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Abstract
In this paper, we consider a variational inequality problem which is defined over the
set of intersections of the set of fixed points of a ζ -strictly pseudocontractive
mapping, the set of fixed points of a nonexpansive mapping and the set of solutions
of a minimization problem. We propose an iterative algorithm with regularization to
solve such a variational inequality problem and study the strong convergence of the
sequence generated by the proposed algorithm. The results of this paper improve
and extend several known results in the literature.

1 Introduction
Let H be a real Hilbert space with the inner product 〈·, ·〉 and the norm ‖ · ‖, let C be
a nonempty closed convex subset of H , and let f : C → R be a convex and continuously
Fréchet differentiable functional. We consider the following minimization problem (MP):

min
x∈C f (x). (.)

We denote by Ξ the set of minimizers of problem (.), and we assume that Ξ �= ∅. The
gradient-projection algorithm (GPA) is one of the most elegant methods to solve the min-
imization problem (.). The convergence of the sequence generated by the GPA depends
on the behavior of the gradient ∇f . If ∇f is strongly monotone and Lipschitz continuous,
then we get the strong convergence of the sequence generated by the GPA to a unique so-
lution ofMP (.). However, if the gradient∇f is assumed to be only Lipschitz continuous,
then the sequence generated by the GPA converges weakly if H is infinite-dimensional (a
counterexample is given in []). Since the Lipschitz continuity of the gradient ∇f implies
that it is actually inverse strongly monotone (ism) [], its complement can be an averaged
mapping (that is, it can be expressed as a proper convex combination of the identity map-
ping and a nonexpansive mapping) []. Consequently, the GPA can be rewritten as the
composite of a projection and an averaged mapping, which is again an averaged mapping.
This shows that averaged mappings play an important role in the GPA. Very recently, Xu
[] used averaged mappings to study the convergence analysis of the GPA, which is an
operator-oriented approach. He showed that the sequence generated by the GPA con-
verges in norm to a minimizer of MP (.), which is also a unique solution of a particular
type of variational inequality problem (VIP). It is worth to emphasize that the regular-
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ization, in particular the traditional Tikhonov regularization, is usually used to solve ill-
posed optimization problems. The advantage of a regularization method is its possible
strong convergence to the minimum-norm solution of the optimization problem. In [],
Xu introduced a hybrid gradient-projection algorithm with regularization and proved the
strong convergence of the sequence to theminimum-norm solution ofMP (.). Some iter-
ative algorithms with or without regularization for MP (.) are proposed and analyzed in
[–] for finding a common solution ofMP (.) and the set of solutions of a nonexpansive
mapping.
On the other hand, the theory of variational inequalities [, ] has emerged as an impor-

tant tool to study a wide class of problems from science, engineering, social sciences. If the
underlying set in the formulation of a variational inequality problem is a set of fixed points
of a mapping or, more precisely, of a nonexpansive mapping, then the variational inequal-
ity problem is called hierarchical variational problem. For further details on hierarchical
variational inequalities, we refer to [–] and the references therein.
In this paper, we consider a variational inequality problem which is defined over the set

of intersections of the set of fixed points of a ζ -strictly pseudocontractivemapping, the set
of fixed points of a nonexpansivemapping and the set of solutions ofMP (.).We propose
an iterative algorithm with regularization to solve such a variational inequality problem
and study the strong convergence of the sequence generated by the proposed algorithm.
The results of this paper improve and extend several known results in the literature.

2 Preliminaries and formulations
Throughout the paper, unless otherwise specified, we use the following assumptions and
notations. LetH be a real Hilbert spacewhose inner product and norm are denoted by 〈·, ·〉
and ‖ · ‖, respectively. Let C be a nonempty closed convex subset of H . We write xn → x
(respectively, xn ⇀ x) to indicate that the sequence {xn} converges strongly (respectively,
weakly) to x. Moreover, we use ωw(xn) to denote the weak ω-limit set of the sequence {xn},
that is,

ωw(xn) :=
{
x ∈H : xni ⇀ x for some subsequence {xni} of {xn}

}
.

The metric (or nearest point) projection from H onto C is the mapping PC : H → C
which assigns to each point x ∈H the unique point PCx ∈ C satisfying

‖x – PCx‖ = inf
y∈C ‖x – y‖ =: d(x,C).

Some important properties of projections are gathered in the following proposition.

Proposition . For given x ∈H and z ∈ C, we have
(a) z = PCx⇔ 〈x – z, y – z〉 ≤ , ∀y ∈ C;
(b) z = PCx ⇔ ‖x – z‖ ≤ ‖x – y‖ – ‖y – z‖, ∀y ∈ C;
(c) 〈PCx – PCy,x – y〉 ≥ ‖PCx – PCy‖, ∀y ∈ H , which concludes that PC is nonexpansive

and monotone.

Definition . A mapping T :H →H is said to be
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(a) ζ -strictly pseudocontractive if there exists a constant ζ ∈ [, ) such that

‖Tx – Ty‖ ≤ ‖x – y‖ + ζ
∥∥(I – T)x – (I – T)y

∥∥, ∀x, y ∈H .

If ζ = , then it is called nonexpansive;
(b) firmly nonexpansive if T – I is nonexpansive, or equivalently,

〈x – y,Tx – Ty〉 ≥ ‖Tx – Ty‖, ∀x, y ∈H ;

alternatively, T is firmly nonexpansive if and only if T can be expressed as

T =


(I + S),

where S :H →H is a nonexpansive mapping.

It can be easily seen that the projection mappings are firmly nonexpansive. It is clear
that T : C ⊆H → C is ζ -strictly pseudocontractive if and only if

〈Tx – Ty,x – y〉 ≤ ‖x – y‖ –  – ζ


∥∥(I – T)x – (I – T)y

∥∥, ∀x, y ∈ C.

Definition. LetT be a nonlinear operatorwith domainD(T) ⊆H and rangeR(T)⊆H .
(a) T is said to be monotone if

〈x – y,Tx – Ty〉 ≥ , ∀x, y ∈D(T).

(b) Given a number β > , T is said to be β-strongly monotone if

〈x – y,Tx – Ty〉 ≥ β‖x – y‖, ∀x, y ∈D(T).

(c) Given a number ν > , T is said to be ν-inverse strongly monotone (ν-ism) if

〈x – y,Tx – Ty〉 ≥ ν‖Tx – Ty‖, ∀x, y ∈D(T).

Clearly,
• if T is nonexpansive, then I – T is monotone;
• a projection PK is -ism;
• if T is a ζ -strictly pseudocontractive mapping, then I – T is –ζ

 -inverse strongly
monotone.

Definition . [] A mapping T : H → H is said to be an averaged mapping if it can be
written as the average of the identity I and a nonexpansive mapping, that is,

T ≡ ( – α)I + αS,

where α ∈ (, ) and S : H → H is a nonexpansive mapping. More precisely, when the
last equality holds, we say that T is α-averaged. Thus, firmly nonexpansive mappings (in
particular, projections) are 

 -averaged maps.
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Proposition . [] Let T :H →H be a given mapping.
(a) T is nonexpansive if and only if the complement I – T is 

 -ism.
(b) If T is ν-ism, then for γ > , γT is ν

γ
-ism.

(c) T is averaged if and only if the complement I – T is ν-ism for some ν > /. Indeed,
for α ∈ (, ), T is α-averaged if and only if I – T is 

α -ism.

Proposition . [, ] Let S,T ,V :H →H be given operators.
(a) If T = ( – α)S + αV for some α ∈ (, ) and if S is averaged and V is nonexpansive,

then T is averaged.
(b) T is firmly nonexpansive if and only if the complement I – T is firmly nonexpansive.
(c) If T = ( – α)S + αV for some α ∈ (, ) and if S is firmly nonexpansive and V is

nonexpansive, then T is averaged.
(d) The composite of finitely many averaged mappings is averaged, that is, if each of the

mappings {Ti}Ni= is averaged, then so is the composite T · · ·TN . In particular, if T is
α-averaged and T is α-averaged, where α,α ∈ (, ), then the composite TT is
α-averaged, where α = α + α – αα.

Lemma. [, Proposition .] Let C be a nonempty closed convex subset of a real Hilbert
space H , and let T : C → C be a mapping.
(a) If T is a ζ -strictly pseudocontractive mapping, then T satisfies the Lipschitz condition

‖Tx – Ty‖ ≤  + ζ

 – ζ
‖x – y‖, ∀x, y ∈ C.

