.455 × 10−2, respectively. The contour map of the fitted 
results of the ENL offset ratio is illustrated in Figure 14.

Then the ENL offset ratio Δmn has the following rela-
tionship with tooth root thickness, dedendum arc radius, 
and rack thickness (or wall thickness of FS):

(20)�1 = �0 + A�2 + B�3.

(a) Effect of tooth depth

(b) Effect of tooth root thickness

(c) Effect of dedendum arc radius
Figure 12  Actual neutral layers of rack with different structures

Table 3  Orthogonal simulation results of equivalent neutral 
layer offset ratio Δmn (%)

Π3 Π2

0.71 0.79 0.87 0.95 1.02

0.12 3.192 3.860 4.604 5.430 6.340

0.22 4.156 4.924 5.774 6.716 7.758

0.32 5.326 6.210 7.190 8.278 9.500

0.37 5.992 6.942 8.000 9.184 −
0.41 6.566 7.578 8.708 − −
0.46 7.344 8.442 − − −
0.51 8.198 − − − −

Figure 13  Contour map of the simulation results of the equivalent 
neutral layer offset ratio Δmn
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The empirical formula of the ENL offset ratio Δmn 
makes it possible to calculate the position of the ENL of 
the FS numerically and to improve the ring model for cal-
culating the displacement of FS. Alternatively, it can be 
used to evaluate the tooth circumferential positioning 
deviation when calculating the FS displacement on GML.

5 � Solid Finite Element Models of Flexspline‑cam 
Assembly for Verification

In Section 2, The assembly forces and deformation of the 
FS under the action of cam WG are analyzed, and then 
the offset position of the ENL of the FS considering the 
tooth effect is obtained in Section 3. To verify the accu-
racy of the piecewise method in calculating the displace-
ment on the ENL of the FS, the solid FS models with 
detailed tooth information are established to assemble 
with ring-shaped cams for contact analysis.

5.1 � Model of Ring‑shaped Flexspline Assembling Elliptical 
Cam

The structural and tooth parameters of the ring-shaped 
FS are tabulated in Table  4. The FS is modeled by 
3D-solid elements, and the cam, modeled by shell ele-
ments, is designed to have the same width of the FS. The 
profile of cam is calculated with the inner surface radius 
of FS, according to Eq. (14) and Eq. (15). Contact ele-
ments are arranged between the inner surface of the FS 
and the outer surface of the cam. The element size near 
the mid-layer of the FS is 0.035 mm. The assembly model 
is shown in Figure 15. the elastic modulus of the model 
material is E = 196 GPa, the Poisson’s ratio and friction 
coefficient are set to zero.

(21)�mn = (−7.3191δ0 + 11.8458sf + 13.6256ri)

100δ0
.

5.2 � Model of Cup‑shaped Flexspline Assembling Elliptical 
Cam

Figure  16 illustrates the structure of a cup-shaped FS, 
which is formed by adding a cup to the ring-shaped FS 
in Section 5.1. In Figure 16, Sf, Sm, and Sb are the front, 
middle, and rear cross-section positions on the tooth 

Figure 14  Contour map of the fitted results of equivalent neutral 
layer offset ratio Δmn

Table 4  Parameters of ring-shaped flexspline

Parameter Formula Value

Gear modulus m (mm) – 0.375

Number of tooth z – 160

Face width b (mm) – 10

Tooth profile angle at pitch circle α (°) – 10

Full tooth depth coefficient hn
* hn/m 2

Dedendum height coefficient hf
* hf/m 1.35

Dedendum arc radius coefficient ri
* ri/m 0.6

Tooth root thickness coefficient Ks sf/πm 0.65

Rack thickness coefficient δ0
* δ0/m 2

Radius of root circle Rf (mm) m (z/2 − hf
*) 29.494

Radius of inner surface Ri (mm) Rf − m δ0
* 28.744

Figure 15  Ring-shaped flexspline assembling elliptical cam

Figure 16  Schematic of cup-shaped flexspline
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rim, respectively. L is the cup length of the FS, Rfi is the 
rounding radius of the cup bottom, and δ1 is the wall 
thickness of the flexible cup. When modeling in ANSYS, 
in order to reduce the calculation scale, the flange at cup 
bottom used to fix the FS is not modeled. Then, the fixed 
constraint placed on a cylindrical surface with a radius Rb 
can play the same role.

The material settings are the same as Section  5.1 but 
considering the Poisson’s ratio (υ = 0.3). As the cup-
shaped FS deforms, the outer ring of the flexible bearing 
will achieve a taper deformation accordingly. To avoid 
bearing deformation affecting the results, set the WG to 
an elliptical ring with a width of 0.4 mm. The parameters 
of the tooth rim of the cup-shaped FS are the same as 
those in Table 4, and the remaining parameters are tabu-
lated in Table 5.

