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Putting an ‘End’ to HIV mRNAs: capping and
polyadenylation as potential therapeutic targets
Jeffrey Wilusz
Abstract

Like most cellular mRNAs, the 5′ end of HIV mRNAs is capped and the 3′ end matured by the process of
polyadenylation. There are, however, several rather unique and interesting aspects of these post-transcriptional
processes on HIV transcripts. Capping of the highly structured 5′ end of HIV mRNAs is influenced by the viral TAT
protein and a population of HIV mRNAs contains a trimethyl-G cap reminiscent of U snRNAs involved in splicing.
HIV polyadenylation involves active repression of a promoter-proximal polyadenylation signal, auxiliary upstream
regulatory elements and moonlighting polyadenylation factors that have additional impacts on HIV biology outside
of the constraints of classical mRNA 3’ end formation. This review describes these post-transcriptional novelties of
HIV gene expression as well as their implications in viral biology and as possible targets for therapeutic intervention.
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Introduction
Our appreciation of the overall impact and importance of
post-transcriptional processes on eukaryotic – and Human
Immunodeficiency Virus (HIV) – gene expression has sig-
nificantly expanded over the last decade. The nuclear pro-
cesses of pre-mRNA capping, splicing and polyadenylation
are now considered largely co-transcriptional in nature
and each exerts considerable influence on the transcrip-
tion process itself [1,2]. Alternative splicing, and to some
surprise polyadenylation as well, play a major role in shap-
ing the transcriptome [3,4]. The regulation of the effi-
ciency of nuclear export of HIV transcripts through the
Rev/RRE system is well-characterized [5]. Interestingly, re-
cent data suggest a significant amount of ‘two-way’ com-
munication between the stability of an RNA in the
cytoplasm and its transcription rate [6,7]. The processes of
translation, RNA editing and miRNA-mediated regulation
also influence the outcome of HIV gene expression [8-10].
Thus a clear understanding of HIV post-transcriptional
events is important for a full appreciation of HIV biology
and HIV-host interactions. In addition to their value in
understanding basic HIV biology, these new insights into
post-transcriptional regulation of HIV gene expression
have opened up several novel avenues for possible antiviral
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therapeutic targeting. Since several aspects of HIV post-
transcription control (e.g. splicing, Rev/RRE mediated ex-
port, RNA editing) have been the subject of recent reviews
[5,9,11], this review will focus on the regulation and im-
pact of HIV mRNA terminal modifications – namely 5′
capping and 3′ polyadenylation - have on HIV gene ex-
pression and their potential value as therapeutic targets.
Recent insights in these two areas, combined with their
fundamental importance to HIV molecular biology, make
them rather interesting and attractive processes from both
a basic and translational scientific perspective.
HIV RNA capping – a novel way to put a ‘lid’ on HIV
gene expression?
All eukaryotic mRNAs contain a 5′ 7meGpppG ‘cap’ on
their 5′ end that is added co-transcriptionally after the
first ~20-40 nucleotides of the mRNA are synthesized by
RNA polymerase II [12]. Cap addition requires three
enzymatic activities – an RNA triphosphatase, a guanyl-
transferase, and an m7guanine methyltransferase – that
are present in two proteins that make up the enzymatic
components of the human capping enzyme [13] that HIV
usurps to cap its own mRNAs. These enzymes are brought
to the nascent pre-mRNA by association with the
Carboxyl-Terminal Domain (CTD) of the large subunit of
RNA Pol II in a phosphorylation-mediated fashion [14].
Interestingly, it has been recently demonstrated that
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mammalian cells contain a surveillance machinery an-
chored by the DXO and Xrn2 factors that will rapidly de-
grade incorrectly capped pre-mRNAs [15,16]. Capping
also influences the nuclear processes of transcription [17],
splicing [18] and 3′ end formation/polyadenylation [19].
Through interaction with the two proteins of the cap
binding complex (CBC), the cap placed on mRNAs driven
from the HIV1 promoter up-regulates transcriptional
elongation and influences alternative splicing patterns
[20]. If one depletes the CBC, TAT- transactivation and
transcription elongation are repressed from the HIV1 pro-
moter [21]. In the cytoplasm, the cap is essential for effi-
cient mRNA translation [22] and is a key target for the
turnover of mRNAs [23]. Thus it is vitally important for
HIV to efficiently cap its mRNAs to maintain a high level
of gene expression.
Interfering with the fundamental process of capping of

