Armano and Javarone Complex Adaptive Systems Modeling 2013, 1:5 (.) CO m p | ex Ad a ptive System S M Od el | n g

http://www.casmodeling.com/content/1/1/5

a SpringerOpen Journal

Clustering datasets by complex networks

analysis

Giuliano Armano and Marco Alberto Javarone”

*Correspondence:

marco javarone@diee.unica.it

DIEE - Department of Electrical and
Electronic Engineering University of
Cagliari Piazza d'Armi, Cagliari -
09123, Italy

@ Springer

Abstract

This paper proposes a method based on complex networks analysis, devised to
perform clustering on multidimensional datasets. In particular, the method maps the
elements of the dataset in hand to a weighted network according to the similarity that
holds among data. Network weights are computed by transforming the Euclidean
distances measured between data according to a Gaussian model. Notably, this model
depends on a parameter that controls the shape of the actual functions. Running the
Gaussian transformation with different values of the parameter allows to perform
multiresolution analysis, which gives important information about the number of
clusters expected to be optimal or suboptimal.

Solutions obtained running the proposed method on simple synthetic datasets
allowed to identify a recurrent pattern, which has been found in more complex,
synthetic and real, datasets.

Keywords: Clustering, Community detection, Complex networks, Multiresolution
analysis

Background

Complex networks are used in different domains to model specific structures or behav-
iors 2010. Relevant examples are the Web, biological neural networks, and social networks
2002, 2004, 2003. Community detection is one of the most important processes in com-
plex network analysis, aimed at identifying groups of highly mutually interconnected
nodes, called communities 2004, in a relational space. From a complex network perspec-
tive, a community is identified after modeling any given dataset as graph. For instance,
a social network inherently contains communities of people linked by some (typically
binary) relations —e.g., friendship, sports, hobbies, movies, books, or religion. On the
other hand, from a machine learning perspective, a community can be thought of as a
cluster. In this case, elements of the domain are usually described by a set of features, or
properties, which permit to assign each instance a point in a multidimensional space. The
concept of similarity is prominent here, as clusters are typically identified by focusing on
common properties (e.g., age, employment, health records).

The problem of clustering multidimensional datasets without a priori knowledge about
them is still open in the machine learning community (see, for example, 2010, 2001, 1998).
Although complex networks are apparently more suited to deal with relations rather than
properties, nothing prevents from representing a dataset as complex network. In fact,
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the idea of viewing datasets as networks of data has already been developed in previous
works. Just to cite few, Heimo et al. 2008 studied the problem of multiresolution mod-
ule detection in dense weighted networks, using a weighted version of the g-state Potts
method. Mucha et al. 2010 developed a generalized framework to study community struc-
tures of arbitrary multislice networks. Toivonen et al. 2012 used network methods in
analyzing similarity data with the aim to study Finnish emotion concepts. Furthermore,
a similar approach has been developed by Gudkov et al. 2008, who devised and imple-
mented a method for detecting communities and hierarchical substructures in complex
networks. The method represents nodes as point masses in an N — 1 dimensional space
and uses a linear model to account for mutual interactions.

The motivation for representing a dataset as graph lies in the fact that very effec-
tive algorithms exist on the complex network side to perform community detection.
Hence, these algorithms could be used to perform clustering once the given dataset has
been given a graph-based representation. Following this insight, in this paper we pro-
pose a method for clustering multidimensional datasets in which they are first mapped
to weighted networks and then community detection is enforced to identify relevant
clusters. A Gaussian transformation is used to turn distances of the original (i.e. feature-
based) space to link weights of the complex networks side. As the underlying Gaussian
model is parametric, the possibility to run Gaussian transformations multiple times
(while varying the parameter) is exploited to perform multiresolution analysis, aimed at
identifying the optimal or suboptimal number of clusters.

The proposed method, called DAN (standing for Datasets as Networks), makes a step
forward in the direction of investigating the possibility of using complex network anal-
ysis as a proper machine learning tool. The remainder of the paper is structured as
follows: Section Methods describes how to model a dataset as complex network and
gives details about multiresolution analysis. For the sake of readability, the section briefly
recalls also some informative notion about the adopted community detection algorithm.
Section Results and discussion illustrates the experiments and analyzes the correspond-
ing results. The section recalls also some relevant notions of clustering, including
two well-known algorithms, used therein for the sake of comparison. Conclusions (i.e.
Section Conclusions) end the paper.

Methods

The first step of the DAN method consists of mapping the dataset in hand to a com-
plex network. The easiest way to use a complex network for encoding a dataset is to let
nodes denote the elements of the dataset and links denote their similarity. In particular,
we assume that the weight of a link depends only on the distance among the involved ele-
ments. To put the model into practice, we defined a family of Gaussian functions —used
for computing the weight between two elements.

