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Abstract

Raman and Infrared (IR) spectroscopies provide information about the structure,
functional groups and environment of the molecules in the sample. In combination
with a microscope, these techniques can also be used to study molecular distributions in
heterogeneous samples. Over the past few decades Raman and IR microspectroscopy
based techniques have been extensively used to understand fundamental biology and
responses of living systems under diverse physiological and pathological conditions. The
spectra from biological systems are complex and diverse, owing to their heterogeneous
nature consisting of bio-molecules such as proteins, lipids, nucleic acids, carbohydrates
etc. Sometimes minor differences may contain critical information. Therefore,
interpretation of the results obtained from Raman and IR spectroscopy is difficult and
to overcome these intricacies and for deeper insight we need to employ various data
mining methods. These methods must be suitable for handling large multidimensional
data sets and for exploring the complete spectral information simultaneously. The
effective implementation of these multivariate data analysis methods requires the
pretreatment of data. The preprocessing of raw data helps in the elimination of
noise (unwanted signals) and the enhancement of discriminating features. This
review provides an outline of the state-of-the-art data processing tools for multivariate
analysis and the various preprocessing methods that are widely used in Raman and IR
spectroscopy including imaging for better qualitative and quantitative analysis of
biological samples.

Keywords: Preprocessing; Baseline removal; Principal component analysis; Linear
discriminant analysis; Classification models; Clustering; Partial least squares; Cross
validation; Receiver operating characteristic
Introduction
Raman and IR spectroscopies provide detailed chemical information and are routinely

used in various application areas including pharmaceutical, polymers, forensic, environ-

mental, food sciences etc. [1–8]. Often the identification and quantification of compo-

nents in biological samples by spectroscopic methods alone is hindered because of the

sample’s diverse nature. The spectra from heterogeneous bio-systems such as cells, tis-

sues, biofluids etc., consisting of a large number of bio-molecules, are complex. Partly,

this is also due to the development of more sophisticated instruments which can provide

high-resolution data and data from samples with their native matrices containing many
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interfering substances. In addition to that, the differences from one sample to another in

different pathological conditions are very small and difficult to observe in raw spectra.

Therefore, to obtain meaningful information and for deeper insight we need to process

and analyze the data. The data analytical methods that deal with only one variable at a

time are called univariate methods. Univariate data analysis methods such as first and

second order derivatives, curve fitting, difference (e.g. diseased minus normal) spectral

analysis, and various bands intensity/area under the curve ratios facilitate the visualization

of band shifts, peak broadening, change in intensities etc. [2, 9–11]. However, none of the

spectroscopic measurements depend on a single variable. Spectroscopic data consists of

thousands of variables (wavenumbers) and measurements (objects/observations). To

utilize the complete information of the complex spectra and to handle the large data set,

multivariate analysis is needed. Multivariate data analysis refers to data analytical methods

that deal with more than one variable at a time. The main aim of these statistical analysis

techniques is to perceive the relationship between the variables. This is based on the idea

of considering many non-selective variables instead of just one variable and then ultim-

ately combining them in a multivariate model. The application of multivariate statistical

methods to chemistry and biology is also called Chemometrics [12]. Multivariate analysis

tools are used for the efficient processing of huge datasets and to align their informative

features [13, 14]. It helps in data analysis, especially in cases where large amounts of data

are generated, like in NMR, FTIR, Raman, and GC-MS [12–14]. Using multivariate ana-

lytical tools, patterns in the data could be modeled and these models can be used rou-

tinely to predict the newly acquired data of a similar type. Various data mining methods

such as principal component analysis (PCA), linear discriminant analysis (LDA), multiple

linear regression (MLR), cluster analysis (CA) and partial least squares regression (PLS) to

name a few are employed in the field of Raman and IR spectroscopy [14–16]. The multi-

variate statistical methods are very useful for processing of Raman and IR spectral data

because of their ability to analyze the vast spectral distribution and thoroughly discrimin-

ate between spectra of different samples that show only very minor changes [15, 16]. The

effective implementation of these chemometric methods requires the pretreatment of

data. The preprocessing of raw data helps to eliminate noise (unwanted signals) and

to enhance requisite signals such as discriminating features. Sometimes, chemo-

metrics itself assists in data pre-processing, to reduce and correct for interferences

such as overlapping bands, baseline drifts, scattering and mainly to analyze spectral

variations [17, 18]. Subsequent sections in this paper discuss some of the basic defini-

tions, provide an overview of the various preprocessing methods and state-of-the-art

data processing tools for multivariate analysis that are widely used in Raman and IR

spectroscopy.

Basic concepts and definitions
The basic definitions pertaining to statistical analysis are important when dealing with

more complex multivariate data structures [19–21]. Some of them are listed below.