several RNA viruses has been tapped as a potential antiviral
target due to the use of viral-derived capping enzymes that
bear distinct structures and enzymatic mechanisms
[24,25]. This approach is not feasible as an HIV target
since the virus utilizes host enzymes to mature the 5′ end
of its mRNA. Thus one needs to focus on apparent HIV
nuances of the capping process, three of which we believe
may pose interesting possibilities as drug targets.
The HIV Tat protein, a small basic intrinsically disor-

dered protein, is well known to interact with the TAR
element on the HIV mRNA and recruits transcription fac-
tors to promote HIV gene expression [26]. However it is
clear that the Tat protein is multi-functional in nature and
may also influence RNA interference [27], splicing [28],
and notably mRNA capping. The Tat protein stimulates
the capping of nascent HIV transcripts by either a direct
interaction with the Mce1 component of the human cap-
ping enzyme [29,30] or through stimulating the phosphor-
ylation of the CTD of the large subunit of RNA Pol II
[31]. Tat also has nucleic acid chaperone activity which
may contribute to its ability to stimulate RNA capping
[32]. While inhibitors that target Tat interactions as poten-
tial anti-HIV therapeutics have been studied for some time
e.g. [33-36], perhaps targeting the C-terminal region of
Tat that interacts with the Mce1 capping enzyme [30]
might be a fruitful approach as well. One potential limita-
tion to this approach, however, is that a firm grasp on the
structure of the flexible Tat protein has been elusive.
A second potential therapeutic avenue to follow in HIV

capping is the observation that some HIV mRNAs contain
2,2,7 trimethylated guanosine caps instead of the standard
7meG cap found on mRNAs [37]. Interestingly, there are
several reports that other RNA viruses (a flavivirus and
two alphaviruses) also can contain di- and tri-methylated
caps on their RNAs [38-40]. Trimethylation of HIV
mRNA caps appears to enhance RNA export and improve
HIV gene expression [37]. Cap hypermethylation is likely
mediated by the cellular PIMT enzyme, a ubiquitously
expressed protein that can be found in both the nucleus
and cytoplasm of mammalian cells and is best studied for
hypermethylation of U small RNA caps involved in spli-
cing [41]. PIMT appears to be recruited to HIV mRNAs
via REV/RRE interactions. Overexpression of PIMT can
enhance HIV gene expression, while knocking down the
enzyme has the converse effect [37]. Interestingly, PIMT
activity may be limiting in quiescent cells, and thus be a
contributing factor to HIV latency. It is also possible that
HIV cap hypermethylation may disrupt U snRNA biogen-
esis and/or nuclear export. This could impact cellular
mRNA splicing, reducing the ability of the HIV infected
cells to effectively react to the virus. Thus PIMT and HIV
cap hypermethylation may represent an interesting target
for therapeutic intervention. Several methylation inhibit-
ing drugs (e.g. the S-adenosyl methionine (SAM) analogue
sinefungin, 3-deaza-adenosine and neplanocin A and F
analogs) have been shown to decrease HIV replication
[37,42-45]. However given the fact that there are numer-
ous enzymes that use SAM and/or methylate cellular sub-
strates, including over 50 lysine methylases, a challenge
will be to identify or rationally design small molecule
inhibitors that are specific for PIMT. As an alternative
strategy, determining ways to increase PIMT activities in
quiescent cells may be a viable approach to help drive HIV
out of latency and deplete troublesome viral reservoirs.
Additional studies to more firmly establish the relation-
ship of PIMT to HIV quiescence would of course be
needed to ascertain the likelihood of success with such a
strategy. Finally, although highly speculative, this uncom-
mon hypermethylation of HIV caps could be exploited for
the specific targeting therapeutics. Since antibodies are
capable of specifically recognizing tri-methylated caps, it
may be possible to engineer small aptamers that specific-
ally target trimethylated caps in the context of the highly
structured 5′ terminal portion of HIV mRNAs.
A final curiosity regarding the 5′ cap is that in both

