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Abstract

Background: Layered hydroxides salts (LHS), a layered inorganic compound is gaining attention in a wide range of
applications, particularly due to its unique anion exchange properties. In this work, layered zinc hydroxide nitrate
(LZH), a family member of LHS was intercalated with anionic ciprofloxacin (CFX), a broad spectrum antibiotic via ion
exchange in a mixture solution of water:ethanol.

Results: Powder x-ray diffraction (XRD), Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA)
confirmed the drug anions were successfully intercalated in the interlayer space of LZH. Specific surface area of the
obtained compound was increased compared to that of the host due to the different pore textures between the
two materials. CFX anions were slowly released over 80 hours in phosphate-buffered saline (PBS) solution due to
strong interactions that occurred between the intercalated anions and the host lattices. The intercalation
compound demonstrated enhanced antiproliferative effects towards A549 cancer cells compared to the toxicity of
CFX alone.

Conclusions: Strong host-guest interactions between the LZH lattice and the CFX anion give rise to a new
intercalation compound that demonstrates sustained release mode and enhanced toxicity effects towards A549 cell
lines. These findings should serve as foundations towards further developments of the brucite-like host material in
drug delivery systems.

Keywords: Drug delivery, Layered zinc hydroxide nitrate, Ciprofloxacin, Anion exchange, Sustained release, Release
mechanisms, Cytotoxicity
Background
The application of nanotechnology to drug delivery is
nowadays a growing research field. A wide variety of
nano-sized drug carriers has found niche in the field,
owing to their unique structures which give rise to new
generations of therapeutic agents and medical devices [1].
The main advantages of the nano-based drug delivery over
the traditional ones are manifold: enhanced biodistribu-
tion and pharmacokinetics of drug [2], improved delivery
of poorly water-soluble drugs [3], lowered systemic toxi-
city of drug while being concentrated on the target organ
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[4] and ability to optimize drug release rate towards
achieving better patient compliance [5].
Layered hydroxides salts (LHS) is a layered inorganic

compound which shares structural resemblance to anionic
clay, layered double hydroxides (LDH). The structure of
LDH is derived from that of brucite, [Mg(OH)2] and may
be represented by the formula [M2+

1-xM
3+

x (OH)2](A
n-)x/n.

mH2O; where M2+ and M3+ are divalent and trivalent
cations of the lattice, respectively, x is equal to the ratio
[M3+/( M2+ + M3+)] and An- is an anion [6]. In relation to
LDH, its LHS sibling may undergo structural modifica-
tions based on different type of metal cation that is present
in the compound lattice. It has been reported that nitrate
group precursor are directly involved in the formation of
LHS of Cu2(OH)3NO3, La(OH)2NO3.H2O and Mg2(OH)

3NO3 via coordination with the lattice cation through one
oxygen atom of the nitrate ion [7,8].
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In Zn5(OH)8(NO3)2.2H2O (denoted as LZH), the
brucite-like lattice is modified wherein one-fourth of octa-
hedrally coordinated Zn2+ cations are absent, thus creating
empty octahedral sites. On either side of the empty octa-
hedra are found tetrahedrally coordinated Zn2+ cations
with the hydroxyl ions and water molecules. In this com-
pound, the nitrate ion is not coordinated with the Zn2+

cations and located in the interlayer space of LZH [9].
LHS is currently gaining attraction due to its simple

method of synthesis [10], as a precursor for a wide band
gap ZnO [11], for the synthesis of layered double
hydroxide salts [12] and anion exchange properties [13].
A wide variety of guest molecules has been intercalated
into the interlayer region of LHS, mainly via ion exchange
process, ranging from anionic dyes [14], porphyrin sensi-
tizers [15] and an anti corrosive compound [16]. In par-
ticular, LHS has demonstrated the ability to extend the
release period of bioactive molecules [17] and drug mole-
cules [18], prompting more investigations towards poten-
tial applications of LHS in drug delivery systems.
Ciprofloxacin (CFX) is a wide spectrum antibiotic that