Let’s assume variable ‘V’ (whose values can be intensities at a given wavenumber over

the different observations or spectra in the data set) as defined below:

V ¼ v1; v2;…; vMð Þ
where M is the number of observations (spectra)
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Mean (μ): the average intensity value of the variable:

μ ¼
XM

i¼1
vi

M

Median: the middle value of the variable when the data is aligned either in increasing
or decreasing order.

Mode: The intensity that occurs most frequently among the values of the variable.

Standard Deviation (SD): measure of the spread of the intensities of the variable:

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM

i¼1
vi−μð Þ2

M−1

r

Variance: the square of the standard deviation, which is another measure for the

spread of the intensities of the variable:

Variance ¼ SD2 ¼
XM

i¼1
vi−μð Þ2

M−1

Covariance (cov): a measure of the linear association between two variables (e.g. at
different wavenumbers); say U and V. Covariance can be positive as well as negative. A

large absolute value of covariance means that there is a strong linear dependence be-

tween the two variables and vice versa. A large positive value of covariance indicates

that the values of both variables are either increasing or decreasing together. The co-

variance is negative if the values of both variables are moving in opposite directions.

Close to zero covariance means that the two variables do not show any pattern i.e. in-

dependent of each other. As there could be many such variables in a data set, a covari-

ance matrix can be obtained by calculating the covariance between all pairs of

variables:

cov U ;Vð Þ ¼
XM

i¼1
ui−μuð Þ vi−μvð Þ
M−1

Correlation (r): this is a more practical measure to compare the linear dependencies

of mixed variables (variables with different units or scales). In such cases covariance

fails to depict the real picture. Correlation (also called Pearson’s correlation coefficient)

is a unitless, scaled covariance measure. Pearson’s correlation coefficient ‘r’ is defined

below:

r ¼
XM

i¼1
ui−μuð Þ vi−μvð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM

i¼1
ui−μuð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM

i¼1
vi−μvð Þ2

q

Correlation = 0, means there is no correlation between the variables.
Correlation = +1, means there is an exactly linear positive correlation between the

variables.

Correlation = −1, means there is an exactly linear negative correlation between the

variables.
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‘r2’ is the most common measure of the fraction of the total variance that can be

modeled by this linear association measure. However, most of the times several differ-

ent variables contribute simultaneously, which requires a multivariate modeling of the

property (outcome being modeled through multivariate analysis). A correlation between

the property and variable close to unity indicates that the property depends mostly on

one variable called the ‘selective variable’. Multivariate data analysis usually deals with

‘non-selective’ variables, which means that several different variables contribute simul-

taneously. In that case a multivariate modeling of the property can help by means of di-

mension reduction.

Eigenvectors and Eigenvalues: An eigenvector is a special non-zero vector (say ‘x’)

of a square matrix ‘A’. Multiplying matrix ‘A’ with such a non-zero vector results in

stretching/compression of the vector but the direction of the eigenvector remains con-

stant. The eigenvalue of an eigenvector is the quantity (scalar) by which the original

eigenvector scales after multiplication by the matrix ‘A’:

Ax ¼ λx

where λ is a nonzero scalar, also called eigenvalues
There could be multiple eigenvectors of a matrix ‘A’. All of those eigenvectors are

orthogonal to each other, and therefore linearly independent, if the square matrix ‘A’

is a real-valued - symmetric matrix. Eigenvectors of the covariance matrix of the data

set are extremely important as they can represent underlying correlation patterns

compactly. It is important to note that the covariance matrix is a real-valued sym-

metric square matrix. Later in this review it will be discussed in detail along with di-

mensionality reduction.

Distance Metrics: In many multivariate algorithms the distance between observa-

tions (spectra) is an important part in defining the objective function of the algorithm.

Some of the commonly used distance metrics are mentioned below. Let us say “A” and

“B” are two spectra with intensities (A1, A2, A3 … AN) and (B1, B2, B3 … BN)

respectively.