Computing similarity among data

Let us briefly recall that a metric space is identified by a set Z, together with a distance
functiond : Z x Z — R, like Euclidean, Manhattan and Chebyshev distances. In DAN,
the underlying assumption is that a sample s can be described by N features f1, /2, . . ., fn»
encoded as real numbers. In other words, the sample can be represented as a vector in
an N-dimensional metric space S. Our goal is to generate a fully connected weighted
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network taking into account the distances that hold in S. Conversely, the complex net-
work space will be denoted as A/, with the underlying assumption that for each sample
s;i € S a corresponding 1; € N exists and vice versa. This assumption makes easier to
evaluate the proximity value L;; between two n;,n; € N, according to the distance djj
between the corresponding elements s;,5; € S.

Without loss of generality, let us assume that each feature in S is normalized in [0, 1]
and that a function ¥ : R — R exists for computing the similarity among data in A/,
starting from the value of the distance function in S. In symbols:

L(ni,nj) = Lij = ¥ (dy) = ¥ (d (i, 5)) (1)

Evaluating similarity for all pairs of samples in NV (i.e., evaluating their weighted links)
allows to generate a fully connected complex network. Moreover, recalling that S is nor-
malized in [0, 1], we expect L; ~ 0 when dj; ~ VN, N being the number of features of
the space S. The value v/N comes from the following inequality, which holds for any pair
of samples s;,5; € S (represented by their vector representation in terms of the given set
of features rj, rj):

N
dyj = | [kl —x5[k])? < VN (2)

k=1

where r;[ k] denotes the k-th component of r;.

The adopted community detection algorithm

Community detection is the process of finding communities in a graph (the process is also
called “graph partitioning”). From a computational perspective, this is not a simple task
and many algorithms have been proposed, according to three main categories: divisive,
agglomerative, and optimization algorithms. In our work, we used the Louvain method
2008, an optimization algorithm based on an objective function devised to estimate the
quality of partitions. In particular, at each iteration, the Louvain Method tries to maximize
the so-called weighted-modularity, defined as:

1 kik;
Q=—-> [Aij = 2m’] - 8(si,5)) 3)

T 2m
ij

where Aj is the generic element of the adjacency matrix, k is the degree of a node, m is the
total “weight” of the network, and §(s;, s;) is the Kronecker Delta, used to assert whether

a pair of samples belongs to the same community or not.

Multiresolution analysis

Let us recall that multiresolution analysis is performed with the goal of extracting relevant
information, useful for identifying the optimal or suboptimal number of communities
(hence, of clusters). To perform multiresolution analysis on the network space, a paramet-
ric family W (&) : R — R of functions is required, where A is a parameter that controls
the shape of each ¥ function. After setting a value for X, the corresponding i can be
used to convert the distance computed for each pair of samples in the given dataset into a
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proximity value. In particular, the following parametric family of Gaussian functions has
been experimented:

YA x) = e (4)

As a consequence, L, i.e. the weight of the link between two nodes n;, n; € N, can be

evaluated according to Equation 4 as follows:
—\d2
Ly 2y (hdy) = e (5)

where the A parameter is used as a constant decay of the link.

2 . . . .
*", multiresolution analysis takes place varying

Following the definition of W (};x) as e
the value of the A parameter. The specific strategy adopted for varying X is described in the
experimental section. As for now, let us note that an exponential function with negative
constant decay ensures that distant points in an Euclidean space are loosely coupled in the
network space and vice versa. Moreover, this construction is useful only if W (%; x) models
local neighborhoods, which gives further support to the choice of Gaussian functions

2007.

Results and discussion
Experiments have been divided in three main groups: i) preliminary tests, aimed at run-
ning DAN on few and relatively simple synthetic datasets, ii) proper tests, aimed at
running DAN on more complex datasets, and iii) comparisons, aimed at assessing the
behavior of DAN with reference to k—Means and spectral clustering.

Almost all datasets used for experiments (except for Iris) are synthetic and have been
generated according to the following algorithm:

Inputs: number of samples (), dimension in the Euclidean space (N), number of clusters
(k), and radius of a cluster (r)

1. Foreachclusterj=1,2,...,k, choose a random position ¢; in the normalized
Euclidean space;

2. Equally subdivide samples among clusters and randomly spread them around each
position ¢j, with a distance from ¢; in [0, r].

Preliminary tests
A first group of 4 synthetic datasets, called 75/1 (i.e., Testing Set 1) hereinafter, has been
generated. Their main characteristics are summarized in Table 1. Figure 1 shows the

datasets with 3 and 10 clusters, together with the optimal solutions achieved by DAN.