belongs to the quinolone family [19]. The antimicrobial
activities of CFX are mainly achieved through the
chlorine-substituted N–1 cyclopropyl group which enhan-
ces cell penetration and improves activity against DNA
gyrase and topoisomerase IV enzymes [20]. Although CFX
is known as a safe drug, there are cases of side effects
associated with CFX such as anaphylaxis and pulmonary
edema [21,22]. CFX suffers from moderate oral bioavai-
lability [23], as it chelates with calcium-, magnesium- and
aluminium-containing salts upon concomitant administra-
tion [24]. In drug delivery systems, CFX has been used
with various drug carriers such as polymeric nanoparticles
[25-27], cyclodextrin [28], chitosan [29], montmorillonite
[30] and calcium apatite [31].
In this paper, we prepared an inorganic drug carrier

based on LZH host material intercalated with a model
drug, CFX. Considering LZH possesses higher layer
charge density compared to that of LDH counterpart
[32], we are prompted to examine the release behavior
of the intercalated CFX anions from LZH in phosphate-
buffered saline solution, after which the corresponding
release mechanisms was further established. In addition,
the toxicity profile of the intercalation compound was
evaluated against adenocarcinomic human alveolar basal
epithelial cancer cell line to demonstrate synergistic
effects between drug–host interactions towards cells
growth inhibition [33].

Materials and methods
Materials
Ciprofloxacin, C17H18FN3O3 (1–cyclopropyl–6–fluoro–
4–oxo–7–piperazin–1–yl–quinoline–3–carboxylic acid,
molecular weight 331.34 g/mol) was purchased from
Sigma Aldrich Co. Ltd. and was used as received. All
solutions were prepared using deionized water.

Synthesis of LZH
Layered zinc hydroxide nitrate (LZH) was synthesized
according to the modified version of previous report
[32]. An aqueous solution of 0.4 mol/L Zn(NO3)2.6H2O
was prepared in 100 ml volumetric flask. To this solu-
tion, 0.8 mol/L NaOH solution was added dropwise,
under vigorous magnetic stirring, until pH of the
mixture reached pH 7.0. The resulting precipitates were
aged at 70°C for 18 h, washed thoroughly with deionized
water and dried in an oven at 60°C.

Synthesis of Z–CFX
The intercalation compound, Z–CFX was obtained via
anion exchange between nitrate ion of precursor LZH
and anionic ciprofloxacin (CFX) in a mixture solution of
water:organic solvent. Approximately 0.2 g of finely
ground LZH was dispersed in 25 ml of water:ethanol
mixture solution containing 0.9 g of CFX under vigorous
stirring. The pH of the exchange medium was adjusted
by slow titration of 1.0 mol/L NaOH until pH 8.0 was
achieved. The mixture was left under stirring for 24 h.
The resulting product was collected by washing the pre-
cipitates thoroughly with deionised water and ethanol and
was dried at 60°C for 24 h.

In vitro release
The release of CFX from the intercalation compound
was conducted in phosphate-buffered saline solution
(PBS) pH 7.4 wherein 0.6 mg of Z–CFX were immersed
in the PBS solution and the accumulated release of CFX
was measured at λmax = 276.3 nm using a Perkin Elmer
UV–Vis Spectrophotometer Lambda 35.

Cell culture
Human lung alveolar carcinoma epithelial (A549) cells
were cultured in RPMI 1640 medium under a humidi-
fied atmosphere (5% CO2 plus 95% air) at 37°C. The
medium was supplemented with 10% heat-inactivated
fetal bovine serum, 2 mM of L–glutamine, 100 units/ml
of penicillin and 100 μg/ml of streptomycin.