Euclidean : dist ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

Ai−Bið Þ2
vuut

N is the of number of variables (spectral data points)
Manhattan : dist ¼
XN
i¼1

Ai−Bij j

Mahalanobis : dist ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A−Bð ÞTS−1 A−Bð Þ

q
;

where S is the covariance matrix and (A-B) is the transpose of (A-B)

Minkowski : dist ¼
XN
i¼1

Ai−Bij jp
 !1

p

;where p≥1

p= 1 gives the Manhattan distance & p = 2 gives the Euclidean distance
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Cosine Similarity: dist ¼
XN

i¼1
AiBiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
Ai

2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
Bi

2

q

Signal to Noise Ratio (SNR): Signal to noise ratio quantifies the amount of desired

signal relative to the noise. This metric is used to measure signal strength and detect-

ability. In vibrational spectroscopy, the intensity at a particular wavenumber is used as

indication for “Signal”. The standard deviation of intensities at dead regions i.e. without

any peak (varies with sample type) is generally considered as “Noise”.
Review
Preprocessing

Data processing applied prior to univariate/multivariate analysis is known as prepro-

cessing. Preprocessing is required to eliminate effects of unwanted signals such as

fluorescence, Mie scattering, detector noise, calibration errors, cosmic rays, laser power

fluctuations, signals from cell media or glass substrate etc. and also to enhance subtle

differences between different samples [22, 23]. As Raman and IR spectroscopy are

based on two different phenomena, the signal and background noise (unwanted signals)

are also different and different pretreatment steps are required. As spectra of the same

material could have been recorded over several days/months, it is very difficult to cali-

brate the Raman instrument precisely in order to have the same Raman shift axis. Also,

different gratings provide different spectral resolutions. Therefore, spectra need to be

aligned to a common axis before applying any pre-processing method. Apart from

spectral alignment, Raman spectra should also be corrected for Cosmic ray events

(CREs) before further pre-processing is applied. CREs are generated due to high-energy

particles passing through the charge coupled device (CCD) and generating many elec-

trons, which the CCD interprets as signal. These are totally random, appear as very

sharp emission lines and usually affect only one pixel at a time.

In recent years, Vibrational Spectroscopy has been extensively used in the field of

biology and medicine. The main challenge in using Raman spectroscopy (which is in-

herently a weak phenomenon) for biological samples is the strong intrinsic fluorescence

from many biomolecules. The fluorescence background is often many times more in-

tense than the weak Raman signals. Therefore to extract the informative Raman signals

we need to process the raw spectrum to remove the fluorescence. Also ambient light

and detector thermal noise may contribute to the background. Various processing

methods such as polynomial fitting, first and second order differentiation, frequency

domain filtering etc. have been used for this purpose. This problem is also tackled by

involving hardware which includes the use of longer excitation (NIR) wavelengths, time

gating, wavelength shifting etc. [22, 24, 25]. Similarly, the mid-infrared spectrum from

cells and/or tissues is hampered by Mie scattering as the cells and cell-organelles within

the samples under investigation are of comparable size with the radiation wavelengths

(2.5-25 μm) used. This contributes to a broad and undulating background to the FTIR

spectrum which in turn gives rise to distorted band shapes, intensities and positions

[26, 27]. This needs to be corrected before interpretation of the data and Extended

Multiplicative Scattering Correction (EMSC) can be employed for this purpose. The

Raman and FTIR spectra are also affected by detector noise and intensity fluctuations
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of the radiation source used. The SNR can be improved by increasing the integration

time or by using smoothing filters. The source/environment fluctuations add some

variability to the spectra that is not related to the actual differences (chemical or struc-

tural) in the samples. Various normalization methods are used to surmount these varia-

tions. These normalization methods also overcome the variations in the FTIR spectra

due to inconsistent sample thickness. As the sources of the above described contribu-

tions to the raw spectra are different in case of Raman and FTIR spectroscopy, the pre-

processing methods used to overcome these issues are quite different and some of

them are described below in detail.

Preprocessing in Raman spectroscopy

Spectral axis alignment

All the analysis techniques expect to have the same Raman shift axis across all

the spectra. So, it is very important to align all spectra to have a common spec-

tral axis. Different local regression methods can be used to calculate intensities at

a pre-defined common spectral axis using the intensities at an existing spectral

axis [28].

Cosmic ray/spike removal

Usually, the spike elimination from the raw spectrum is done by collecting two extra

spectra for each experiment and by comparing them on a pixel by pixel basis. If the dif-

ference exceeds the expected detector noise variance of the less intense pixel then the

greater count is replaced by the smaller count. Generally, spikes are sharper (lower

FWHM) compared with genuine Raman bands. Although it is easy to detect such

spikes based on thresholding on maximum intensity value, it is not straightforward to

correct such spikes. Usually, local interpolation based methods are used to repair spike

affected regions [29]. Particularly in Raman imaging, information from the Raman

spectra corresponding to the unaffected adjacent pixels can also be used to correct

spikes.

Background correction

Background correction/baseline removal is a very important part of preprocessing.