(b) If T is a ζ -strictly pseudocontractive mapping, then the mapping I – T is semiclosed
at , that is, if {xn} is a sequence in C such that xn → x̃ weakly and (I – T)xn → 
strongly, then (I – T)x̃ = .

(c) If T is a ζ -(quasi-)strict pseudocontraction, then the fixed point set Fix(T) of T is
closed and convex so that the projection PFix(T) is well defined.

The following lemma is an immediate consequence of an inner product.

Lemma . In a real Hilbert space H , we have

‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉, ∀x, y ∈H .

The following elementary result on real sequences is quite well known.

Lemma . [] Let {an} be a sequence of nonnegative real numbers such that

an+ ≤ ( – sn)an + sntn + εn, ∀n≥ ,

where {sn} ⊂ (, ] and {tn} satisfy the following conditions:
(i)

∑∞
n= sn =∞;

(ii) either lim supn→∞ tn ≤  or
∑∞

n= sn|tn| < ∞;
(iii)

∑∞
n= εn < ∞, where εn ≥ , ∀n≥ .

Then limn→∞ an = .
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Lemma . [] Let C be a nonempty closed convex subset of a real Hilbert space H , and
let T : C → C be a ζ -strictly pseudocontractive mapping. Let γ and δ be two nonnegative
real numbers such that (γ + δ)ζ ≤ γ . Then

∥∥γ (x – y) + δ(Tx – Ty)
∥∥ ≤ (γ + δ)‖x – y‖, ∀x, y ∈ C.

The following lemma appeared implicitly in the paper of Reineermann [].

Lemma . [] Let H be a real Hilbert space. Then, for all x, y ∈ H and λ ∈ [, ],

∥∥λx + ( – λ)y
∥∥ = λ‖x‖ + ( – λ)‖y‖ – λ( – λ)‖x – y‖.

Let C be a nonempty closed convex subset of a real Hilbert space H , and let A : C → H
be a monotone mapping. The variational inequality problem (VIP) is to find x ∈ C such
that

〈Ax, y – x〉 ≥ , ∀y ∈ C.

The solution set of the VIP is denoted by VI(C,A). It is well known that

x ∈VI(C,A) ⇔ x = PC(x – λAx), ∀λ > .

A set-valuedmappingV :H → H is calledmonotone if for all x, y ∈H , f ∈ Vx and g ∈ Vy
imply that 〈x–y, f –g〉 ≥ . Amonotone set-valuedmappingV :H → H is calledmaximal
if its graph Gph(V ) is not properly contained in the graph of any other monotone set-
valued mapping. It is known that a monotone set-valued mapping V :H → H is maximal
if and only if for (x, f ) ∈ H × H , 〈x – y, f – g〉 ≥  for every (y, g) ∈ Gph(V ) implies that
f ∈ Vx. Let A : C → H be a monotone and Lipschitz continuous mapping and NCv be the
normal cone to C at v ∈ C, that is,

NCv =
{
w ∈H : 〈v – u,w〉 ≥ ,∀u ∈ C

}
.

Define

Vv =

⎧⎨
⎩Av +NCv if v ∈ C,

∅ if v /∈ C.

Lemma . [] Let A : C →H be a monotone mapping. Then
(i) V is maximal monotone;
(ii) v ∈ V– ⇔ v ∈VI(C,A).

Throughout the paper, we denote by Fix(T) and Fix(Γ ) the set of fixed points of T and
Γ , respectively. We also assume that the set Fix(T)∩ Fix(Γ )∩ Ξ is nonempty closed and
convex.
Let S,T : C → C be nonexpansive mappings and Γ : C → C be a ζ -strictly pseudo-

contractive mapping with ζ ∈ [, ). In this paper, we consider and study the following

http://www.fixedpointtheoryandapplications.com/content/2013/1/284


Ceng et al. Fixed Point Theory and Applications 2013, 2013:284 Page 6 of 24
http://www.fixedpointtheoryandapplications.com/content/2013/1/284

hierarchical variational inequality problem which is defined on Fix(T)∩ Fix(Γ )∩ Ξ .

Find x̃ ∈ Fix(T)∩ Fix(Γ )∩ Ξ such that

〈x̃ – Sx̃, x̃ – x〉 ≤ , ∀x ∈ Fix(T)∩ Fix(Γ )∩ Ξ . (.)

We denote by Ω the solution set of problem (.). It is not difficult to verify that solving
(.) is equivalent to the fixed point problem of finding x̃ ∈ C such that

x̃ = PFix(T)∩Fix(Γ )∩ΞSx̃,

where PFix(T)∩Fix(Γ )∩Ξ stands for the metric projection onto the closed convex set Fix(T)∩
Fix(Γ )∩ Ξ .
Problem (.) contains the hierarchical variational inequality problems considered and

studied in [, , ] and the references therein.
By using the definition of the normal cone to Fix(T)∩Fix(Γ )∩Ξ , we have the mapping

NFix(T)∩Fix(Γ )∩Ξ :H → H :

x �→

⎧⎪⎪⎨
⎪⎪⎩

{u ∈H : (∀y ∈ Fix(T)∩ Fix(Γ )∩ Ξ )〈y – x,u〉 ≤ },
if x ∈ Fix(T)∩ Fix(Γ )∩ Ξ ;

∅, otherwise,

and we readily prove that (.) is equivalent to the variational inequality

 ∈ (I – S)x̃ +NFix(T)∩Fix(Γ )∩Ξ x̃.

By combining the hybrid gradient-projection method of Xu [] and a two-step method
of Yao et al. [], we introduce the following three-step iterative algorithm:

⎧⎪⎪⎨
⎪⎪⎩
yn = θnSxn + ( – θn)xn,

zn = βnQyn + ( – βn)TPC(yn – λ∇fαn (yn)),

xn+ = σnzn + γnPC(zn – λ∇fαn (zn)) + δnΓ PC(zn – λ∇fαn (zn)), ∀n≥ ,

(.)

where Q : C → C is a ρ-contraction mapping, {αn} ⊂ (,∞), {βn}, {θn}, {σn} ⊂ (, ) and
{γn}, {δn} ⊂ [, ] with σn + γn + δn = , ∀n≥ . It is proven that under appropriate assump-
tions, the above iterative sequence {xn} converges strongly to an element x̃ ∈ Fix(T) ∩
Fix(Γ )∩ Ξ .

3 Main results
Let us consider the following assumptions:
• the mapping Q : C → C is a ρ-contraction;
• the mapping Γ : C → C is a ζ -strict pseudocontraction;
• S,T : C → C are two nonexpansive mappings;
• ∇f : C → H is Lipschitz continuous with  < λ < 

L ;
• {αn} is a sequence in (,∞) with

∑∞
n= αn <∞;

• {βn}, {θn}, {σn} are sequences in (, ) with  < lim infn→∞ σn ≤ lim supn→∞ σn < ;

http://www.fixedpointtheoryandapplications.com/content/2013/1/284
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• {γn}, {δn} are sequences in [, ] with σn + γn + δn = , ∀n≥ ;
• lim infn→∞ δn >  and (γn + δn)ζ ≤ γn, ∀n≥ .

Theorem . Let {xn} be a bounded sequence generated from any given x ∈ C by (.).
Assume that the following conditions hold:
(H)

∑∞
n= βn =∞, limn→∞ 

βn
| – θn–

θn
| = ;

(H) limn→∞ 
βn

| 
θn

– 
θn–

| = , limn→∞ 
θn

| – βn–
βn

| = ;
(H) limn→∞ θn =  and limn→∞ αn+βn

θn
= ;

(H) limn→∞ |αn–αn–|
βnθn

= , limn→∞ |σn–σn–|
βnθn

= ;
(H) limn→∞ 

βnθn
| γn
–σn

– γn–
–σn–

| = .
Then the following assertions hold:

(i) limn→∞ ‖xn+–xn‖
θn

= ;
(ii) ωw(xn) ⊂ Ω .

Proof First of all, we show that PC(I – λ∇fα) is ξ -averaged for each λ ∈ (, 
α+L ), where

ξ =
 + λ(α + L)


∈ (, ).