MTT assay
MTT (3–(4,5–dimethylthiazole–2–yl)–2,5–diphenylte-
trazolium bromide) cell viability assay was used to in-
vestigate the toxic effect of Z–CFX, ZLH and CFX. Cells
(2 × 103 cells/100 μl) were seeded onto 96-well plates and
incubated overnight at 37°C under a 5% CO2 atmosphere.
After cells had stabilized, fresh medium containing either
Z–CFX, ZLH or CFX at different concentrations (0.5, 5.0,
50.0 and 500.0 μg/mL) was added and incubation conti-
nued for 72 h. After the incubation, 10 μL of MTT
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Figure 1 XRD patterns of (a) LZH and (b) Z-CFX. (a) host
material, LZH. (b) intercalation compound, Z-CFX.
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solution was added to each well and incubated further
for 4 h, the reaction was terminated by adding 100 mL
of 10% SDS in 0.01 mol/L HCl solution. The absorb-
ance was measured on a microplate reader at wave-
length 570 nm.

Characterizations
Powder x-ray diffraction (PXRD) patterns were recorded
on an ITAL APD 2000 powder diffractometer using
CuKα radiation (λ = 1.5418 Å) at 40 kV and 30 mA. The
data was collected from 2–60° at a dwell time of 2° per
minute. Fourier transform infrared (FTIR) spectra were
recorded in the range 400–4000 cm−1 at a 4 cm−1 reso-
lution on a Perkin–Elmer 1752X (Boston, MA) spectro-
photometer using the potassium bromide (KBr) pellet
technique; approximately 1% sample was mixed in
100 mg of spectroscopic grade KBr and the pellet was
pressed at 10 tons. The atomic weight percent of carbon,
hydrogen and nitrogen was determined using CHNS–
932 (LECO Instruments St Joseph, MI). The zinc ion
composition was determined using a Perkin–Elmer
inductively coupled plasma-atomic emission spectro-
metry (ICP–AES) model Optima 2000DV under standard
conditions. Thermogravimetric and differential thermo-
gravimetric analyses (TGA/DTG) were carried out in
150 μL alumina crucibles using a Metter–Toledo instru-
ment model TGA851e (Greifensee, Switzerland) at a
heating rate of 10° per minute in the range of 25–900°C
with the sample amount being 5–10 mg in nitrogen
atmosphere. The surface morphology of the samples was
observed by a field emission scanning electron microscope
(FESEM), FEI Nova Nanosem 230 with an acceleration
voltage of 25 kV. Prior to analysis, the samples were
mounted on aluminum stub over double-coated carbon
film. Textural characterisations were carried out using a
nitrogen gas adsorption–desorption technique at 77 K
using a Micromeritics ASAP2000. The sample was
degassed in an evacuated heated chamber at 100°C
overnight. Pore size distributions were calculated using
the Barrett-Joyner-Halenda (BJH) model on the desorp-
tion branch.

Results and discussions
X-ray diffraction analysis
Figure 1 shows XRD patterns of LZH host material and
Z–CFX intercalation compound. The diffraction patterns
are characteristic of lamellar solid materials as indicated
by sharp, intense basal reflections at low 2θ values and
weaker non-basal reflections at higher angles [10].
Figure 1a displays the XRD pattern typical of LZH interca-
lated with nitrate ions [34]. The basal reflections of LZH
are shifted to lower 2θ values as anion exchange is com-
pleted, indicating the formation of ciprofloxacin–LZH
intercalation compound. Accordingly, the basal spacing of
LZH expands from 9.9 Å to 21.5 Å in Z–CFX (Figure 1b).
Therefore, the interlayer height of Z–CFX is estimated to
be about 14.1 Å; obtained by subtracting the layer thick-
ness plus the height of Zn2+ moiety of the lattice from the
basal spacing; i.e. 14.1 Å = 21.5 – (4.8 + 2.6) Å. The ob-
tained value is larger than the longitudinal length of CFX
molecule (Figure 2). Therefore, we propose CFX anions
were arranged as intertwined bilayers in the interlayer
space [35], wherein the carboxylate groups of CFX were
bonded through an oxygen atom to Zn2+ units of the
lattice [7]. The proposed arrangement of the intercalated
CFX anions in the interlayer space of LZH is illustrated in
Figure 3.