Various phenomena explained in the previous section like fluorescence etc. induce un-

even amplitude shifts across different wavenumbers (Raman shifts). These amplitude

shifts have to be compensated before proceeding with further analysis. In the literature

many such techniques have been compared and evaluated in detail [22, 30]. Some com-

mon methods employed for baseline removal of Raman spectra are discussed here:

a) Median Window based methods
This is a moving window based method where at each point (Raman shift) only a

few intensity values (length of the window) around the point are used for

estimating the baseline value at that point. The median of such a local window of

intensity values at each point is calculated first. This series of median values is

convolved with a Gaussian function to make sure the estimated baseline is free

from sharp discontinuities [31]. Although this method is model free (non-parametric),

it is primitive for handling Raman signals.
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b) Differentiation based methods

Generally, the baseline has broad bands and low frequency components compared

with genuine Raman bands. Differentiation of the raw Raman signal amplifies

higher frequency (sharp) components and lower frequency components such as

background fluorescence are suppressed. However, the noise present in the raw

Raman signal also contains very high frequency components and in turn they also

get enhanced due to differentiation along with genuine Raman bands. To suppress

these noisy components generally a smoothing operation is employed as the

post-processing step following differentiation. In the literature many such methods

exist, including Savitzky-Golay (SG) filter based derivatives [32] and kernel

smoothing based derivatives [33].

c) Polynomial Fitting based methods

This is by far the most commonly used method for baseline removal of Raman

spectra. In this method certain points in the spectrum are chosen as base points

and a polynomial is fitted through these points. This polynomial is subsequently

subtracted from the Raman spectrum to eliminate background effects. For a simple

Raman signal like a Raman spectrum of a non-fluorescent solid compound, a

straight line fit through a couple of points could be sufficient enough, whereas for a

complex Raman signal like a Raman spectrum of tissues/cells one might need many

base points along with a fifth-order or higher polynomial fit [24]. Selecting the

appropriate polynomial order is extremely important as an incorrectly chosen higher

order polynomial may estimate some important Raman bands as background. Also,

higher order polynomial fitting may be affected by high frequency noise and hence the

background estimates are inconsistent. Some modified multi-polynomial fitting based

background correction techniques are proposed to handle these issues [34, 35].

d) Asymmetric Least Squares based methods

Here, a smoothed signal is estimated from a given raw Raman signal as baseline.

The residual signal between the raw Raman signal and the estimated baseline is the

corrected Raman signal. This can be achieved by the ordinary least squares method.

In ordinary least squares an objective function, defined as the sum of the squared

difference between the raw Raman signal and the baseline to be estimated, is

minimized iteratively. In ordinary least squares equal priority is given to the

negative and positive residual errors. However, as a baseline should always be

yielding positive residual errors to make sure all the important Raman bands are

intact, ordinary least squares can be altered to have a bias towards positive residual

errors. This method is called Asymmetric Least Squares (ALS) baseline correction

[36]. Here, we can add a second-order derivative as another term to the objective

function to make sure the estimated baseline is as smooth as possible. There are

many simple algorithms like gradient descent which estimate such a baseline that

minimizes the objective function. This method is relatively fast even for complex

signals, requires fewer parameters and turns out to be effective for Raman spectra.

e) Frequency Domain Analysis based methods

As mentioned earlier, the baseline is defined as a component of the raw Raman

signal having broad bands. The baseline varies at much lower rates compared with

genuine Raman bands. In other words, the baseline is the low frequency component

of the raw Raman spectrum and the Raman bands are much narrower. Similar to
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differentiation, frequency domain based methods try to exploit these properties of

the baseline and Raman bands to separate them out from each other. Here, we

consider Raman spectra as a time series of frequencies (Raman Shifts) and the

output from frequency domain analysis based methods contains information about

the underlying variations (frequencies) in the time series of Raman Shifts. Broadly,

we can categorize frequency domain based methods in to two categories as

mentioned below.
FT based methods: Fourier Transform (FT) is widely used in conventional signal

processing and telecommunications. FT uses sinusoids and cosinusoids as basis func-

tions to extract frequency information present in the Raman signal. Each sinusoid or

cosinusoid present in the basis function set represents a unique frequency. FT decom-

poses the Raman signal into linear combinations of such sinusoid or cosinusoid waves;

their amplitude represents the contribution towards the Raman signal. Now, it is easy

to threshold amplitudes corresponding to low frequency sinusoids or cosinusoids by re-

placing them with zero and thus nullify the baseline. The baseline corrected Raman sig-

nal can be reconstructed by applying Inverse Fourier Transform (IFT) on these

modified amplitudes [25, 30]. Fast Fourier Transform (FFT) is an efficient algorithm

which can be used to implement both FT and IFT.