Indeed, the Lipschitz continuity of ∇f implies that ∇f is 
L -ism [], that is,

〈∇f (x) –∇f (y),x – y
〉 ≥ 

L
∥∥∇f (x) –∇f (y)

∥∥.

Observe that

(α + L)
〈∇fα(x) –∇fα(y),x – y

〉
= (α + L)

[
α‖x – y‖ + 〈∇f (x) –∇f (y),x – y

〉]
= α‖x – y‖ + α

〈∇f (x) –∇f (y),x – y
〉
+ αL‖x – y‖ + L

〈∇f (x) –∇f (y),x – y
〉

≥ α‖x – y‖ + α
〈∇f (x) –∇f (y),x – y

〉
+

∥∥∇f (x) –∇f (y)
∥∥

=
∥∥α(x – y) +∇f (x) –∇f (y)

∥∥

=
∥∥∇fα(x) –∇fα(y)

∥∥.

Therefore, it follows that ∇fα = αI + ∇f is 
α+L -ism. Thus, by Proposition .(b), λ∇fα is


λ(α+L) -ism. From Proposition .(c), the complement I – λ∇fα is λ(α+L)

 -averaged. There-
fore, noting that PC is 

 -averaged and utilizing Proposition .(d), we obtain that for each
λ ∈ (, 

α+L ), PC(I – λ∇fα) is ξ -averaged with

ξ =


+

λ(α + L)


–



· λ(α + L)


=
 + λ(α + L)


∈ (, ).

This shows that PC(I – λ∇fα) is nonexpansive. For λ ∈ (, L ), utilizing the fact that
limn→∞ 

αn+L = 
L , we may assume that

 < λ <


αn + L
, ∀n≥ .

http://www.fixedpointtheoryandapplications.com/content/2013/1/284
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Consequently, it follows that for each integer n≥ , PC(I – λ∇fαn ) is ξn-averaged with

ξn =


+

λ(αn + L)


–



· λ(αn + L)


=
 + λ(αn + L)


∈ (, ).

This implies that PC(I – λ∇fαn ) is nonexpansive for all n≥ .
The rest of the proof is divided into several steps.
Step . limn→∞ ‖xn+–xn‖

θn
= .

For simplicity, we put ỹn = PC(yn–λ∇fαn (yn)) and z̃n = PC(zn–λ∇fαn (zn)) for every n ≥ .
Then zn = βnQyn + ( – βn)Tỹn and xn+ = σnzn + γnz̃n + δnΓ z̃n for every n≥ .
Taking into account  < lim infn→∞ σn ≤ lim supn→∞ σn < , without loss of generality, we

may assume that {σn} ⊂ [c,d] for some c,d ∈ (, ). We write xn = σn–zn– + ( – σn–)vn–,
∀n≥ , where vn– = xn–σn–zn–

–σn–
. It follows that for all n≥ ,

vn – vn– =
xn+ – σnzn

 – σn
–
xn – σn–zn–

 – σn–

=
γnz̃n + δnΓ z̃n

 – σn
–

γn–z̃n– + δn–Γ z̃n–
 – σn–

=
γn(z̃n – z̃n–) + δn(Γ z̃n – Γ z̃n–)

 – σn

+
(

γn

 – σn
–

γn–

 – σn–

)
z̃n– +

(
δn

 – σn
–

δn–

 – σn–

)
Γ z̃n–. (.)

Since (γn + δn)ζ ≤ γn for all n ≥ , by Lemma ., we have

∥∥γn(z̃n – z̃n–) + δn(Γ z̃n – Γ z̃n–)
∥∥ ≤ (γn + δn)‖z̃n – z̃n–‖. (.)

Now, we estimate ‖zn – zn–‖. Observe that for every n≥ ,

‖ỹn – ỹn–‖ ≤ ∥∥PC(I – λ∇fαn )yn – PC(I – λ∇fαn )yn–
∥∥

+
∥∥PC(I – λ∇fαn )yn– – PC(I – λ∇fαn– )yn–

∥∥
≤ ‖yn – yn–‖ +

∥∥PC(I – λ∇fαn )yn– – PC(I – λ∇fαn– )yn–
∥∥

≤ ‖yn – yn–‖ +
∥∥(I – λ∇fαn )yn– – (I – λ∇fαn– )yn–

∥∥
= ‖yn – yn–‖ +

∥∥λ∇fαn (yn–) – λ∇fαn– (yn–)
∥∥

= ‖yn – yn–‖ + λ|αn – αn–|‖yn–‖. (.)

Similarly, for all n≥ , we have

‖z̃n – z̃n–‖ ≤ ‖zn – zn–‖ + λ|αn – αn–|‖zn–‖.

From (.), we have

⎧⎨
⎩yn = θnSxn + ( – θn)xn,

yn– = θn–Sxn– + ( – θn–)xn–, ∀n≥ ,
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and therefore

yn – yn– = θn(Sxn – Sxn–) + (θn – θn–)(Sxn– – xn–) + ( – θn)(xn – xn–),

which implies that

‖yn – yn–‖ ≤ θn‖Sxn – Sxn–‖ + |θn – θn–|‖Sxn– – xn–‖ + ( – θn)‖xn – xn–‖
≤ ‖xn – xn–‖ + |θn – θn–|‖Sxn– – xn–‖. (.)

Also, from (.) we have
⎧⎨
⎩zn = βnQyn + ( – βn)Tỹn,

zn– = βn–Qyn– + ( – βn–)Tỹn–, ∀n≥ ,

then simple calculations show that

zn – zn– = ( – βn)(Tỹn – Tỹn–) + (βn – βn–)(Qyn– – Tỹn–) + βn(Qyn –Qyn–),

and thus, from (.)-(.), we have

‖zn – zn–‖
≤ ( – βn)‖Tỹn – Tỹn–‖ + |βn – βn–|‖Qyn– – Tỹn–‖ + βn‖Qyn –Qyn–‖
≤ ( – βn)‖ỹn – ỹn–‖ + |βn – βn–|‖Qyn– – Tỹn–‖ + βn‖Qyn –Qyn–‖
≤ ( – βn)

(‖yn – yn–‖ + λ|αn – αn–|‖yn–‖
)
+ |βn – βn–|‖Qyn– – Tỹn–‖

+ βnρ‖yn – yn–‖
≤ (

 – ( – ρ)βn
)‖yn – yn–‖ + λ|αn – αn–|‖yn–‖ + |βn – βn–|‖Qyn– – Tỹn–‖

≤ (
 – ( – ρ)βn

)[‖xn – xn–‖ + |θn – θn–|‖Sxn– – xn–‖
]

+ λ|αn – αn–|‖yn–‖ + |βn – βn–|‖Qyn– – Tỹn–‖
≤ (

 – ( – ρ)βn
)‖xn – xn–‖ + |θn – θn–|‖Sxn– – xn–‖

+ λ|αn – αn–|‖yn–‖ + |βn – βn–|‖Qyn– – Tỹn–‖
≤ (

 – ( – ρ)βn
)‖xn – xn–‖ +M

[|θn – θn–| + |αn – αn–| + |βn – βn–|
]
, (.)

where ‖Sxn –xn‖+λ‖yn‖+‖Qyn –Tỹn‖ ≤M, ∀n≥  for someM > . This together with
(.)-(.) implies that

‖vn – vn–‖

≤ ‖γn(z̃n – z̃n–) + δn(Γ z̃n – Γ z̃n–)‖
 – σn

+
∣∣∣∣ γn

 – σn
–

γn–

 – σn–

∣∣∣∣‖z̃n–‖
+

∣∣∣∣ δn

 – σn
–

δn–

 – σn–

∣∣∣∣‖Γ z̃n–‖

≤ (γn + δn)‖z̃n – z̃n–‖
 – σn

+
∣∣∣∣ γn

 – σn
–

γn–

 – σn–

∣∣∣∣‖z̃n–‖ +
∣∣∣∣ γn

 – σn
–

γn–

 – σn–

∣∣∣∣‖Γ z̃n–‖
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Ceng et al. Fixed Point Theory and Applications 2013, 2013:284 Page 10 of 24
http://www.fixedpointtheoryandapplications.com/content/2013/1/284

= ‖z̃n – z̃n–‖ +
∣∣∣∣ γn

 – σn
–

γn–

 – σn–

∣∣∣∣(‖z̃n–‖ + ‖Γ ỹn–‖
)