Table 1 Features of datasets used for preliminary tests (TS/7)

Group Dim N N, r oy
2D 1897 5 04 03
3D 1683 3 0.09 0.04
3D 1500 10 042 0.22
4D 1680 6 0.62 045

Dim, N, and N, denote the dimension of datasets, the number of samples, and the intrinsic number of clusters.
Moreover, i, and o, denote the average radium and the variance of samples.
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Figure 1 Second and third datasets of TS/1, together with the solutions achieved by DAN using
log,o(L) = 3 (each cluster has been colored with a different color).

Multiresolution analysis has been performed varying the value of A according to
Equation 4. A logarithm scaling has been used for 1, as we experimentally found that
small changes had a negligible impact on the corresponding algorithm for community
detection. In particular, for each dataset, we calculated the adjacency matrix for all val-
ues of A such that log;,(1) = 0, 1,2, 3, 4. It is worth pointing out that the maximum value
of log;, () is expected to depend on the cardinality of the dataset in hand —the greater
the cardinality, the greater the value of log;,(1). However, for most datasets, a value of
log,,(A) = 4, i.e, A = 10,000, appears to be large enough to include all relevant infor-
mation by means of multiresolution analysis. Table 2 shows the results of multiresolution
analysis for preliminary tests.

As for the capability of identifying the optimal or suboptimal solutions® by means of
multiresolution analysis, we observed the following pattern to occur: the optimal number
of communities is robust with respect to the values of log;,(1), as highlighted in Table 2.

Table 2 Results of multiresolution analysis achieved during preliminary tests

Group N, Number of Clusters
5 2 3 5 5 5
3 3 3 3 3 103
10 2 3 10 10 151
2 4 6 6 37
0 1 2 3 4
logio ()

The number of communities is reported, calculated for log,,(1) = 0, 1, 2, 3, 4. Optimal values are highlighted in bold.
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Table 3 Characteristics of datasets used for proper tests (TS/2), listed out according to the

group they belong to

Group Dim N N r o
3D 350 5 0.35 0.19
3D 2000 20 044 0.2
3D 5000 30 0.51 0.24
4D 535 4 0.64 0.46
8D 1680 6 0.86 0.62
12D 930 8 1.22 0.88

Iris 4D 150 3 049 0.26

Dim, N, and N, denote the dimension of datasets, the number of samples, and the intrinsic number of clusters.
Moreover, i, and o, denote the average radium and the variance of samples.

Our hypothesis was that this recurrent pattern could be considered as a decision rule for
identifying the optimal number of communities (and hence of ).

Proper Tests (TS/2)

We generated a second group of datasets, characterized by an increasing complexity with
respect to TS/1. This second group of datasets is denoted as 75/2 (i.e., Testing Set 2)
hereinafter. We run DAN also on these new datasets, with the goal of verifying the validity
of the pattern identified during preliminary tests. Moreover, we performed experiments
using Iris, a well-known multivariate real dataset available at the UCI ML repository 2010.
Iris contains 50 samples (described by 4 attributes) belonging to 3 species of Iris: setosa,
virginica and versicolor. Table 3 summarizes the main characteristics of 75/2 and Iris. The
corresponding results, obtained with DAN, are shown in Table 4.

Looking at these results, we still observe the pattern identified by preliminary tests.
Furthermore, one may note that a correlation often exists between the cardinality of the
dataset in hand and the order of magnitude of its optimal A (typically, the former and the
latter have the same order of magnitude). It is also interesting to note that in some datasets
of TS/1 (i.e., 2nd, 3rd and 4th) and of TS/2 (i.e., 4th, 5th and 6th) the optimal A precedes
a rapid increase in the number of communities. As a final note, we found no significant
correlation between the optimal A and the weighted-modularity parameter, notwithstand-
ing the fact that this parameter is typically important to assess the performance of the
adopted community detection algorithm.

Table 4 Results of multiresolution analysis on the selected datasets during proper tests,
listed out according to the group they belong to

Group N Pattern Number of Clusters
5 v 3 5 8 84
20 v 3 4 16 20 21
30 v 4 5 21 30 30
4 v 2 4 4 105 181
6 v 2 4 6 6 1186
8 v 3 5 8 875
Iris 3 v 3 3 10 82 147
0 1 2 3 4
logo(4)

The number of communities is reported, calculated for log,, (1) = 0, 1, 2, 3, 4. Optimal values are reported in bold. The
patterns observed on synthetic datasets (and reported in the table for the sake of completeness), allows to easily
compute the expected optimal number of communities also for Iris.
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Comparison: DAN vs. k-Means and spectral clustering

Experimental results obtained with the proposed method have been compared with those
obtained by running two clustering algorithms: the k—Means and the spectral clustering.
For the sake of readability, let us preliminarily spend few words on these algorithms.