Wavelet based method: Wavelet based denoising techniques are widely used in various

fields including image processing, chemometrics etc. Wavelets are functions which are lo-

calized both in time or space as well as frequency. As cosinusoids or sinusoids are local-

ized only in frequency, when FT is applied more terms are required to represent the same

Raman signal compared with Wavelets. This is due to the fact that quite a large number

of cosinusoids or sinusoids of increasing frequency have to be used to cancel out each

other when applied to discrete signals like Raman signals which are defined only for a lim-

ited set of values. There are many Wavelet families available in the literature such as

Mexican hat, Haar, Daubechies, Symmlet, triangular etc. and different Wavelet families

have different mother Wavelets. For example in case of the Haar Wavelet family, a square

function is the mother Wavelet. All the other Wavelets in the given Wavelet family are

shifted and scaled versions of the corresponding mother Wavelet. Using these Wavelets

as basis functions (Wavelet Transform), we can extract frequency-like information from

the Raman signal. Here, the Raman signal is decomposed into different scales (multi reso-

lution). Each scale (resolution) gives different frequency-related information contained in

the Raman signal. As baseline (low frequency) and noise (high frequency) related frequen-

cies are different compared with genuine Raman bands (mid frequency), at an optimum

resolution appropriate thresholds can be applied to eliminate both baseline and noise sim-

ultaneously. After thresholding (removing) the baseline, the corrected Raman signal can

be obtained by the Inverse Wavelet Transform [30, 37]. Moreover, these Wavelet based

methods can be combined with polynomial and differentiation based methods to get su-

perior results [38].

Smoothing

Baseline removal eliminates effects of broad bands or low frequency components

present in the Raman spectra. However, the high frequency component of the Raman
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signal, which typically has much lower FWHM compared with genuine Raman bands,

needs to be removed too. Smoothing is often employed for the removal of high frequency

components, and SG (Savitzky Golay) filtering is one of the commonly used smoothing

techniques. The SG filter is a moving window based local polynomial fitting procedure

[32], which needs to be fed with parameters like the size of moving window, polynomial

order etc. As the moving window size increases, some of the genuine Raman bands with

lower FWHM may disappear. Therefore, it is very important to choose an appropriate

polynomial order and moving window size to retain all the important Raman bands.

Apart from the SG filtering technique, other local regression methods like LOWESS

(Locally Weighted Scatterplot Smoothing) can be used for smoothing [39]. Other spatial

smoothing techniques like Gaussian blurring can also be used for this purpose. In the

discrete domain, these filters use predefined coefficients to convolute with Raman signals

[23]. Again it is very important to understand that, as all of these methods are applied lo-

cally based on a moving window, underlying parameters have to be chosen carefully such

that none of the important Raman bands are eliminated during smoothing.

Normalization

Normalization is a very important part of preprocessing, as different spectra of the

same material may have been recorded at different times and under different instru-

ment conditions such as alignment and laser power levels. So, spectra from the same

material could have different intensity levels. Normalization is the process which takes

care of disparity in intensity levels by making sure that the intensity of a given Raman

band of the same material is as similar as possible across the spectra recorded under

the same experimental parameters but slightly different conditions. There are numer-

ous normalization techniques available in the literature [22, 40]. Based on various

underlying factors and the problem to be solved, one particular normalization tech-

nique may be more suitable than others. Some of the commonly used normalization

techniques and a brief description of each are given below.

Let us assume the spectrum to be normalized is defined as a vector ‘S’ and the nor-

malized spectrum as a vector ‘SN’ where

S ¼ s1; s2;…; sNð Þ

N is the number of Raman shifts (spectral data points)

and

SN ¼ sn1; sn2;…; snNð Þ

Here, each element of the vector represents the Raman intensity at a given Raman shift.
(a)Vector normalization
In vector normalization, first of all the ‘norm’ of the spectrum, which is defined as

the square root of the sum of the squared intensities of the spectrum, is calculated.

Further, each of the Raman intensities corresponding to a Raman shift is divided by

the ‘norm’ to obtain the normalized spectrum:
norm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21 þ s22 þ…þ s2N

q
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sni ¼ si=norm ; i ¼ 1; 2;…;N

(b)Min-max Normalization
Here, the ‘maximum’ and ‘minimum’ values of all the intensities of the given

spectrum are calculated first. Then, each Raman intensity corresponding to a

Raman shift is replaced by a new intensity obtained from subtracting ‘minimum’

and dividing by ‘range (maximum-minimum)’:
smax ¼ max s1; s2;…; sNð Þ
smin ¼ min s1; s2;…; sNð Þ
sni ¼ si−sminð Þ= smax−sminð Þ; i ¼ 1; 2;…;N

(c)Standard Normal Variate (SNV) Normalization
This technique is similar to Min-max normalization except that instead of