≤ ‖zn – zn–‖ + λ|αn – αn–|‖zn–‖ +
∣∣∣∣ γn

 – σn
–

γn–

 – σn–

∣∣∣∣(‖z̃n–‖ + ‖Γ z̃n–‖
)

≤ (
 – ( – ρ)βn

)‖xn – xn–‖ +M
[|θn – θn–| + |αn – αn–| + |βn – βn–|

]
+ λ|αn – αn–|‖zn–‖ +

∣∣∣∣ γn

 – σn
–

γn–

 – σn–

∣∣∣∣(‖z̃n–‖ + ‖Γ z̃n–‖
)

≤ (
 – ( – ρ)βn

)‖xn – xn–‖ +M

[
|θn – θn–| + |αn – αn–| + |βn – βn–|

+
∣∣∣∣ γn

 – σn
–

γn–

 – σn–

∣∣∣∣
]
, (.)

whereM + λ‖zn‖ + ‖z̃n‖ + ‖Γ z̃n‖ ≤M, ∀n≥  for someM > .
Further, we observe that⎧⎨

⎩xn+ = σnzn + ( – σn)vn,

xn = σn–zn– + ( – βn–)vn–, ∀n≥ ,

and then by simple calculations, we have

xn+ – xn = ( – σn)(vn – vn–) + (σn – σn–)(zn– – vn–) + σn(zn – zn–).

By taking norm and using (.)-(.), we get

‖xn+ – xn‖
≤ ( – σn)‖vn – vn–‖ + |σn – σn–|‖zn– – vn–‖ + σn‖zn – zn–‖

≤ ( – σn)
{(

 – ( – ρ)βn
)‖xn – xn–‖ +M

[
|θn – θn–| + |αn – αn–| + |βn – βn–|

+
∣∣∣∣ γn

 – σn
–

γn–

 – σn–

∣∣∣∣
]}

+ |σn – σn–|‖zn– – vn–‖

+ σn
{(
 – ( – ρ)βn

)‖xn – xn–‖ +M
[|θn – θn–| + |αn – αn–| + |βn – βn–|

]}
≤ (

 – ( – ρ)βn
)‖xn – xn–‖ +M

[
|θn – θn–| + |αn – αn–| + |βn – βn–|

+
∣∣∣∣ γn

 – σn
–

γn–

 – σn–

∣∣∣∣
]
+ |σn – σn–|‖zn– – vn–‖

≤ (
 – ( – ρ)βn

)‖xn – xn–‖ +M

[
|θn – θn–| + |αn – αn–| + |βn – βn–|

+
∣∣∣∣ γn

 – σn
–

γn–

 – σn–

∣∣∣∣ + |σn – σn–|
]
,

whereM + ‖zn – vn‖ ≤M, ∀n≥  for someM ≥ . Therefore,

‖xn+ – xn‖
θn

≤ (
 – ( – ρ)βn

)‖xn – xn–‖
θn

+M

[ |θn – θn–|
θn

+ 
|αn – αn–|

θn
+

|βn – βn–|
θn
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+

θn

∣∣∣∣ γn

 – σn
–

γn–

 – σn–

∣∣∣∣ + |σn – σn–|
θn

]

=
(
 – ( – ρ)βn

)‖xn – xn–‖
θn–

+
(
 – ( – ρ)βn

)(‖xn – xn–‖
θn

–
‖xn – xn–‖

θn–

)

+M

[ |θn – θn–|
θn

+ 
|αn – αn–|

θn
+

|βn – βn–|
θn

+

θn

∣∣∣∣ γn

 – σn
–

γn–

 – σn–

∣∣∣∣ + |σn – σn–|
θn

]

≤ (
 – ( – ρ)βn

)‖xn – xn–‖
θn–

+M
[∣∣∣∣ θn –


θn–

∣∣∣∣
+

|θn – θn–|
θn

+ 
|αn – αn–|

θn
+

|βn – βn–|
θn

+

θn

∣∣∣∣ γn

 – σn
–

γn–

 – σn–

∣∣∣∣ + |σn – σn–|
θn

]

=
(
 – ( – ρ)βn

)‖xn – xn–‖
θn–

+ ( – ρ)βn · M
 – ρ

{

βn

∣∣∣∣ θn –


θn–

∣∣∣∣
+


βn

∣∣∣∣ – θn–

θn

∣∣∣∣ + 
|αn – αn–|

βnθn
+


θn

∣∣∣∣ – βn–

βn

∣∣∣∣
+


βnθn

∣∣∣∣ γn

 – σn
–

γn–

 – σn–

∣∣∣∣ + |σn – σn–|
βnθn

}
, (.)

where M + ‖xn – xn–‖ ≤ M, ∀n ≥  for some M ≥ . From (H)-(H), it follows that∑∞
n=( – ρ)βn =∞ and

lim
n→∞

M
 – ρ

{

βn

∣∣∣∣ θn –


θn–

∣∣∣∣ + 
βn

∣∣∣∣ – θn–

θn

∣∣∣∣ + 
|αn – αn–|

βnθn

+

θn

∣∣∣∣ – βn–

βn

∣∣∣∣ + 
βnθn

∣∣∣∣ γn

 – σn
–

γn–

 – σn–

∣∣∣∣ + |σn – σn–|
βnθn

}
= .

Thus, by applying Lemma . to (.), we conclude that

lim
n→∞

‖xn+ – xn‖
θn

= ,

which implies that

lim
n→∞‖xn+ – xn‖ = . (.)

Step . limn→∞ ‖xn – zn‖ = .
Indeed, let p ∈ Fix(T)∩ Fix(Γ )∩ Ξ . Then we have

‖ỹn – p‖ = ∥∥PC(I – λ∇fαn )yn – PC(I – λ∇f )p
∥∥

≤ ∥∥PC(I – λ∇fαn )yn – PC(I – λ∇fαn )p
∥∥

+
∥∥PC(I – λ∇fαn )p – PC(I – λ∇f )p

∥∥
≤ ‖yn – p‖ + ∥∥PC(I – λ∇fαn )p – PC(I – λ∇f )p

∥∥
≤ ‖yn – p‖ + λαn‖p‖. (.)
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Similarly, we get

‖z̃n – p‖ ≤ ‖zn – p‖ + λαn‖p‖.

By Lemma . and (.), we have

‖zn – p‖

=
∥∥βn(Qyn – p) + ( – βn)(Tỹn – p)

∥∥

≤ βn‖Qyn – p‖ + ( – βn)‖ỹn – p‖

≤ βn‖Qyn – p‖ + ‖ỹn – p‖

≤ βn‖Qyn – p‖ + (‖yn – p‖ + λαn‖p‖
)

= βn‖Qyn – p‖ + ‖yn – p‖ + λαn‖p‖
(
‖yn – p‖ + λαn‖p‖

)
≤ βn‖Qyn – p‖ + θn‖Sxn – p‖ + ( – θn)‖xn – p‖ + λαn‖p‖

(
‖yn – p‖ + λαn‖p‖

)
≤ βn‖Qyn – p‖ + θn‖Sxn – p‖ + ‖xn – p‖ + λαn‖p‖

(
‖yn – p‖ + λαn‖p‖

)
.