HIV1 and HIV2, the 5′ capped nucleotide is located at
the base of a stem in an area of extensive and highly
stable secondary structure [46]. In fact, HIV mRNAs re-
quire the DDX3 helicase which appears to substitute for
the eIF4E cap binding protein to promote translation
[47,48]. This structured region may also protect the cap
from quality-control surveillance in the nucleus [15]
and increase the stability of HIV RNAs by making it dif-
ficult for 5′-3′ exonucleases to gain access to an ex-
posed 5′ end. If this is true, then decapped HIV mRNAs
may be differentially stabilized in infected cells – and
could even be substrates for the recently identified
process of cytoplasmic ‘recapping’ of RNAs [49]. Thus
small molecules that target aspects of these structures
may be useful in reducing HIV gene expression by ex-
posing the cap to normal cellular regulatory controls.
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HIV polyadenylation - can we figure out a way to get an
‘A’ in our course (of treatment)?
The process of 3′ end formation/polyadenylation occurs
co-transcriptionally on cellular and HIV mRNAs gener-
ated by RNA Pol II and influences the termination of tran-
scription at a site several hundred bases downstream of
the mature 3′ end of the mRNA [50]. The 3′ end of most
human mRNAs is generated first by an endonucleolytic
cleavage event (catalyzed by CPSF73, aka CPSF3) followed
by the addition of 100–250 adenylate residues by poly(A)
polymerase (PAP). A typical polyadenylation signal con-
tains two types of elements. The core elements consist of
an AAUAAA or similar hexanucleotide and a short (about
5 base long) U- or GU-rich tract located within approxi-
mately 25–30 bases upstream or downstream, respectively,
of the site. The core elements serve as the assembly site of
the complex of polyadenylation factors. Many polyadeny-
lation signals also contain auxiliary elements that are lo-
cated upstream or downstream of the core elements.
These auxiliary elements bind to a variety of cellular fac-
tors and influence the efficiency of polyadenylation. There
are at least 13 core polyadenylation factors and perhaps
up to 80 proteins that interact with the complex that
forms on the pre-mRNA substrate to generate the mature
mRNA 3′ end [51]. This high degree of complexity for the
polyadenylation machinery is likely designed to (a) con-
trol/target the endonuclease and template independent
poly(A) polymerase; (b) network polyadenylation with
transcription, capping, splicing and export processes in
the nucleus [1,19,52]; and (c) to regulate alternative polya-
denylation [53].
Polyadenylation is far from the default process that is

typically depicted in textbook descriptions of gene expres-
sion. Data generated over the last several years has firmly
established the dynamic, highly regulated nature of polya-
denylation site choice. Well over 50% of genes are subject
to alternative polyadenylation and the process is highly
regulated in a tissue-specific and developmentally-specific
fashion [53-55]. Altering the site of polyadenylation can
truncate protein open reading frames, change splicing pat-
terns or alter mRNA posttranscriptional regulation by
shortening the 3′ untranslated region (UTR) and remov-
ing sites for miRNA or RNA binding factor interactions
[53]. Interestingly, HIV has two polyadenylation signals in
its mRNA as a result of the duplicated signal present in
the LTR regions [56]. The virus must suppress use of the
upstream 5′ polyadenylation site or the short mRNA that
is generated will not contain an open reading frame.
Additionally, the efficiency of the recognition of the nor-
mal 3′ polyadenylation site also has potential pathogenic
implications for HIV since the read-though of the normal
polyadenylation site is associated with transductive recom-
bination [57,58]. Given the fundamental importance of
polyadenylation to HIV gene expression as well the
recognition that the process interfaces with numerous nu-
clear processes and regulatory checkpoints, we believe that
at least two aspects of polyadenylation might present pos-
sible targets for therapeutic intervention.
A first possible target is the HIV-specific aspects of