‘minimum’ ‘mean’ and instead of ‘range’ ‘standard deviation (SD)’ is used:

mean ¼ s1 þ s2 þ…þ sNð Þ=N

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1−meanð Þ2 þ s2−meanð Þ2 þ…þ sN−meanð Þ2� �

= N−1ð Þ
q

sni ¼ si−meanð Þ= SDð Þ; i ¼ 1; 2;…;N

(d)Peak Normalization

In peak normalization, the intensity corresponding to the central frequency of a

particular Raman band is used as reference. Let’s define it as ‘P’. Now, each Raman in-

tensity of the spectrum is divided by ‘P’ to obtain the normalized spectrum.

sni ¼ si=P; i ¼ 1; 2;…;N

This method is not recommended when there is a possibility of a shift in the band

position across the spectra from different samples under investigation. For example, if

we want to compare native versus denatured protein samples which are known to cause

a shift in the amide I and amide III regions of Raman spectra, the peak normalization

with respect to those bands is not recommended.

Outlier removal

Due to factors like instrumental artifacts, variations in the sample etc., some of the

spectra from the same sample diverge from the group. These spectra can be considered

as unwanted spectra or outliers. It is extremely important to omit these spectra before

applying multivariate techniques to get desired results. In some cases it is possible to

use some kind of Signal to Noise (SNR) based thresholding to detect such spectra.

These SNR thresholding methods will be discussed in detail in FTIR preprocessing.

Also, one can apply thresholding methods in the compressed domain based on the

SD of data in the compressed domain to eliminate such outliers [41]. If a given

spectrum is very different from all the other spectra in the data set with respect to a

particular variable(s) in the compressed domain i.e. the intensity value of a spectrum is

less (or greater) than the defined threshold for a particular variable(s), then it can be

considered as an outlier. This compressed domain is generally found by using factor
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analysis methods such as Principal Component Analysis (PCA). PCA is discussed in de-

tail in subsequent sections of this review.

In the compressed domain, mostly the dominant axes (variables) are used to judge

the outliers. In the case of PCA, outliers can be found by using dominant axes such as

PC1, PC2 and PC3 etc. Here, a simple thresholding algorithm is applied to the data set

consisting of Raman spectra [10] using PC1 and PC2 to demonstrate the outlier

removal method. After projecting the original data onto the compressed domain, score

values with respect to PC1 and PC2 (PC1 and PC2 are new axes in the compressed

domain) can be obtained. If a particular spectrum has a PC1 or PC2 score value greater

(or lesser) than the corresponding mean by 2.58 (99 % confidence level) times the SD

of PC1 or PC2 respectively, it can be marked as an outlier. Figure 1 is an illustration of

the outliers through a scatter plot of score values of different principal components

(PCs). Each point in the scatter plot represents a Raman spectrum, recorded from

Drosophila muscles at 785 nm excitation wavelength, which is focused onto the

muscles using a 50x (NA = 0.75) objective for an integration time of 150 s. Here, the
Fig. 1 Scatter Plots of score values of different Principal Components (PCs). Each point in the scatter plot
represents a Raman spectrum, recorded from Drosophila muscles at 785 nm excitation wavelength. Score
values corresponding to retained spectra are marked in black, and score values of outliers are marked in
other colors. The first row indicates PC1 through PC6 and similarly the first column indicates PC1 through
PC6. Score values of outliers are far apart from the other score values in each scatter plot
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retained spectra are marked black in color and outliers are marked in colors other than

black. The first row indicates PC1, the second row indicates PC2 and so on. Similarly,

the first column indicates PC1 and so on. As we can clearly see from Fig. 1, the outlier

score values are certainly far apart from the mean score values of each PC. Though

PC1 and PC2 are used to determine the outliers, the score values of these outliers with

respect to other PCs (PC3, PC4, PC5, and PC6) are also very different from their corre-

sponding mean values as shown in Fig. 1. This indicates the effectiveness of using com-

pressed domain techniques (particularly PCA) for finding and eliminating outliers.

Apart from the methods discussed above, particularly in the case of imaging data,

spectra that are recorded outside the Region of Interest (ROI) are also considered as

outliers and need to be removed. For example, in the case of single cell Raman imaging,

spectra from the area devoid of cells (containing only buffer and substrate) need to be

eliminated before proceeding with the analysis. Here, different clustering techniques

can be used to segment out the cell region from the non-cell region [42, 43]. In the

multivariate data analysis section such clustering methods are explained in detail.
Preprocessing in FTIR spectroscopy

Those methods that are suitable for both Raman and IR data and covered in previous

section are not repeated here.