6 � Results and Discussions
6.1 � Results of Ring‑shaped Flexspline Assembling Elliptical 

Cam
According to Eq. (21), the ENL offset ratio of the model is 
Δmn = 8.86%. Referring to the parameters in Table 4, the 
radii of the GML and the ENL of the FS are: rm = 29.119 
mm and ren = 29.152 mm, respectively. Set the maximum 
radial displacement w0 = 0.375 mm and perform numeri-
cal and simulation calculations on the deformation and 
force of the ring-shaped FS.

6.1.1 � Results of Circumferential Strain and Elongation
Extract the circumferential strain elongation of the FS on 
GML and ENL in the FS to compared with the numeri-
cal results. According to Eq. (12) and Eq. (13), there 
are only circumferential strain εen = εN and elongation 
Δlen = ΔlN on the ENL of the ring-shaped FS. Refer-
ring to Eq. (17) and Eq. (18), besides εN and ΔlN, on the 
GML of the FS, there will superimpose a circumferen-
tial strain εmn and elongation Δlmn caused by offset from 
the ENL. Therefore, on the GML, the circumferential 
strain εm = εN + εmn, and the circumferential elongation 
Δlm = ΔlN + Δlmn.

Figure  17 illustrates the results of circumferen-
tial strain and elongation. Because the ANL of the FS 
is fluctuating, then the finite element results of the 

circumferential strain extracted along the circular 
path of both the ENL and the GML are also fluctuating 
(Figure  17a). It is shown that the numerical solutions 
of the circumferential strain on the ENL and the GML 
are basically consistent with the corresponding finite 
element results. The maximum absolute value of εm is 
about 10 times the maximum value of εen.

The numerical results of circumferential elongation of 
GML and ENL shown in Figure 17b are in good agree-
ment with the finite element results. Among them, the 
elongation result Δlen on the ENL shows a monotone 
increasing trend. Affected by the variation of circum-
ferential strain εm, the GML is compressed at first and 
then elongated along the circumferential direction. The 
maximum absolute value of Δlm is about 3 times of the 
maximum value of Δlen.

The above results show that the piecewise method for 
analyzing the ring model can accurately solve the forces 
of the ring-shaped FS. meanwhile, the empirical for-
mula of the ENL offset ratio (Eq. (21)) is proofed to be 
accurate enough by the circumferential strain and elon-
gation on the GML.

Table 5  Structural parameters of cup-shaped flexspline mm

Parameter Value

Cup length L 31

Cup thickness δ1 0.675

Rounding radius at cup bottom Rfi 2

Radius of constrained surface Rb 20

(a) Results of circumferential strain

(b) Results of circumferential elongation
Figure 17  Circumferential strain and elongation of ring-shaped 
flexspline
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6.1.2 � Results of Tooth Positioning
Use the intersection of the tooth symmetry line with 
the geometrical mid-layer or with the ENL of the FS as 
the tooth positioning point. On the FS model in Sec-
tion  6.1.1, the radial displacement and circumferen-
tial displacement of the tooth positioning point are 
extracted on each tooth positioning point. However, 
the rotate angle of the tooth symmetry line cannot be 
extracted from the model directly. Then the angle can 
be calculated according to the radial displacement and 
circumferential displacement as follows:

where Rm, wm, and vm are the radial and circumferential 
displacements of the tooth positioning point, while wa 
and va are the radial and circumferential displacements 
on the middle point of tooth top. Ra is the outside radius 
of FS.

Position the tooth on the GML and calculate its dis-
placement by the geometric method. Then minus the 
displacement results by that of the FS on GML. The 
deviations are recorded as Δwg, Δvg, and Δθg. Then 
position the tooth on the ENL and calculate its dis-
placement by piecewise method. Then minus the 
displacement results by that of the FS on ENL. The 
deviations are recorded as Δwp, Δvp, and Δθp. Fig-
ure 18 illustrates the comparison of these displacement 
deviations.

The results in Figure 18 are similar to those in Figure 6. 
The change of Δwg and Δwp in Figure 18a are consistent 
with those of Δwt1 and Δwt2 in Figure  6a, respectively, 
indicating that the offset of the neutral layer has little 
effect on the radial positioning of the tooth. In terms of 
maximum deviation, Δwp is about 75% smaller than Δwg.

The change of Δvp in Figure 18b is consistent with that 
of Δvt2 in Figure  6b, while circumferential deviation, 
which is caused by neutral layer offset, is superimposed 
on Δvg compared to Δvt1, indicating that the neutral layer 
offset has a significant influence on the circumferential 
positioning of the tooth. In terms of maximum deviation, 
Δvp is about 77% smaller than Δvg.