poly(A) site usage that may in some ways be selectively
used by the virus and not the majority of cellular poly
(A) signals. Auxiliary elements occur upstream of the
normal HIV polyadenylation signal and greatly stimu-
late its usage. These elements are not located upstream of
the 5′ promoter-proximal polyadenylation site due to
where transcription begins in the HIV LTR. First sug-
gested by LTR 3′ region deletion experiments performed
in the Cullen [59], Ganem [60] and Alwine laboratories
[61], the sequence and structural requirements of this 3′
auxiliary element have been extensively studied by Gilmar-
tin and colleagues. Upstream auxiliary sequences that in-
fluence HIV polyadenylation appear to include 76 bases
upstream of the AAUAAA. This region includes the TAR
structural element [26] and importantly a sequence region
upstream that collectively assist in the assembly of the
core polyadenylation factors, including CPSF and CF1m
[62-64] on the downstream polyadenylation region. Given
the highly structured nature of this region [46,65,66], it
may be possible to develop small molecule inhibitors to
disconnect this upstream enhancer function from the HIV
polyadenylation signal, resulting in a dramatic decrease in
HIV gene expression. RNA structures are viable drug tar-
gets as, for example, numerous antibiotics target RNA-
derived structures in the ribosome and branched boronic
peptides have recently been shown to target the HIV RRE
[67]. Alternatively, work in the Proudfoot and Cochrane
laboratories has suggested a clear association in the effi-
ciency of HIV polyadenylation and the major 5′ splice site
[68,69]. Therefore drugs that influence splicing factors/
RNA splicing may have some desirable consequences on
HIV gene expression. To date, several studies have pre-
sented mixed results targeting a U1 snRNP-based polyade-
nylation/splicing related inhibition approach to HIV
therapy [70,71]. Thus more work is clearly needed in this
area. Next, while promoter proximity of the HIV upstream
5′ polyadenylation site clearly represses its activity [60,72],
a recent study has demonstrated that activating a cryptic
polyadenylation site near promoters can decrease tran-
scriptional activity [73]. Thus determining ways to de-
repress the promoter-proximal HIV poly(A) site may yield
huge therapeutic dividends. Finally Goff and colleagues
have demonstrated using genetic screens and other ana-
lyses that HIV polyadenylation is directly regulated by
eIF3f, CDK11, and splice factor 9G8 [74]. Thus com-
pounds that regulate a variety of cellular proteins may be
capable of repressing HIV polyadenylation and produce
some clinical benefit if effects on host cell metabolism can
be minimized.
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The second possible area of HIV polyadenylation-
related therapeutic development may lie in a bevy of
unexpected roles for polyadenylation factors that have
recently been demonstrated in HIV biology. It is be-
coming clearer in the field of post-transcriptional con-
trol of gene expression that many processes are
networked and factors can appear to be ‘moonlighting’
to perform a variety of functions in the cell. Along
these lines, CPSF6 (aka CF1m68kd) has been shown to
have isoforms that bind HIV capsid protein and regu-
late HIV disassembly and trafficking to the nucleus
[75-77]. Thus small molecules that stabilize or promote
the formation of cytoplasmic CPSF6 isoforms may have
significant impact on multiple aspects of HIV biology.
CPSF3 (aka CPSF73) has been demonstrated to be
up-regulated by TAT and repress the HIV promoter
[78,79]. Hence targeting this factor could have some
impact on driving HIV out of latency in reservoir sites.
The polyadenylation and transcription termination
factor Pcf11 has been shown to be a negative elongation
factor for HIV [80]. Thus, stabilizing or increasing the ac-
tivity of this protein may have therapeutic benefits. Finally,
hyperphosphorylation of poly(A) polymerase (PAP) has
been shown to be associated with HIV Vpr expression
[81]. Thus this may need to be considered when analyzing
the effect of various kinase inhibitors on HIV.

Conclusion
Targeting host rather than viral-specific factors that influ-
ence HIV replication and gene expression is one approach
to reduce the likelihood of viral drug resistance. RNA
interference based screens have identified a plethora of po-
tential host targets for HIV drug development. While cap-
ping and polyadenylation are often considered to be simple
default processes in eukaryotic gene expression, numerous
studies have made it clear that they are deeply networked
and contain HIV-specific nuances that might be considered
as possible targets for therapeutic intervention. Given the
significance of HIV infection in the world population, we
believe that no stones that are revealed by basic science
should be left unturned by those searching for novel effect-
ive treatments.
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