Background correction

Due to various instrumental and scattering effects, an actual FTIR spectrum gets super-

imposed on top of a background. Similar to Raman spectroscopy, the background in

FTIR signals consists of broad bands (low frequency regions). These background cor-

rection methods could be as simple as subtracting an offset (DC shift) or removing a

piecewise constructed baseline by selecting a few points and joining those points

through straight lines [44]. Various complex background correction/baseline removal

techniques explained earlier for Raman spectroscopy can also be used for FTIR spectra,

but some of those techniques are more suitable than others. Such techniques include

polynomial fitting and differentiation based on SG filters [32]. Generally, lower order

polynomials (second or third order) are well suitable for FTIR spectroscopy. In fact, this

technique can be combined with certain normalization techniques such as Multiplicative

Scatter correction (MSC) to perform background correction and normalization simultan-

eously. More details about this technique are given below. As second order derivatives

can efficiently remove the background present in FTIR spectra, SG-based second order

differentiation techniques are very popular for background correction of FTIR spectra

[45]. As the SG filter is a nonlinear weighted smoothing function, it makes sure that high

frequency noise amplified during second order differentiation is well suppressed.

Normalization

Normalization is a very important part of preprocessing as it attempts to minimize the

effects of source power fluctuations (MIR radiation source), scattering, variations in

sample thickness etc. Normalization attempts to simultaneously correct for various

shifting and scaling effects caused by the above mentioned phenomena. Some of the

normalization methods used for Raman data are quite effective for FTIR spectroscopy

too. Such techniques include Min-max normalization, SNV normalization etc. These
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methods are applied individually to each spectrum, so these methods can be classified

as 1-way methods [46]. Certain normalization methods considering more than one

spectrum (say ‘n’ number of spectra) at a time while building the model can be classi-

fied as n-way methods. For example, techniques like multiplicative scatter correction

(MSC) and extended MSC (EMSC) are very popular in FTIR spectroscopy. While MSC

attempts to normalize FTIR spectra, EMSC also takes care of baseline removal along

with normalization.

(a)Multiplicative Scatter Correction (MSC)
MSC tries to eliminate effects of amplification (multiplicative) and constant offset

(additive). Correction coefficients of each spectrum are calculated by regressing it

onto an ideal sample spectrum (a representative spectrum of the group of spectra

under consideration in a completely noise free environment). In other words, each

spectrum is fitted to the ideal sample spectrum (generally the average spectrum) as

closely as possible using least squares [47]. Let us assume S1, S2,…, SM are the FTIR

spectra under consideration and Sμ is the average spectrum of the data set. Each

spectrum is a vector of FTIR absorption values (intensities):
S ¼ s1; s2;…; sNð Þ

N is the number of spectral data points
MSC tries to represent each spectrum in terms of average spectra by the following

equation:
Si ¼ ai þ bi � Sμ� �þ Ei ; i ¼ 1; 2; …; M

where Ei is the corresponding residual spectrum, which represents unique chemical
information present in the spectrum ‘i’ on top of the average spectrum Sμ. Once

these parameters (scalar values) ai, bi are calculated for each spectrum by fitting the

whole data onto the average spectrum in least squares sense, corrected spectra are

obtained by the following equation:
S msci ¼ Si− ai
� �

bi
� � ¼ Ei=bi

� �þ Sμ ; i ¼ 1; 2; …; M

where S_msci be the corrected spectrum of corresponding raw spectrum (Si). As
MSC is a set dependent transformation, it is sensible to apply MSC separately for

different classes.

(b)Extended Multiplicative Scatter Correction (EMSC)

In the EMSC model a polynomial is also included along with MSC. Hence, it is called

extended MSC [48, 49]. Generally, a second order polynomial is used in the EMSC

model. Let us assume S1, S2,…, SM are the FTIR spectra and Sμ is the average spectrum

and each spectrum is a vector of FTIR absorption values (intensities):

S ¼ s1; s2;…; sNð Þ

N is the number of spectral data points
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Also, sv
i is an intensity value (scalar) at a particular wavenumber ‘v’ on the FTIR axis

of a given spectrum Si. EMSC models each spectrum in terms of the average spectrum

and a polynomial by the following equation:

siv ¼ ai þ bi � sμv
� �þ ci � v� � þ di � v2� � þ �iv ; i ¼ 1; 2; …; M ; v ¼ 1 ;…; N

Here, a second order polynomial is used for baseline correction. One can choose to
include a higher order polynomial if required. Once the parameters ai, bi, ci, di are cal-

culated then the corrected spectrum is given by the following equation:

S emsci ¼ Ei=bi
� �þ Sμ ; i ¼ 1; 2; …; L

where Ei = (ε1
i , ε2

i ,…, εN
i ) is the corresponding residual spectrum and S_emsci the cor-

rected spectrum of Si. Furthermore, in the literature some innovative modifications are

proposed as part of EMSC such as including a representative spectrum of common

sources of interference such as water vapor and paraffin [50]. EMSC is by far the most

commonly and widely used technique for preprocessing of FTIR spectra as it gives

flexibility to model various interference sources, background and scattering effects

together.