Since (γn + δn)ζ ≤ γn for all n ≥ , utilizing Lemma ., we obtain

‖xn+ – p‖

=
∥∥σn(zn – p) + γn(z̃n – p) + δn(Γ z̃n – p)

∥∥

=
∥∥∥∥σn(zn – p) + (γn + δn)


γn + δn

[
γn(z̃n – p) + δn(Γ z̃n – p)

]∥∥∥∥

= σn‖zn – p‖ + (γn + δn)
∥∥∥∥ 
γn + δn

[
γn(z̃n – p) + δn(Γ z̃n – p)

]∥∥∥∥

– σn(γn + δn)
∥∥∥∥(zn – p) –


γn + δn

[
γn(z̃n – p) + δn(Γ z̃n – p)

]∥∥∥∥

= σn‖zn – p‖ + (γn + δn)
∥∥∥∥ 
γn + δn

[
γn(z̃n – p) + δn(Γ z̃n – p)

]∥∥∥∥

– σn(γn + δn)
∥∥∥∥ 
γn + δn

[
γn(z̃n – zn) + δn(Γ z̃n – zn)

]∥∥∥∥

= σn‖zn – p‖ + (γn + δn)
∥∥∥∥ 
γn + δn

[
γn(z̃n – p) + δn(Γ z̃n – p)

]∥∥∥∥

–
σn

γn + δn
‖xn+ – zn‖

≤ σn‖zn – p‖ + (γn + δn)‖z̃n – p‖ – σn

γn + δn
‖xn+ – zn‖

= σn‖zn – p‖ + ( – σn)‖z̃n – p‖ – σn

 – σn
‖xn+ – zn‖

≤ σn‖zn – p‖ + ( – σn)
[‖zn – p‖ + λαn‖p‖

(
‖zn – p‖ + λαn‖p‖

)]
–

σn

 – σn
‖xn+ – zn‖

≤ ‖zn – p‖ + λαn‖p‖
(
‖zn – p‖ + λαn‖p‖

)
–

σn

 – σn
‖xn+ – zn‖
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≤ βn‖Qyn – p‖ + θn‖Sxn – p‖ + ‖xn – p‖ + λαn‖p‖
(
‖yn – p‖ + λαn‖p‖

)
+ λαn‖p‖

(
‖zn – p‖ + λαn‖p‖

)
–

σn

 – σn
‖xn+ – zn‖

= ‖xn – p‖ + βn‖Qyn – p‖ + θn‖Sxn – p‖

+ λαn‖p‖
(‖yn – p‖ + ‖zn – p‖ + λαn‖p‖

)
–

σn

 – σn
‖xn+ – zn‖.

Since  < lim infn→∞ σn ≤ lim supn→∞ σn < , we may assume that {σn} ⊂ [c,d] for some
c,d ∈ (, ). Therefore, we deduce

c
 – c

‖xn+ – zn‖

≤ σn

 – σn
‖xn+ – zn‖

≤ ‖xn – p‖ – ‖xn+ – p‖ + βn‖Qyn – p‖ + θn‖Sxn – p‖

+ λαn‖p‖
(‖yn – p‖ + ‖zn – p‖ + λαn‖p‖

)
≤ (‖xn – p‖ + ‖xn+ – p‖)‖xn – xn+‖ + βn‖Qyn – p‖ + θn‖Sxn – p‖

+ λαn‖p‖
(‖yn – p‖ + ‖zn – p‖ + λαn‖p‖

)
.

Since αn → , βn → , θn →  and ‖xn – xn+‖ →  as n → ∞, we conclude from the
boundedness of {xn}, {yn} and {zn} that ‖xn+ – zn‖ →  as n → ∞. This together with
‖xn – xn+‖ →  implies that

lim
n→∞‖xn – zn‖ = . (.)

Step . limn→∞ ‖yn – ỹn‖ =  and limn→∞ ‖zn – z̃n‖ = .
Let p ∈ Fix(T)∩ Fix(Γ )∩ Ξ . Then, by Lemmas . and ., we have

‖zn – p‖

=
∥∥βn(Qyn – p) + ( – βn)(Tỹn – p)

∥∥

≤ βn‖Qyn – p‖ + ( – βn)‖ỹn – p‖

= βn‖Qyn – p‖ + ( – βn)
∥∥PC(I – λ∇fαn )yn – PC(I – λ∇f )p

∥∥

≤ βn‖Qyn – p‖ + ( – βn)
∥∥(I – λ∇f )yn – (I – λ∇f )p – λαnyn

∥∥

≤ βn‖Qyn – p‖ + ( – βn)
[∥∥(I – λ∇f )yn – (I – λ∇f )p

∥∥

– λαn
〈
yn, (I – λ∇fαn )yn – (I – λ∇f )p

〉]
≤ βn‖Qyn – p‖ + ( – βn)

[
‖yn – p‖ + λ

(
λ –


L

)∥∥∇f (yn) –∇f (p)
∥∥

+ λαn‖yn‖
∥∥(I – λ∇fαn )yn – (I – λ∇f )p

∥∥]

≤ βn‖Qyn – p‖ + ( – βn)
[
θn‖Sxn – p‖ + ( – θn)‖xn – p‖
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+ λ

(
λ –


L

)∥∥∇f (yn) –∇f (p)
∥∥ + λαn‖yn‖

∥∥(I – λ∇fαn )yn – (I – λ∇f )p
∥∥]

≤ βn‖Qyn – p‖ + θn‖Sxn – p‖ + ‖xn – p‖ + ( – βn)λ
(

λ –

L

)∥∥∇f (yn) –∇f (p)
∥∥

+ λαn‖yn‖
∥∥(I – λ∇fαn )yn – (I – λ∇f )p

∥∥.
Therefore, we obtain

( – βn)λ
(

L
– λ

)∥∥∇f (yn) –∇f (p)
∥∥

≤ βn‖Qyn – p‖ + θn‖Sxn – p‖ + ‖xn – p‖ – ‖zn – p‖

+ λαn‖yn‖
∥∥(I – λ∇fαn )yn – (I – λ∇f )p

∥∥
≤ βn‖Qyn – p‖ + θn‖Sxn – p‖ + (‖xn – p‖ + ‖zn – p‖)(‖xn – p‖ – ‖zn – p‖)
+ λαn‖yn‖

∥∥(I – λ∇fαn )yn – (I – λ∇f )p
∥∥

≤ βn‖Qyn – p‖ + θn‖Sxn – p‖ + (‖xn – p‖ + ‖zn – p‖)‖xn – zn‖
+ λαn‖yn‖

∥∥(I – λ∇fαn )yn – (I – λ∇f )p
∥∥.

Since αn → , βn → , θn → , ‖xn – zn‖ →  and  < λ < 
L , from the boundedness of

{xn}, {yn} and {zn}, we obtain limn→∞ ‖∇f (yn) –∇f (p)‖ = , and hence

lim
n→∞

∥∥∇fαn (yn) –∇f (p)
∥∥ = .

Also, since

‖yn – zn‖ ≤ ‖yn – xn‖ + ‖xn – zn‖ = θn‖Sxn – xn‖ + ‖xn – zn‖,

from θn →  and ‖xn – zn‖ → , it follows that

lim
n→∞‖yn – zn‖ =  and lim

n→∞
∥∥∇fαn (zn) –∇f (p)

∥∥ = . (.)

Furthermore, from the firm nonexpansiveness of PC , we obtain

‖ỹn – p‖ = ∥∥PC(I – λ∇fαn )yn – PC(I – λ∇f )p
∥∥

≤ 〈
(I – λ∇fαn )yn – (I – λ∇f )p, ỹn – p

〉
=


{∥∥(I – λ∇fαn )yn – (I – λ∇f )p

∥∥ + ‖ỹn – p‖

–
∥∥(I – λ∇fαn )yn – (I – λ∇f )p – (ỹn – p)

∥∥}
≤ 


{‖yn – p‖ + λ

∥∥∇fαn (yn) –∇f (p)
∥∥∥∥(I – λ∇fαn )yn – (I – λ∇f )p

∥∥
+ ‖ỹn – p‖ – ‖yn – ỹn‖ + λ

〈
yn – ỹn,∇fαn (yn) –∇f (p)

〉
– λ∥∥∇fαn (yn) –∇f (p)

∥∥},
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and so,

‖ỹn – p‖

≤ ‖yn – p‖ – ‖yn – ỹn‖

+ λ
∥∥∇fαn (yn) –∇f (p)

∥∥∥∥(I – λ∇fαn )yn – (I – λ∇f )p
∥∥

+ λ
〈
yn – ỹn,∇fαn (yn) –∇f (p)

〉
– λ∥∥∇fαn (yn) –∇f (p)

∥∥.

Similarly, we have

‖z̃n – p‖

≤ ‖zn – p‖ – ‖zn – z̃n‖ + λ
∥∥∇fαn (zn) –∇f (p)

∥∥∥∥(I – λ∇fαn )zn – (I – λ∇f )p
∥∥

+ λ
〈
zn – z̃n,∇fαn (zn) –∇f (p)

〉
– λ∥∥∇fαn (zn) –∇f (p)

∥∥. (.)

