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Abstract

Because of its optical and electrical properties, large surfaces, and compatibility with standard silicon processes,
porous silicon is a very interesting material in photovoltaic and microelectromechanical systems technology. In some
applications, porous silicon is annealed at high temperature and, consequently, the cylindrical pores that are
generated by anodization or stain etching reorganize into randomly distributed closed sphere-like pores. Although
the design of devices which involve this material needs an accurate evaluation of its mechanical properties, only few
researchers have studied the mechanical properties of porous silicon, and no data are nowadays available on the
mechanical properties of sintered porous silicon. In this work we propose a finite element model to estimate the
mechanical properties of sintered meso-porous silicon. The model has been employed to study the dependence of
the Young’s modulus and the shear modulus (upper and lower bounds) on the porosity for porosities between 0% to
40%. Interpolation functions for the Young’s modulus and shear modulus have been obtained, and the results show
good agreement with the data reported for other porous media. A Monte Carlo simulation has also been employed to
study the effect of the actual microstructure on the mechanical properties.
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Background
Porous silicon (PSi) has been extensively employed in
microelectromechanical systems (MEMS) technology and
it has been proposed for some applications in photo-
voltaics (PV) technology. In MEMS technology, processes
to manufacture suspended structures often employ open-
porosity PSi as a sacrificial layer while in PV technology,
stacked layers of sintered PSi with different porosity have
been proposed both as buried Bragg reflectors and for
layer transfer techniques for the fabrication of thin silicon
solar cells [1]. In these applications, an accurate evaluation
of PSi mechanical properties is paramount for the device
fabrication and performance.
Since its discovery, PSi has been investigated mostly for

its optical and electrical properties. Only few researchers
investigated the mechanical properties of this mate-
rial. Characterizations of PSi mechanical properties were
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performed employing very different techniques, e.g.,
nanoindentation [2], Brillouin scattering [3], phase veloc-
ity scanning [4], and microechography [5], but each of
these works dealt with open-porosity PSi.
For some applications such as the layer transfer tech-

nique and the buried Bragg reflectors, as-anodized PSi
undergoes a thermal treatment which transforms the
structure of the silicon layer. When annealed at temper-
atures higher than 1,000°C, PSi experiences a structural
reorganization driven by surface energy minimization
which transforms the columnar voids formed by the
anodization into closed sphere-like pores. The pores
interact and give rise to more complex structures (see
Figure 1). To the knowledge of the authors, no studies have
been performed about the mechanical properties of the
sintered meso-porous silicon. Magoariec and Danescu [6]
proposed a numerical model for evaluating the mechani-
cal properties of sintered nano-PSi which they compared
with experimental data from literature, but they did not
take into account the effect of the random distribution of
voids. Li et al. [7] showed that the mechanical properties
of porous media depend on the connectivity of the pores

© 2012 Martini et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.



Martini et al. Nanoscale Research Letters 2012, 7:597 Page 2 of 5
http://www.nanoscalereslett.com/content/7/1/597

Figure 1 SEM picture of a sintered PSi cross section. SEM picture of sintered meso-PSi after 20 min annealing in H2 atmosphere at 1,100°C
and 1 atm.

and, thus, the actual distribution of voids is expected to
play a role in the mechanical properties of porous silicon.
In this work we present a finite element model for the

evaluation of the overall mechanical properties of sintered
PSi. This numerical model includes a random distribution
of voids inside a representative volume element (RVE),
and it has been exploited to evaluate the upper and lower
bounds of the Young’s modulus and the shear modulus of
PSi as a function of porosity. A Monte Carlo simulation
is also presented in this work to evaluate the fluctuation
of the upper bounds due to the statistical variation of the
microstructure.