K-means

As centroid-based clustering is one of the most acknowledged clustering strategies, the
k — Means algorithm (e.g., 1998), which belongs to this family, has been selected as one of
the comparative tools. For the sake of completeness, let us briefly summarize it:

Randomly place k centroids in the given metric space;

Assign each sample to the closest centroid, thus identifying tentative clusters;
Compute the Center of Mass (CM) of each cluster;

IF CMs and centroids (nearly) coincide THEN STOP;

Let CMs become the new centroids;

REPEAT from STEP 2.

S T o

The evaluation function of k — Means, called distortion and usually denoted as J, is

computed according to the formula:

j=1 i=1

2
| )

S?) — C]'

where 7; is the number of samples that belong to the j-th cluster, s?) is the i-th sample
belonging to j-th cluster, and ¢; its centroid. Note that different outputs of the algorithm
can be compared in terms of distortion only after fixing k —i.e., the number of clusters.
In fact, comparisons performed over different values of k are not feasible, as the more k
increases the lower the distortion is. For this reason, the use of k—Means entails a main
issue: how to identify the optimal number k of centroids (see 2004).

Spectral clustering

Spectral clustering 2007 algorithms use the spectrum of the similarity matrix to iden-
tify relevant clusters (the generic element of a similarity matrix measures the similarity
between the corresponding data). These methods allow to perform dimensionality reduc-
tion, so that clustering can be enforced along fewer dimensions. Similarity matrices can be
generated in different ways —e.g., e-neighborhood graph, k-nearest neighbor graphs and
fully connected graph. The main tools for spectral clustering are graph Laplacian matri-
ces. In particular, in this work we used the unnormalized graph Laplacian matrix defined

as:
L=D-W (7)

where D is the degree matrix (i.e., a diagonal matrix with the degrees dj,...,d, on
the diagonal) and W is the adjacency (or similarity) matrix of the similarity graph. The
following algorithm has been used to perform unnormalized spectral clustering:

Generate the fully connected similarity graph and let W be its adjacency matrix;
Compute the unnormalized Laplacian L;
Compute the first k eigenvectors uy, ..., u; of L;

Bowoh

Let U € %* be the matrix containing the eigenvectors uy, . . ., uy as columns;
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5. Fori=1,...,mlety; € R be the vector corresponding to the i-th row of U;
6.  Cluster the points (y;)=1,...n in 9%k with the k-means algorithm into clusters
Ci,...» Ck.

Notably, also in this case the number k of cluster is required as input.

Comparative results

We run the k-Means algorithm (using the Euclidean metric) and the spectral clustering
algorithm on the selected datasets —with the goal of getting new insights on the results
of the partitioning procedure defined in DAN. Both algorithms used for comparison pur-
poses have been run using the optimal values of k identified by means of multiresolution
analysis. The comparison has been performed considering the distortion / computed for
each solution. Figure 2 reports comparative results and clearly shows that, in around 72.2
percent of the cases, DAN achieves the best result. These results highlight the validity of
the proposed framework, also considering that DAN computes partitions without any a
priori knowledge about the datasets, as the optimal (or suboptimal) number of clusters is
typically found by applying the previously described pattern. Although k—Means is faster
than DAN, it is important to stress that its results, at each attempt, depend tightly on the
initial position of the k centroids. Hence, in absence of a strategy for identifying the initial
disposal of centroids, k—Means should be (and it is in fact) run several times —the solution
with the smaller distortion being selected as optimal. The spectral clustering algorithm
showed its effectiveness many times, although bad solutions have been computed with
datasets 2 and 3 of TS/2, characterized by 20 and 30 clusters, respectively.

18

N DAN
I K-means
16 || Spectral

14

12

10

Distortion

TS/1-1  TS/1-2 TS/1-3  TS/1-4  TS/2-1  TS/2-2 TS/2-3  TS/2-4  TS5/2-5 TS/2-6  Iris
Dataset

Figure 2 Comparison, in terms of distortion, among solutions achieved by DAN, blue bars, k—Means,

red bars and spectral clustering, green bars (the lesser the better).
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Conclusions

In this paper, a method for clustering multidimensional datasets has been described, able
to find the most appropriate number of clusters also in absence of a priori knowledge.
We have shown that community detection can be effectively used also for data cluster-
ing tasks, provided that datasets are viewed as complex networks. The proposed method,
called DAN, makes use of transformations between metric spaces and enforces multires-
olution analysis. A comparative assessment with other well-known clustering algorithms
(i.e., k—Means and spectral clustering) has also been performed, showing that DAN often
computes better results.

As for future work, we are planning to test DAN with other relevant datasets, in a com-
parative setting. Furthermore, we are planning to study to which extent one can rely on
the decision pattern described in the paper, assessing its statistical significance over a
large number of datasets.

Endnote

2As pointed out by Arenas et al. 2008, it may not appropriate to speak of correct vs. incor-
rect solutions for multiresolution analysis. In a context of community detection we deem
more appropriate to speak of optimal or suboptimal solutions (see also 2011 for more

information on this issue).
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