Thus, we have

‖zn – p‖ ≤ βn‖Qyn – p‖ + ( – βn)‖ỹn – p‖

≤ βn‖Qyn – p‖ + ‖ỹn – p‖

≤ βn‖Qyn – p‖ + ‖yn – p‖ – ‖yn – ỹn‖

+ λ
∥∥∇fαn (yn) –∇f (p)

∥∥∥∥(I – λ∇fαn )yn – (I – λ∇f )p
∥∥

+ λ
〈
yn – ỹn,∇fαn (yn) –∇f (p)

〉
– λ∥∥∇fαn (yn) –∇f (p)

∥∥

≤ βn‖Qyn – p‖ + ‖yn – p‖ – ‖yn – ỹn‖

+ λ
∥∥∇fαn (yn) –∇f (p)

∥∥∥∥(I – λ∇fαn )yn – (I – λ∇f )p
∥∥

+ λ
〈
yn – ỹn,∇fαn (yn) –∇f (p)

〉
≤ βn‖Qyn – p‖ + ‖yn – p‖ – ‖yn – ỹn‖

+ λ
∥∥∇fαn (yn) –∇f (p)

∥∥(∥∥(I – λ∇fαn )yn – (I – λ∇f )p
∥∥ + ‖yn – ỹn‖

)
,

which implies that

‖yn – ỹn‖

≤ βn‖Qyn – p‖ + ‖yn – p‖ – ‖zn – p‖

+ λ
∥∥∇fαn (yn) –∇f (p)

∥∥(∥∥(I – λ∇fαn )yn – (I – λ∇f )p
∥∥ + ‖yn – ỹn‖

)
≤ βn‖Qyn – p‖ + (‖yn – p‖ + ‖zn – p‖)‖yn – zn‖
+ λ

∥∥∇fαn (yn) –∇f (p)
∥∥(∥∥(I – λ∇fαn )yn – (I – λ∇f )p

∥∥ + ‖yn – ỹn‖
)
.

Since βn → , ‖yn – zn‖ →  and ‖∇fαn (yn) –∇f (p)‖ → , from the boundedness of {xn},
{yn}, {zn} and {ỹn}, it follows that

lim
n→∞‖yn – ỹn‖ = .
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In addition, since (γn + δn)ζ ≤ γn for all n≥ , utilizing Lemma ., we get from (.)

‖xn+ – p‖ ≤ σn‖zn – p‖ + (γn + δn)‖z̃n – p‖

= σn‖zn – p‖ + ( – σn)‖z̃n – p‖

≤ σn‖zn – p‖ + ( – σn)
{‖zn – p‖ – ‖zn – z̃n‖

+ λ
∥∥∇fαn (zn) –∇f (p)

∥∥∥∥(I – λ∇fαn )zn – (I – λ∇f )p
∥∥

+ λ
〈
zn – z̃n,∇fαn (zn) –∇f (p)

〉
– λ∥∥∇fαn (zn) –∇f (p)

∥∥}
≤ σn‖zn – p‖ + ( – σn)

{‖zn – p‖ – ‖zn – z̃n‖

+ λ
∥∥∇fαn (zn) –∇f (p)

∥∥∥∥(I – λ∇fαn )zn – (I – λ∇f )p
∥∥

+ λ‖zn – z̃n‖
∥∥∇fαn (zn) –∇f (p)

∥∥}
≤ ‖zn – p‖ – ( – σn)‖zn – z̃n‖

+ λ
∥∥∇fαn (zn) –∇f (p)

∥∥(∥∥(I – λ∇fαn )zn – (I – λ∇f )p
∥∥ + ‖zn – z̃n‖

)
,

which implies that

( – σn)‖zn – z̃n‖

≤ ‖zn – p‖ – ‖xn+ – p‖

+ λ
∥∥∇fαn (zn) –∇f (p)

∥∥(∥∥(I – λ∇fαn )zn – (I – λ∇f )p
∥∥ + ‖zn – z̃n‖

)
≤ (‖zn – p‖ + ‖xn+ – p‖)‖zn – xn+‖
+ λ

∥∥∇fαn (zn) –∇f (p)
∥∥(∥∥(I – λ∇fαn )zn – (I – λ∇f )p

∥∥ + ‖zn – z̃n‖
)
.

Since {σn} ⊂ [c,d], ‖zn – xn+‖ →  and ‖∇fαn (zn) –∇f (p)‖ → , from the boundedness of
{xn}, {zn} and {z̃n}, it follows that

lim
n→∞‖zn – z̃n‖ = .

Step . ωw(xn) ⊂ Ω .
Let p∗ ∈ ωw(xn). Then there exists a subsequence {xni} of {xn} such that xni ⇀ p∗. Since

zn – yn = βn(Qyn – yn) + ( – βn)(Tỹn – yn)

= βn(Qyn – yn) + ( – βn)(Tỹn – ỹn) + ( – βn)(ỹn – yn),

we have

( – βn)‖Tỹn – ỹn‖ =
∥∥zn – yn – βn(Qyn – yn) – ( – βn)(ỹn – yn)

∥∥
≤ ‖zn – yn‖ + βn‖Qyn – yn‖ + ( – βn)‖ỹn – yn‖
≤ ‖zn – yn‖ + βn‖Qyn – yn‖ + ‖ỹn – yn‖.

Hence from ‖zn–yn‖ → , βn →  and ‖ỹn–yn‖ → , we get limn→∞ ‖Tỹn– ỹn‖ = . Since
‖xn – yn‖ →  and ‖yn – ỹn‖ → , we have ỹni ⇀ p∗. By Lemma .(b) (demiclosedness
principle), we obtain p∗ ∈ Fix(T).
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Meanwhile, observe that

xn+ – zn = γn(z̃n – zn) + δn(Γ z̃n – z̃n) + δn(z̃n – zn)

= (γn + δn)(z̃n – zn) + δn(Γ z̃n – z̃n)

= ( – σn)(z̃n – zn) + δn(Γ z̃n – z̃n).

Thus,

δn‖Γ z̃n – z̃n‖ =
∥∥xn+ – zn – ( – σn)(z̃n – zn)

∥∥
≤ ‖xn+ – zn‖ + ( – σn)‖z̃n – zn‖
≤ ‖xn+ – zn‖ + ‖z̃n – zn‖ →  as n→ ∞.

This together with lim infn→∞ δn >  yields limn→∞ ‖Γ z̃n – z̃n‖ = . Since ‖xn – zn‖ → 
and ‖zn – z̃n‖ → , we have z̃ni ⇀ p∗. By Lemma .(b) (demiclosedness principle), we
have p∗ ∈ Fix(Γ ).
Further, let us show p∗ ∈ Ξ . Indeed, from ‖xn – yn‖ →  and ‖ỹn – yn‖ → , we have

yni ⇀ p∗ and ỹni ⇀ p∗. Define

Vv =

⎧⎨
⎩∇f (v) +NCv if v ∈ C,

∅ if v /∈ C,

where NCv = {w ∈ H : 〈v – u,w〉 ≥ ,∀u ∈ C}. Then V is maximal monotone and  ∈ Vv if
and only if v ∈VI(C,∇f ) (see []). Let (v,w) ∈ graph(V ). Then we have

w ∈ Vv =∇f (v) +NCv,

and hence

w –∇f (v) ∈NCv.

Therefore, we have

〈
v – u,w –∇f (v)

〉 ≥ , ∀u ∈ C.

On the other hand, from

ỹn = PC
(
yn – λ∇fαn (yn)

)
and v ∈ C,

we have

〈
yn – λ∇fαn (yn) – ỹn, ỹn – v

〉 ≥ ,

and hence
〈
v – ỹn,

ỹn – yn
λ

+∇fαn (yn)
〉
≥ .
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Therefore, from

w –∇f (v) ∈NC(v) and ỹni ∈ C,

we have

〈v – ỹni ,w〉 ≥ 〈
v – ỹni ,∇f (v)

〉
≥ 〈

v – ỹni ,∇f (v)
〉
–

〈
v – ỹni ,

ỹni – yni
λ

+∇fαni (yni )
〉

=
〈
v – ỹni ,∇f (v)

〉
–

〈
v – ỹni ,

ỹni – yni
λ

+∇f (yni )
〉
– αni〈v – ỹni , yni〉

=
〈
v – ỹni ,∇f (v) –∇f (ỹni )

〉
+

〈
v – ỹni ,∇f (ỹni ) –∇f (yni )

〉
–

〈
v – ỹni ,

ỹni – yni
λ

〉
– αni〈v – ỹni , yni〉

≥ 〈
v – ỹni ,∇f (ỹni ) –∇f (yni )

〉
–

〈
v – ỹni ,

ỹni – yni
λ

〉
– αni〈v – ỹni , yni〉.