Methods
An example of the numerical model employed for the
analysis of the mechanical properties of PSi is depicted in
Figure 2. The RVE is generated by subtracting a random
distribution of spherical voids to a silicon cube. Without
loss of generality, we assume that the edges of the cube
are oriented along the < 100 > directions of the silicon
crystal lattice. Referring to this orientation, the Young’s
modulus, the Poisson ratio and the shear modulus of sil-
icon employed in the analysis are the ones reported by
Masolin et al. [8], i.e. ESi = 130 GPa, νSi = 0.278
and GSi = 79.6 GPa. The position of the center of the
voids and their radii follow a rectangular and a Gaus-
sian distribution, respectively. Since the single void can be

centered in any location in the silicon cube, there is a non-
null probability that two or more voids overlap. The RVEs
are then discretized by means of simplicial meshes.
To define the overall mechanical properties of PSi, the

standard homogenization theory has been employed. In
this framework, three different kinds of boundary condi-
tions are usually applied: uniform displacements, uniform

Figure 2 Example of RVE. Example of RVE employed for the study of
the overall mechanical properties of porous silicon and two
cross-sections.
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tractions, and periodic boundary conditions. If the con-
sidered RVE is sufficiently large, these boundary condi-
tions lead to the same overall mechanical response, but
such RVE is usually excessively large to be solved by
numerical simulations. For smaller RVEs, uniform trac-
tions and uniform displacements boundary conditions
are known to evaluate respectively the upper and lower
bounds of the stiffness matrix of the RVE, while periodic
boundary conditions give a more reasonable estimation of
the homogenized stiffness matrix. In this work we want to
focus only on the values that bound the mechanical prop-
erties and, thus, periodic boundary conditions will not be
taken into account.
In the case of uniform displacement boundary condi-

tions, displacements ui have been imposed at the bound-
aries (∂V ) of the RVE (V ) by the relation:

ui = Eijxj for x ∈ ∂V ,

where Eij are the components of the second order macro-
scopic strain tensor while, in case of uniform tractions
boundary conditions, uniform surface loads have been
applied at the boundary of the RVE. In the latter case, the
components of the macroscopic strain tensor are com-
puted from the average of the displacement field at the
boundaries. Since the aspect ratio of the structures inside
the RVE is limited and since, at room temperature, sili-
con behaves as a linear elastic material, nonlinear effects
can be neglected until the stress field locally reaches the
strength of silicon.
The displacements and the loads imposed at the bound-

ary induce a stress field inside the matrix that can be
described by the second order microscopic stress tensor
σlm(x). The second order macroscopic stress tensor�lm is
evaluated as the average of the microscopic stress field in
the RVE:

�lm = 1
|V |

∫
V

σlm(x)dV ,

where |V | denotes the volume of the RVE.
Once the components of the macroscopic stress tensor

are computed, the components of the fourth order stiff-
ness tensor (Sijlm) can be extracted by the appropriate
ratio between Eij and �lm, following the relation:

�lm = SlmijEij .

Since bulk silicon shows an orthotropic behavior with
equivalent directions along < 100 >, a similar behavior
is assumed for the RVE. By making this assumption, the
equivalent Young’s modulus and shear modulus in the
< 100> directions can be computed. It has to be noted
that the properties obtained by assuming an orthotropic
material automatically degenerate in isotropic condition
whenever the RVE is not anisotropic.

Figure 3 PSi Young’s modulus as function of porosity. Numerical
results for uniform displacements (empty squares) and uniform
traction (full squares) conditions and interpolations (solid line)
representing the upper and lower bounds of the homogenized
Young’s modulus as function of porosity. Curves are always
underneath the Voigt theoretical upper bound (dashed line).

To study the effect of the actual microstructure on the
overall mechanical properties, a Monte Carlo simulation
has been performed by generating different realizations
with the same statistical distribution of pores positions
and radii.

Results and discussion
Using the method presented in the previous section, the
upper and the lower bounds of both the Young’s modulus
and the shear modulus of 500 × 500 × 500 nm3 PSi cubes