Figure 2 Molecular dimensions (including van der Waals radii)
of CFX molecule.
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Fourier transform infrared spectroscopy
Figure 4 shows FTIR spectra of LZH host material, CFX
molecule and Z–CFX intercalation compound. Only the
main absorption bands are listed for the sake of clarity.
In all spectra, broad absorption bands are observed in
the range of 3440–3540 cm−1 due to the stretching
vibrations of hydroxyl group of the lattice and water
Figure 3 Schematic arrangement of CFX anions in the interlayer
space of Z-CFX.
molecules. Figure 4a shows a typical FTIR spectrum of
the host material, LZH with nitrate being the counter
anion. An absorption band at 1639 cm−1 is attributed to
the bending mode of water molecules [36]. At low
frequency, bands arising from the lattice vibrations of
Zn–O and O–Zn–O are detected at 639 and 467 cm−1,
respectively. The most intense absorption band in LZH
is found at 1385 cm−1, which is characteristic of free
interlayer nitrate group (symmetry D3h) [8].
For CFX (Figure 4b), an absorption band at 3375 cm−1

is attributed to the stretching vibrations of amine group.
Intense bands at 1711 and 1624 cm−1 are characteristic
of the stretching vibrations of carbonyl group of carbo-
xylic acid and ketone, respectively. Bands centered at
1310, 1269 and 1048 cm−1 are assigned to the stretching
modes of C–N, C–C–C of ketone and C–F, respectively.
The FTIR spectrum of Z–CFX features main charac-

teristic absorption bands of CFX anions which indicate
that the anions were successfully intercalated into the
LZH interlayers. Figure 4c depicts the stretching bands
of asymmetric and symmetric of carboxylate group of
the CFX anions, observed at 1576 and 1385 cm−1, res-
pectively. Generally, difference in wavenumber between
the carboxylate stretching bands (Δυ = υasym – υsym) gives
information about the coordination environment of the
functional group. Li et al. [36] mentioned that carboxylate
group adopting unidentate coordination mode has a larger
Δυ value compared to that of bridging carboxylate; 200
and 150 cm−1, respectively. Since the Δυ of COO– of CFX
anions is 191 cm−1, we would suggest that the intercalated
CFX is coordinately bonded to Zn2+ units of the lattice via
one oxygen atom of the functional group.
The spectrum of Z–CFX also displays the other

characteristic bands of CFX that were shifted from their
initial positions as a result of multiple chemical interac-
tions; electrostatic interactions between CFX anions and
LZH lattice [18], as well as hydrogen bonding effect
between water molecules and CFX anions [37]. The
assignment of the absorption bands in the FTIR spectra
of LZH, CFX and Z–CFX is summarized in Table 1.
Table 2 summarizes the elemental analysis data for Z–

CFX and LZH obtained from the CHN analysis and the
corresponding stoichiometric formula for both samples.
Approximately 42.63% of CFX was intercalated into the
LZH interlayers as determined from the carbon content.
Note that there are a small percentage of nitrate in the
intercalation compound which indicates the total anion
exchange was not achieved. Nonetheless, the stretching
band of the remaining nitrate at 1385 cm−1 is not
observed since it may have been obscured by the
symmetric band of carboxylate of CFX anions [38].
There is also a small percentage of carbonate anions in
the precursor LZH and in the intercalation compound
Z–CFX, a feature commonly observed in anionic clays
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Figure 4 FTIR spectra of (a) LZH, (b) CFX and (c) Z-CFX. (a) host material, LZH. (b) free drug molecule, CFX. (c) intercalation compound, Z-CFX.