Hence, we obtain

〈
v – p∗,w

〉 ≥  as i→ ∞.

Since V is maximal monotone, we have p∗ ∈ V–, and hence p∗ ∈VI(C,∇f ), which leads
to p ∈ Ξ . Consequently, p∗ ∈ Fix(T) ∩ Fix(Γ ) ∩ Ξ . This shows that ωw(xn) ⊂ Fix(T) ∩
Fix(Γ )∩ Ξ .
Finally, let us show p∗ ∈ Ω . Indeed, it follows from (.) that for every p ∈ Fix(T) ∩

Fix(Γ )∩ Ξ ,

‖yn – p‖ = ∥∥( – θn)(xn – p) + θn(Sxn – Sp) + θn(Sp – p)
∥∥

≤ ∥∥( – θn)(xn – p) + θn(Sxn – Sp)
∥∥ + θn〈Sp – p, yn – p〉

≤ ( – θn)‖xn – p‖ + θn‖Sxn – Sp‖ + θn〈Sp – p, yn – p〉
≤ ‖xn – p‖ + θn〈Sp – p, yn – p〉,

and hence

‖zn – p‖

≤ βn‖Qyn – p‖ + ( – βn)‖ỹn – p‖

≤ βn‖Qyn – p‖ + ‖ỹn – p‖

≤ βn‖Qyn – p‖ + (‖yn – p‖ + λαn‖p‖
)

≤ βn‖Qyn – p‖ + ‖yn – p‖ + λαn‖p‖
(
‖yn – p‖ + λαn‖p‖

)
≤ βn‖Qyn – p‖ + ‖xn – p‖ + θn〈Sp – p, yn – p〉
+ λαn‖p‖

(
‖yn – p‖ + λαn‖p‖

)
.
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Since (γn + δn)ζ ≤ γn for all n ≥ , by Lemma ., we have

‖xn+ – p‖

≤ σn‖zn – p‖ + (γn + δn)‖z̃n – p‖

≤ σn‖zn – p‖ + ( – σn)
(‖zn – p‖ + λαn‖p‖

)
≤ ‖zn – p‖ + λαn‖p‖

(
‖zn – p‖ + λαn‖p‖

)
≤ βn‖Qyn – p‖ + ‖xn – p‖ + θn〈Sp – p, yn – p〉
+ λαn‖p‖

(
‖yn – p‖ + λαn‖p‖

)
+ λαn‖p‖

(
‖zn – p‖ + λαn‖p‖

)
= ‖xn – p‖ + βn‖Qyn – p‖ + θn〈Sp – p, yn – p〉
+ λαn‖p‖

(‖yn – p‖ + ‖zn – p‖ + λαn‖p‖
)
,

which implies that

〈p – Sp, yn – p〉 ≤ 
θn

(‖xn – p‖ – ‖xn+ – p‖) + βn

θn
‖Qyn – p‖

+
αn

θn
λ‖p‖(‖yn – p‖ + ‖zn – p‖ + λαn‖p‖

)
≤ ‖xn – xn+‖

θn

(‖xn – p‖ + ‖xn+ – p‖) + βn

θn
‖Qyn – p‖

+
αn

θn
λ‖p‖(‖yn – p‖ + ‖zn – p‖ + λαn‖p‖

)
.

Since αn+βn
θn

→  and ‖xn–xn+‖
θn

→  as n→ ∞, from the boundedness of {xn}, {yn} and {zn},
we deduce that

lim sup
n→∞

〈p – Sp, yn – p〉 ≤ , ∀p ∈ Fix(T)∩ Fix(Γ )∩ Ξ .

So, from yni ⇀ p∗, we get

〈
p – Sp,p∗ – p

〉 ≤ , ∀p ∈ Fix(T)∩ Fix(Γ )∩ Ξ .

Taking into consideration that I – S is monotone and continuous, utilizing Minty’s lemma
[], we have

〈
p∗ – Sp∗,p∗ – p

〉 ≤ , ∀p ∈ Fix(T)∩ Fix(Γ )∩ Ξ .

Therefore, p∗ = PFix(T)∩Fix(Γ )∩ΞSp∗; that is, p∗ ∈ Ω . �

Remark . Iterative algorithm (.) is different from the algorithms in [, ]. The two-
step iterative scheme in [] for two nonexpansive mappings and the gradient-projection
iterative schemes in [] for MP (.) are extended to develop three-step iterative scheme
(.) with regularization for MP (.), two nonexpansive mappings and a strictly pseudo-
contractive mapping.
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Remark . The following sequences satisfy the hypotheses on the parameter in Theo-
rem ..
(a) αn = 

n+s+t , βn = 
ns and θn = 

nt , where t ∈ (,  ) and s ∈ (t,  – t);
(b) σn = 

 +

n and γn = δn = 

 –

n for all n > .

Theorem . Let {xn} be the bounded sequence generated from any given x ∈ C by (.).
Assume that hypotheses (H)-(H) of Theorem . hold and
(H) limn→∞

θn
βn

= ;
(H) There is a constant k >  such that

‖x – TPC(I – λ∇f )x‖ ≥ k dist(x,Fix(T)∩ Fix(Γ )∩ Ξ ) for each x ∈ C, where
dist(x,Fix(T)∩ Fix(Γ )∩ Ξ ) = infy∈Fix(T)∩Fix(Γ )∩Ξ ‖x – y‖.

Then the sequences {xn}, {yn} and {zn} converge strongly to x∗ = PΩQx∗ provided ‖xn–zn‖ =
o(θn), where x∗ solves the following variational inequality:

〈
x∗ – Sx∗,x∗ – x

〉 ≤ , ∀x ∈ Fix(T)∩ Fix(Γ )∩ Ξ .

Proof Let p ∈ Fix(T)∩ Fix(Γ )∩ Ξ . From (.), we have

zn – p = βn(Qyn –Qp) + βn(Qp – p) + ( – βn)(Tỹn – p),

and therefore,

‖zn – p‖

≤ ∥∥βn(Qyn –Qp) + ( – βn)(Tỹn – p)
∥∥ + βn〈Qp – p, zn – p〉

≤ ( – βn)‖Tỹn – p‖ + βn‖Qyn –Qp‖ + βn〈Qp – p, zn – p〉
≤ ( – βn)‖ỹn – p‖ + βnρ

‖yn – p‖ + βn〈Qp – p, zn – p〉
≤ ( – βn)

(‖yn – p‖ + λαn‖p‖
) + βnρ‖yn – p‖ + βn〈Qp – p, zn – p〉

≤ (
 – ( – ρ)βn

)‖yn – p‖ + λαn‖p‖
(
‖yn – p‖ + λαn‖p‖

)
+ βn〈Qp – p, zn – p〉. (.)

Again from (.), we obtain

‖yn – p‖ = ∥∥( – θn)(xn – p) + θn(Sxn – Sp) + θn(Sp – p)
∥∥

≤ ∥∥( – θn)(xn – p) + θn(Sxn – Sp)
∥∥ + θn〈Sp – p, yn – p〉

≤ ( – θn)‖xn – p‖ + θn‖Sxn – Sp‖ + θn〈Sp – p, yn – p〉
≤ ‖xn – p‖ + θn〈Sp – p, yn – p〉. (.)

Substituting (.) into (.), we get

‖zn – p‖ ≤ (
 – ( – ρ)βn

)(‖xn – p‖ + θn〈Sp – p, yn – p〉)
+ λαn‖p‖

(
‖yn – p‖ + λαn‖p‖

)
+ βn〈Qp – p, zn – p〉
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=
(
 – ( – ρ)βn

)‖xn – p‖ + 
(
 – ( – ρ)βn

)
θn〈Sp – p, yn – p〉

+ βn〈Qp – p, zn – p〉 + λαn‖p‖
(
‖yn – p‖ + λαn‖p‖

)
. (.)

Since (γn + δn)ζ ≤ γn for all n ≥ , utilizing Lemma ., we get from (.) and (.)