The change of Δθg and Δθp in Figure  18c are consist-
ent with those of Δθt1 and Δθt2 in Figure 6c, respectively. 
However, due to the change of the circumferential dis-
placement deviation Δvg, Δθg also increases to a certain 
extent, indicating that the neutral layer offset also has a 
specific effect on the positioning accuracy of tooth orien-
tation. In terms of maximum deviation, Δθp is about 70% 
smaller than Δθg.

According to the above results, the method proposed 
in the present investigation to calculate the FS deforma-
tion on the ENL can significantly reduce the existing 

(22)θ = arctan

(

va − vm

Ra + wa − Rm − wm

)

,

calculation deviation and obtain a more accurate tooth 
positioning.

6.2 � Results of Cup‑shaped Flexspline Assembling Elliptical 
Cam

Figure  19 illustrates the radial displacement of the cup-
shaped FS. It is noted that under the constraint of the cup 
bottom, the radial deformation of the cup-shaped FS has 
a taper characteristic, and the amount of radial defor-
mation decreases linearly from the cup edge to the cup 
bottom.

(a) Radial displacement deviation of tooth

(b) Circumferential displacement deviation of tooth

(c) Tooth orientation deviation
Figure 18  Positioning deviation of tooth on flexspline
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Establish paths at the intersection of the tooth rim’s 
ENL (determined by Eq. (21)) with the three cross-
sections shown in Figure  16. Extract the circumfer-
ential strain and integrating the strain to obtain the 
circumferential elongation. The results are illustrated in 
Figure 20.

It is illustrated in Figure 20a that, from the major axis 
( ϕ = 0°) to the minor axis ( ϕ = 90°), the average circum-
ferential strain of ENL on the front section is positive and 
increases monotonously, the average strain on the middle 
section is also positive but decreases gradually, while the 
average strain on the rear section changes significantly 
from positive to negative and is close to zero around 
ϕ = 50°. On the major axis ( ϕ = 0°) of view, the circum-
ferential strain of ENL is the largest in the rear section, 
the second in the middle section, and the smallest in the 
front section. These strains are all positive. On the minor 
axis ( ϕ = 90°) of view, the strain of ENL in the front sec-
tion is the largest, the strain in the middle section is the 
second, and the strain in the rear section is the smallest 
and negative.

These phenomena indicate that ENL will gradually 
elongate on the front section and middle section, while 
ENL will elongate rapidly at the rear section at first, and 
then begin to shorten rapidly around ϕ = 50°. The elon-
gation result in Figure 20b confirms this conclusion. The 
strain distribution and circumferential elongation illus-
trated in Figure  20 indicate that the equivalent neutral 
layer analyzed based on the ring-shaped FS in the present 
investigation has not accurately reflected the actual neu-
tral layer characteristics of the cup-shaped FS.

Under the comprehensive influence of the cup-shaped 
structure, cylinder stiffness, and Poisson’s ratio, the ENL 
of the cup-shaped FS tooth rim gradually changes from 
the front section to the rear section, forming a conical 
equivalent neutral layer. This tapered ENL makes the 
stress and deformation of the FS tooth rim more compli-
cated. Therefore, besides the tooth effects, the influence 
of the FS cylinder on the stress and deformation of tooth 
rim deserves further study.

7 � Conclusions
In this paper, the actual contact state and assembly forces 
between the cam and the flexspline are revealed based 
on mechanic analysis, and the empirical formula of the 
equivalent neutral layer offset ratio of the flexspline is fit-
ted out. A piecewise method for calculating the flexspline 
deformation in the equivalent neutral layer is proposed. 
The accuracy of the theoretical calculation of tooth dis-
placement is verified by establishing a solid finite element 
model of flexspline contacted elliptical cam. The main 
conclusions are as follows:

(1)	 The flexspline has a wrapping angle far less than 90 
to the cam. After deformation, the flexspline seg-
ment inside the wrapping angle is wrapped on the 
cam, while the outside segment deformed by force 
balance.

Figure 19  Nephogram of the radial displacement on cup-shaped FS

(a) distribution of circumferential strain

(b) Results of circumferential elongation
Figure 20  Circumferential strain and elongation on the equivalent 
neutral Layer of tooth rim of cup-shaped flexspline
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(2)	 The equivalent neutral layer of the flexspline devi-
ates outward from the geometric mid-layer, and the 
offset ratio has a spatial bilinear relationship with 
the relative tooth root thickness and the relative 
dedendum arc radius.

(3)	 Calculate the tooth displacement in the equivalent 
neutral layer by the piecewise method can elimi-
nate the calculation deviation caused by independ-
ent variable difference, circumferential extension, 
and un-contact state outside the wrapping angle 
to a certain extent. The deviation can be reduced 
by about 70%; therefore, the method can obviously 
improve the tooth positioning accuracy.