Table 1 Assignment of FTIR absorption bands of Z-CFX,
CFX and LZH

Assignment cm−1

LZH CFX Z-CFX

υ(OH) of lattice,
υ(O–H) COOH,
υ(N–H) NH

3670 – 3200 – 3670 – 3200

υ(COOH) – 1711 –

δ(OH) of H2O 1639 w – –

υ(C = O) ketone – 1624 s 1632 s

υasym(COO–) – – 1579

υ(NO3
–) 1385 s – 1385 sup

υsym(COO
–) – – 1385 sup

υ(C–N) – 1310 m 1306 m

υ(C–C–C) ketone – 1269 m 1265 m

υ(C–F) – 1048 m 1036 w

Abbreviations: S sharp, M medium, W weak, Sup superimposed.
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due to strong affinity of the anions towards highly posi-
tively charged clay lattice [39,40]. The normal absorption
band of carbonate ion within 1360–1380 cm−1 maybe
overlapped with the stretching vibration of nitrate ion
and the symmetric vibration of the carboxylate group of
CFX [41].

Thermal analysis
Figure 5 shows TGA and DTG profiles of Z–CFX. The
thermal decomposition of Z–CFX follows the general
route observed in LHS intercalated with organic anions
[42]. The first step occurs from ambient up to 200°C
with respective to the weight loss of 12.5% which is due
to the removal of adsorbed and intercalated water. The
compound further undergoes a 26% of weight loss in the
region of 240–500°C which is attributed to the dehy-
droxylation of the hydroxide layers as well as partial
decomposition of the intercalated CFX anions. The final
step records a 35% weight loss with the major peak
occurs around 827°C (temperature range 680–928°C)



Table 2 Elemental analysis data, chemical formula and textural properties of LZH and Z-CFX

Sample proposed formula Weight percentage (%) BET surface
area (m2/g)

Pore volume
(cm3/g)

Average pore
diameter (nm)C H N H2O Zn

LZH 0.38 1.57 3.20 11.4 70.67 14.20 0.14 38.79

Zn5(OH)8(NO3)1.02(CO3)0.07.2.93H2O

Z-CFX (Molecular weight: 872.53 g/mol) 26.27 3.27 6.17 12.33 45.26 26.51 0.17 25.94

Zn5(OH)8(C17H18FN3O3)0.93(NO3)0.14(CO3)0.07 · 4.92H2O
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which is ascribed to the complete decomposition of
amorphous mixture of salts generated during the initial
drug decomposition [15].

Textural analysis
Figure 6a illustrates Type IV adsorption–desorption
isotherm following the IUPAC classification which
reveals the mesoporous nature of Z–CFX. The adsorption
isotherm elucidates monolayer adsorptions commenced
on the pore surface at low partial pressures followed by
multilayer formation up to high partial pressures. There
was no limiting adsorption of N2 gas observed at high
partial pressures suggesting the presence of macropores
Figure 5 TGA and DTG profiles of Z-CFX. Blue line: TGA profile.
Red line: DTG profile.
[43]. This finding is in agreement with the wide distribu-
tion of pore size in Figure 6c, ranging from 1–95 nm,
whereas the maximum size distribution being 2 nm. The
hysteresis loop, indicative of capillary condensation in the
mesopores occurred on the desorption isotherm down to
partial pressure of around 0.25. The hysteresis loop which
belongs to Type H3 hysteresis loop is characteristic of
aggregates of plate-like particles [44].
Table 2 summarizes the specific surface area (SSA),

the pore volume and the average pore diameter for LZH
and Z–CFX as determined from the Brunaeur, Emmett
and Teller (BET) method and the Barrett, Joyner and
Halenda (BJH) method. It is worth mentioning that the
CFX-intercalated LZH shows a larger surface area of
27 m2/g compared to that of the host with nitrate as the
counter anion, LZH which is 14 m2/g. This finding is
dissimilar from another group which observed the
decreased in surface area value of LDH after being inter-
calated with organic anions [45]. Moreover, reports on
the N2 adsorption–desorption of LZH intercalated with
drug anions are rather scarce for comparison purposes
with our aforesaid findings [46].
Recently, Hussein and co-workers reported that