‖xn+ – p‖ ≤ σn‖zn – p‖ + (γn + δn)‖z̃n – p‖

≤ σn‖zn – p‖ + ( – σn)
(‖zn – p‖ + λαn‖p‖

)
≤ ‖zn – p‖ + λαn‖p‖

(
‖zn – p‖ + λαn‖p‖

)
≤ (

 – ( – ρ)βn
)‖xn – p‖ + 

(
 – ( – ρ)βn

)
θn〈Sp – p, yn – p〉

+ βn〈Qp – p, zn – p〉 + λαn‖p‖
(
‖yn – p‖ + λαn‖p‖

)
+ λαn‖p‖

(
‖zn – p‖ + λαn‖p‖

)
=

(
 – ( – ρ)βn

)‖xn – p‖ + 
(
 – ( – ρ)βn

)
θn〈Sp – p, yn – p〉

+ βn〈Qp – p, zn – p〉 + λαn‖p‖
(‖yn – p‖ + ‖zn – p‖ + λαn‖p‖

)
≤ (

 – ( – ρ)βn
)‖xn – p‖ + 

(
 – ( – ρ)βn

)
θn〈Sp – p, yn – p〉

+ βn〈Qp – p, zn – p〉 + M̃αn, (.)

where M̃ = supn≥{λ‖p‖(‖yn – p‖ + ‖zn – p‖ + λαn‖p‖)} < ∞.
Taking into consideration that PΩ ◦ Q is a contractive mapping, we know that PΩ ◦ Q

has a unique fixed point x∗ ∈ Ω . That is, there is a unique solution x∗ ∈ Ω of the following
variational inequality problem (VIP):

〈
Qx∗ – x∗,q – x∗〉 ≤ , ∀q ∈ Ω . (.)

Since x∗ ∈ Ω , it is clear that x∗ = PFix(T)∩Fix(Γ )∩ΞSx∗, and hence x∗ ∈ Fix(T)∩ Fix(Γ )∩ Ξ .
Thus, from (.), we conclude that

∥∥xn+ – x∗∥∥

≤ (
 – ( – ρ)βn

)∥∥xn – x∗∥∥ + 
(
 – ( – ρ)βn

)
θn

〈
Sx∗ – x∗, yn – x∗〉

+ βn
〈
Qx∗ – x∗, zn – x∗〉 + M̃αn

=
(
 – ( – ρ)βn

)∥∥xn – x∗∥∥ + ( – ρ)βn

{
( – ( – ρ)βn)

 – ρ

θn

βn

〈
Sx∗ – x∗, yn – x∗〉

+


 – ρ

〈
Qx∗ – x∗, zn – x∗〉} + M̃αn. (.)

Consider a subsequence {xni} of {xn} such that

lim sup
n→∞

〈
Qx∗ – x∗,xn – x∗〉 = lim

i→∞
〈
Qx∗ – x∗,xni – x∗〉.

Without loss of generality, we may further assume that xni ⇀ x̃. Then, in view of The-
orem ., x̃ ∈ Ω . Since x∗ is a unique solution of VIP (.) and ‖xn – zn‖ → , we
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have

lim sup
n→∞

〈
Qx∗ – x∗, zn – x∗〉 = lim sup

n→∞
(〈
Qx∗ – x∗, zn – xn

〉
+

〈
Qx∗ – x∗,xn – x∗〉)

= lim sup
n→∞

〈
Qx∗ – x∗,xn – x∗〉 = lim

i→∞
〈
Qx∗ – x∗,xni – x∗〉

=
〈
Qx∗ – x∗, x̃ – x∗〉 ≤ ,

which implies that

lim sup
n→∞


 – ρ

〈
Qx∗ – x∗, zn – x∗〉 ≤ . (.)

Meanwhile, from x∗ ∈ Ω and (H), we infer that

〈
Sx∗ – x∗, yn – x∗〉
=

〈
Sx∗ – x∗, yn – PFix(T)∩Fix(Γ )∩Ξyn

〉
+

〈
Sx∗ – x∗,PFix(T)∩Fix(Γ )∩Ξyn – x∗〉

≤ 〈
Sx∗ – x∗, yn – PFix(T)∩Fix(Γ )∩Ξyn

〉
≤ ∥∥Sx∗ – x∗∥∥∥∥yn – PFix(T)∩Fix(Γ )∩Ξyn

∥∥
= dist

(
yn,Fix(T)∩ Fix(Γ )∩ Ξ

)∥∥Sx∗ – x∗∥∥
≤ 

k
∥∥Sx∗ – x∗∥∥∥∥yn – TPC(I – λ∇f )yn

∥∥.
From (.), we have

zn – xn
θn

=
βn

θn
(Qyn – xn) +

 – βn

θn
(Tỹn – xn).

This together with limn→∞ ‖zn–xn‖
θn

=  and βn
θn

=  implies that

lim
n→∞

‖Tỹn – xn‖
θn

= .

Hence,

lim
n→∞

θn‖Tỹn – xn‖
βn

= lim
n→∞

‖Tỹn – xn‖
θn

θ
n

βn
= .

Observe that

yn – xn = θn(Sxn – xn).

Therefore, we get

lim
n→∞

θn

βn
‖yn – xn‖ = lim

n→∞
θ
n

βn
‖Sxn – xn‖ = ,
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and hence

θn

βn

∥∥yn – TPC(I – λ∇f )yn
∥∥

≤ θn

βn

(‖yn – xn‖ +
∥∥xn – TPC(I – λ∇f )yn

∥∥)
≤ θn

βn

(‖yn – xn‖ +
∥∥xn – TPC(I – λ∇fαn )yn

∥∥
+

∥∥TPC(I – λ∇fαn )yn – TPC(I – λ∇f )yn
∥∥)

≤ θn

βn

(‖yn – xn‖ + ‖xn – Tỹn‖ +
∥∥(I – λ∇fαn )yn – (I – λ∇f )yn

∥∥)
=

θn

βn
‖yn – xn‖ + θn

βn
‖xn – Tỹn‖ + θn

βn
λαn‖yn‖

=
θn

βn
‖yn – xn‖ + θn

βn
‖xn – Tỹn‖ + θ

n
βn

αn

θn
λ‖yn‖ →  as n→ ∞.

Thus, it follows that

lim sup
n→∞

θn

βn

〈
Sx∗ – x∗, yn – x∗〉 ≤ ,

and hence

lim sup
n→∞

( – ( – ρ)βn)
 – ρ

θn

βn

〈
Sx∗ – x∗, yn – x∗〉 ≤ . (.)

Utilizing Lemma ., from
∑∞

n= M̃αn < ∞ and (.)-(.), we conclude that the se-
quence {xn} converges strongly to x∗. Taking into consideration that ‖xn – yn‖ →  and
‖xn – zn‖ → , we obtain that ‖yn – x∗‖ →  and ‖zn – x∗‖ →  as n→ ∞. This completes
the proof. �

Remark . The following parametric sequences satisfy the hypotheses of Theorem ..
(a) αn = 

n+s+t , βn = 
ns and θn = 

nt , where t ∈ (,  ] and s ∈ (t, t) or t ∈ (  ,

 ),

s ∈ (t,  – t);
(b) σn = 

 +

n , γn = δn = 

 –

n , ∀n > .

Remark . Theorems . and . improve, extend, supplement and develop [, Theo-
rems . and .] and [, Theorems . and .] in the following aspects:
(a) Three-step iterative algorithm (.) with regularization for MP (.), two

nonexpansive mappings and a strictly pseudocontractive mapping are more flexible
and more subtle than the algorithms in [, ].

(b) The argument techniques in Theorems . and . are different from the ones in [,
Theorems . and .] and the ones in [, Theorems . and .] because we use the
properties of strict pseudocontractive mappings and maximal monotone mappings
(see, for example, Lemmas ., . and .).

(c) Compared with the proof of Theorems . and . in [], the proof of Theorems .
and . shows limn→∞ ‖yn – PC(I – λ∇fαn )yn‖ = limn→∞ ‖zn – PC(I – λ∇fαn )zn‖ = 
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via the argument of limn→∞ ‖∇fαn (yn) –∇f (p)‖ = limn→∞ ‖∇fαn (zn) –∇f (p)‖ = ,
∀p ∈ Fix(T)∩ Fix(Γ )∩ Ξ (see Step  in the proof of Theorem .).

(e) Theorems . and . remove the condition Fix(T)∩ intC �= ∅ in [, Theorems .
and .].
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