(4)	 The deformation of the tooth rim of cup-shaped 
flexspline has taper characteristics, and its equiva-
lent neutral layer is conical, which makes its stress 
and deformation state complicated and needs 
researches furthermore.

Appendix 1
As illustrated in Figure 21, a disk is eccentrically assembled 
in a ring, and the ring will cling on the disk within a wrap-
ping angle. Rp is the radius of the disk, rm is the radius of 
the ring, and ep is the eccentricity between the disk and 
the ring. The deformation of the ring outside the wrapping 
angle is determined according to the force balance.

Compared with the general cam, disc have a pro-
file of equal curvature. Therefore, the current method 
for calculating the ring deformation under the action 
of the eccentric disk inside and outside the wrapping 

angle is all based on the force analysis. The relationship 
between the wrapping angle of the ring and the radius 
of the disk is given as

 where

When the wrapping angle γ of the ring to the disk is 
given as a design parameter, the radius Rp of the disk 
can be determined according to Eq. (23). Based on this, 
Chen et al. [14] deduced the circumferential strain for-
mula of the ring under the double-disk

(23)
w0Bp

Ap − Bp
= r2m

(

1

Rp
−

1

rm

)

,

Ap = π/2− γ − sin γ cos γ ,

Bp = 4[cos γ − (π/2− γ ) sin γ ]/π.

(24)

εN =



























δ20w0

6r3m

1− rm
w0

�

1− rm
Rp

�

π

2 − γ − sin γ cos γ
sin γ , 0 ≤ ϕ ≤ γ ,

δ20w0

6r3m

1− rm
w0

�

1− rm
Rp

�

π

2 − γ − sin γ cos γ
sin ϕ, γ < ϕ ≤

π

2
,

Figure 21  Schematic diagram of ring deformation under eccentric 
disc

Figure 22  Circumferential strain of ring under eccentric disks

Figure 23  Morphology of neutral layer of simple trapezoidal racks
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and calculated four groups of models with differ-
ent disc radii. Calculate these models by the piecewise 
method for cam in Section 2 with the profile of eccentric 
disk expressed by polar coordinate equation

The ring models calculated by Chen et  al. [14] have 
radius rm = 80.4 mm, thickness δ0 = 2.373 mm, and maxi-
mum radial displacement w0 = 0.955. The designed wrap-
ping angle γ of rings are 15°, 20.7°, 25°, and 30°. According 
to Eq. (23), the disc radii Rp corresponding to these wrap-
ping angles are 77.58 mm, 77.83 mm, 77.98 mm, and 
78.13 mm, respectively.

Referring to Figure 21, the disc eccentricity

Thus, the eccentricity ep of the disks in these four mod-
els is 3.755 mm, 3.525 mm, 3.375 mm, and 3.225 mm, 
respectively. Now, the polar equations of the eccentric 
disks in these models can be determined according to the 
Eq. (25).

According to Eqs. (4), (5), (10), and (25) in the present 
investigation, the wrapping angles γ of the four models 
are calculated as 14.1°, 19.9°, 24.2°, and 29.3°, respectively. 
The wrapping angle results of the four models calculated 
by Eq. (10) are basically consistent with those calculated 
by Eq. (23), and the differences are all less than 1°. Sub-
stituting the wrapping angle calculated by Eq. (10) into 
Eq. (12) to calculate the circumferential strain of the ring 
(Figure 22). the strain results are also basically the same 
as the results calculated by Chen et al. [14] (Figure 8).

Appendix 2
Kondo [9] considered the change of the neutral layer 
caused by tooth when studying the method of tooth pro-
file design and designed bending tests on simple trape-
zoidal racks. Four equidistant parallel lines are planned 
from the tooth symmetry line to the tooth slot symme-
try line, and forty strain gauges are arranged on the lines 
to extract the strain results when the rack is bent. The 
experiments were carried out on 6 racks with different 
rack thicknesses (the teeth of these racks maintained the 
same) and plotted the position of the neutral layer of the 
racks according to the strain results [9] (Figure 4a).

Establish the corresponding finite element models 
of the 6 racks based on the structures and parameters 
designed by Kondo, the simulation position of the racks’ 
neutral layers obtained by the process shown in Figure 10 
is illustrated in Figure 23. The actual neutral layer posi-
tions of the six rack models shown in Figure 23 are basi-
cally consistent with the experimental results of Kondo 

(25)ρ =
√

R2
p − e2p sin

2 ϕ1 + ep cosϕ1.

(26)ep = rm + w0 − Rp.

[9] (Figure  4a), which proves that the finite element 
analysis method in the present investigation is accurate 
enough.
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