Figure 4 PSi shear modulus as function of porosity. Numerical
results for uniform displacements (empty squares) and uniform
traction (full squares) conditions and interpolations (solid line)
representing the upper and lower bounds of the homogenized shear
modulus as function of porosity. Curves are always underneath the
Voigt theoretical upper bound (dashed line).
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have been evaluated between 0% and 40% porosities. Eval-
uations of the Young’s modulus and the shear modulus
obtained by this procedure and their interpolations are
depicted respectively in Figures 3 and 4. The interpola-
tion functions have the form A(�) = ASi × (1 − �)k

where A(�) is the mechanical parameter as function of
porosity � , ASi is the mechanical parameter of the matrix,
i.e. silicon, and k is the only fitting parameter that has to
be tuned in the interpolation. This family of functions is
commonly employed for the interpolation of mechanical
properties of porous solids [9] and, in this work, they have
been employed both for the upper bounds (UBs) and the
lower bounds (LBs). The interpolating functions and the
relative R2 values obtained for the Young’s modulus are as
follows:

{
EUB(�) = ESi × (1 − �)1.58504 R2 = 0.9988
ELB(�) = ESi × (1 − �)2.47781 R2 = 0.9894

,

while for the shear modulus,

{
GUB(�) = GSi × (1 − �)1.77023 R2 = 0.9988
GLB(�) = GSi × (1 − �)2.96941 R2 = 0.9922

.

As the R2 values suggest, these functions fit well the
mechanical properties obtained by the simulations.
The computed values are compared with the Voigt

bound that is known to define the theoretical upper

bound for the elastic moduli, while the Reuss lower
bound is neglected since it is trivially null. As expected
from the homogenization theory, the values gath-
ered from simulations are between the theoretical
bounds.
In Figure 5, the degree of anisotropy computed as

G(�)
2(1+ν(�))

E(�)
, i.e., the ratio between the computed

shear modulus and the one evaluated by accounting sil-
icon as an isotropic material is reported for both the
upper bound and the lower bound. Even though the
degree of anisotropy tends to the unity and, there-
fore, to the isotropic behavior, sintered PSi still behaves
as an orthotropic material also for relatively high
porosities.
Since each realization of the Monte Carlo simulation is

generated by keeping constant the statistical distribution
of the pores radii and positions, the porosity cannot be
also fixed. An a-posteriori analysis reveals that the poros-
ity ranges between 15% and 20% with a mean value of
17.66%. Figure 6 shows the statistics of the upper bound
of both the Young’s modulus and the shear modulus.
Within the legend, the mean values and the variances
are reported. To discern the effect of the actual pores
distribution from the random change of porosity, the cor-
relation coefficients (rE� and rG� ) between the logarithm
of the two moduli and the logarithm of (1 − �) have
been computed. Both the correlation coefficients (rE� =
0.9485 and rG� = 0.9773) report a strong correlation
between the porosity and the moduli. This suggests that,
once the statistical pores distribution is fixed, the actual
microstructure has secondary effect compared to small
variations of porosity.

Figure 5 PSi degree of anisotropy as function of porosity. Degree of anisotropy computed as G(�)
2(1+ν(�))

E(�)
for both the upper and lower

bounds as function of porosity.
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Figure 6 Statistical distribution of PSi Young’s modulus and shear modulus. Statistical distribution of PSi Young’s modulus (left) and shear
modulus (right) obtained by Monte Carlo simulations. The mean value and the standard deviation are reported in the legend.

Conclusions
In this work we presented a finite element model to eval-
uate the overall mechanical properties of sintered meso-
PSi. This model has been employed to characterize the
upper and lower bound of the Young’s modulus and shear
modulus for meso-PSi with porosity between 0% and
40%. The values defined by the simulations can be fitted
by interpolation functions that are commonly employed
for porous media. This analysis reduces the theoretical
bounds on the mechanical properties defined by the Voigt
and Reuss limits and provides an indication on the possi-
ble Young’s modulus and shear modulus of sintered PSi as
function of porosity. The values of Young’s modulus and
shear modulus obtained by simulations are well fitted by
interpolation functions that have been already employed
for other porous media. This suggests that the model
could represent well the actual properties of sintered PSi.
Monte Carlo simulations have also been employed to

analyze the effect of the actual microstructure on the
upper bound for porosities between 15% and 20%. The
results show that the large spread on the values of
the Young’s modulus and shear modulus is mainly due
to the variation of the porosity instead of the variation of
the actual microstructure itself.
The obtained values can be employed for the optimiza-

tion of structures which involve sintered PSi, and the
model can be exploited to study sintered PSi with different
pores distributions.
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