surface area of hippurate–LZH intercalation compound
was decreased compared to that of the starting material,
ZnO [47]. Hippuric acid was first dissolved in dimethyl
sulfoxide before it was added to the ZnO suspension.
On the contrary, in this work, CFX was dissolved in a
mixture of water:ethanol solution to solubilize the drug
prior to its intercalation into LZH since the drug CFX
has poor solubility in aqueous solution. In a related find-
ing, Malherbe et al. [48] showed that the surface area of
hexacyanoferrate-intercalated LDH had increased when
the intercalation compound was obtained via anion ex-
change in water-organic solvent mixtures. The group
concluded that the inherent properties of organic solvents
were responsible for the increased surface area of the
obtained materials. We would attribute the increased in
surface area of Z–CFX compared to LZH is due to differ-
ent pore texture of the resulting material, which is very
much depending on the method of synthesis.

Morphology analysis
Figure 7 depicts the FESEM micrographs of the hybrid
material, Z–CFX and the host material, LZH. In Figure 7a,
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LZH exhibited aggregated plate-like particles which are
stacked on top of each other. The intercalation of CFX
molecules into the host, however, did not significantly
change the morphology of Z–CFX (Figure 7b). Yang et al.
[32] observed similar phenomenon in which no appre-
ciable changes are observed in the plate-like morphology
of the indole-3–acetic–intercalated zinc layered hydro-
xides and the parent layered zinc hydroxides.

Release study
Release of drug anion from the hybrid material was done
in the PBS solution pH 7.4 to evaluate its potentials as a
3 µm

(b)(a)

Figure 7 SEM images of (a) LZH (b) Z-CFX (c) Z-CFX observed at high
drug carrier. Figure 8 shows the release profile of CFX
which was achieved in a slow, sustained behaviour over
80 h that was in contrast with that of the physical mixture
which reached an equillibrium within 20 min (inset
Figure 8). The exceptionally slow, sustained release of
Z–CFX was ascribed to the coordination bond between
tetrahedral Zn2+ units with the intercalated anions as deter-
mined from the FTIR spectra (Figure 4). CFX anions were
strongly held to the extent that their diffusion from the
interlayer into the exchange medium solution was retarded,
owing to the fact that total release of CFX was not achieved
(CFX release at equillibrium was approximately 56%).
3 µm 1 µm

(c)

resolution. (a) host material, LZH. (b) intercalation compound, Z-CFX.
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Figure 8 Release profile of CFX from Z-CFX in PBS pH 7.4 and
from physical mixture of LZH-CFX (inset). Red line: release profile
of CFX from Z-CFX. Blue line: release profile of physical mixture
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In order to gain insights into the mechanisms of CFX
release from Z–CFX, we have applied four kinetic models
commonly applicable in the kinetic study of drug-
intercalated layered hydroxides hybrids. The models are:

1. First-order model which demonstrates the release
system where dissolution rate depends on the amount
of drug present in the intercalation compound and
can be mathematically expressed as [49]:

log Ct=Coð Þ ¼ −K 1t

2. Parabolic diffusion model which describes the
diffusion-controlled release of a drug from a
medium and is generally written as [50]:

1–Ct=Coð Þ=t ¼ Kdt–0:5 þ a

3. The modified Freundlich model which explains
experimental data on ion exchange and diffusion-
controlled process following the equation [51]:

Co–Ctð Þ=Co ¼ Kmtb

4. The Bhaskar model which deals with the diffusion-
controlled release of drug from particles and is
summarised in the form [52]:

−log 1−Ct=Coð Þ ¼ t0:65

In equations 1 – 4, Co and Ct are the amount of
drugs in the LZH matrix at release time 0 and t, re-
spectively, K is the rate constant, and a and b are the
constants whose chemical significance is not clearly
understood [51].
The release data of CFX were fitted to the above

models and the corresponding linear correlation coeffi-
cients (R2) were obtained and compared in Figure 9. The
first-order model seems to be incompatible for descri-
bing the mechanisms due to low R2 value. The model
yields poor linearity because it did not take into account
the inherent complexity involved in the release process
(R2 = 0.54). The Bhaskar model also gives a poor linea-
rity (R2 = 0.66) as the model did not deal with the possi-
bilities of both dissolution of the inorganic host and the
anion exchange of the hybrid [52].
The fitting of release data is best achieved with the

modified Freundlich model (R2 = 0.98), followed by para-
bolic diffusion (R2 = 0.96) which suggest that the release
process is of diffusion-controlled. Note that high R2

value of the latter model is due to the “grouping” of the
data towards low values on the x-axis, which is often
observed upon applying this model for the kinetic
analysis in layered hydroxides [18,53]. Generally, there
are two governing mechanisms in the release system of
layered double hydroxides (LDH); anion diffusion
through particles and dissolution of the LDH particles
[49]. The modified Freundlich model which concerns
with the heterogeneous diffusion from flat surfaces via
ion exchange would describe better the release process
in Z–CFX; surface CFX anions diffused first into the
PBS medium and underwent exchange with phosphate
ions in the medium. The process was followed by
diffusion from the interlayer anions. The latter process
being designated as the rate limiting step [51]. We would
attribute the sustained release of CFX anions due to the
strong coordination bond which occurred between the
anions and the Zn ions of the LZH lattice.

Toxicity study
Figure 10 shows the A549 cancer cell proliferation profiles
after treatment with the intercalation compound, Z–CFX,
the host, LZH and free drug, CFX for 72 h. Cell viability
was measured using the MTTassay, which is based on the
reduction of yellow tetrazolium MTT salt by metabolically
active cells, leading to the formation of purple formazan
crystals [54]. In general, all the three samples exerted toxic
effects towards the A549 cells as the concentration in-
creases. Upon comparing the IC50; the concentration that
inhibits 50% of the cellular growth, Z-CFX shows lower
IC50 compared with the value of free drug; 18.2 ± 3.2 μg/mL
and 78.3 ± 2.5 μg/mL, respectively. This finding indicates
that the compound has higher inhibitory effects towards
the A549 cells compared to that of free drug. It is worth
mentioning that precursor LZH has significantly as much
as 8 times less toxicity than the intercalation compound
(Figure 9c).
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Al Ali et al. [47] found that zinc layered hydroxides
intercalated with hippuric acid possessed synergistic
effects with tamoxifen towards HepG2 cells in which the
IC50 value significantly decreased than that of tamoxifen
and hippuric acid alone. Li et al. [33] pointed out that
decreased viability of HeLa cancer cells was due to LDH
intercalation with folic acid which protected the antican-
cer drug from degradation and enhanced its permeability
into the target cells. Considering the sustained release
behavior of Z–CFX, we would attribute the enhanced
antiproliferative effects observed in Z-CFX is due to the
strong interactions occurred between LZH and CFX; the
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Figure 10 Dose response curve of A549 cell proliferation throughout
CFX. (c) host material, LZH.
host would facilitate the cell uptake and further protect
the guest from degradation so that the anions were
slowly released and “killed” the A549 cells [55].

Conclusions
CFX was successfully intercalated into the interlayers of
layered zinc hydroxides via anion exchange mechanism
in water:organic solvent mixture solution. The basal
spacing of LZH was expanded to maximize the drug–
host interactions in the intercalation compound, Z–CFX
in which the intercalated CFX anions were bonded to
tetrahedral Zn2+ moieties of the lattice in a unidentate
50 250 500

ion  / µg ml-1

72 hours. (a) intercalation compound, Z-CFX. (b) free drug molecule,
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coordination mode. Due to strong coordination bond
between drug–host lattice, the intercalated anions were
slowly released, following diffusion–anion exchange
mechanisms in which diffusion from the interlayer
anions being the rate limiting step. The antiproliferative
towards A549 cells were enhanced due to the synergistic
effects between CFX and LZH. These findings should
serve as strong foundations in further development of
biocompatible LZH-based drug carrier.
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