Exclusion of Low SNR signals

In the case of FTIR imaging it is extremely important to carry out quality tests prior to

any other preprocessing steps to make sure poor quality (low SNR) signals are elimi-

nated. This is due to the fact that in some of the preprocessing techniques like EMSC

where the entire gamut of spectra is used, the presence of these poor quality spectra

can prevent the results of multivariate analysis to be carried out further. The quality

tests can be performed either by defining thresholds on certain absorbance values or

SNR as explained below.

a) Both upper and lower thresholds can be applied on FTIR absorbance values of a

specific vibration mode, for example the amide I region, which generally indicates

inconsistent sample thickness regions [46, 51]. For example, a low sample thickness

is indicated by the presence of noise in the case of FTIR imaging data. Pixels (FTIR

spectra) corresponding to these regions ought to be removed before proceeding

with further steps. A threshold on the absorbance of amide I band can identify

these regions quite effectively [44]. Similarly, a threshold on the area under such

bands may also be applied to eliminate unwanted spectra.

b) Alternatively, SNR thresholding can also be applied to detect outliers. For example,

in case of biological samples, the absorbance value of amide I (1620–1690 cm−1)

can be considered as signal and the absorbance values in the dead region or signal

free zone (1800–1900 cm−1) can be considered as noise (background) [46, 51]. A

threshold can be applied on the SNR calculated as explained above and will remove

unwanted spectra quite effectively.

Practically, Raman/FTIR preprocessing involves a subset of the above explained steps.

Based on the application, preprocessing consists of a combination of sequentially exe-

cuted steps in the same order as mentioned above. Sometimes, this sequence is aided

by some special procedures, for example water vapor correction in case of FTIR [46] or
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representative cell media subtraction in case of Raman image clustering of a single cell

[42, 43] etc. Although there are many comprehensive studies available in the literature

[22, 30, 46] on optimal preprocessing steps, the art of preprocessing is yet to be stan-

dardized. Most of the time, the right preprocessing steps depend on problem statement,

observations, prior experience and intuition of the researcher.

Multivariate data analysis
The spectroscopic data can be displayed in the form of a matrix where the columns

represent the wavenumbers/Raman Shifts (variables) and rows represent observations

(spectra) i.e. each spectrum is represented by a row in the matrix [19–21, 52, 53]. In

the case of hyperspectral images, data are represented in the form of a hypercube with

two spatial dimensions (pixel coordinates × and y) and the third dimension is the spec-

tral dimension. In the data matrix each pixel is represented by a row and wavenumbers

in columns.

The spectroscopic measurements or observations consist of two parts:

Observation ¼ Relevant Signal þ Noise

Here, the relevant signal is considered as the actual representation of the underlying
chemical information, which is correlated with the property of interest. The noise part

is everything else that is irrelevant to the property of interest, including spectral noise.

For example, if one would like to measure using spectroscopy the concentration of one

component (C1) in a mixture that also contains C2 and C3, then the signals from C2

and C3 can be considered as noise along with instrumental noise. One of the most im-

portant objectives of multivariate analysis is to separate the relevant signal from the

noise part by using intrinsic variable correlations in a given data set. The concept of

variance is very important as “directions with maximum variance” are almost directly

related to the structural part of the relevant signal [52–54].

There are many multivariate data analysis techniques available and for an appropriate

selection the goal of the analysis should be clearly defined. The three main objectives

of multivariate data analysis are defined below:

1. Data description and explorative data structure modeling of any generic data

matrix. Principal Component Analysis (PCA) is frequently used for this purpose

2. Discrimination, Classification, Clustering deal with dividing a data matrix into two

or more groups of measurements (objects).

3. Regression and Prediction: Regression is a method for relating two sets of variables

by quantifying them with respect to each other.

The multivariate analysis methods are broadly divided into two groups

Unsupervised methods: These methods are used when there is no supervising guid-

ance (labeling) available e.g. PCA. Unsupervised methods are very useful to find hid-

den structures in the unlabeled data and are often used as precursor to supervised

methods when working on huge data sets. Various cluster analysis algorithms like K-

means, Hierarchical Cluster Analysis (HCA) etc. are also considered as unsupervised

methods.
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Supervised methods: These methods differ from unsupervised methods due to the

fact that they label the classes to be discriminated. Unlike unsupervised methods, there

are two important phases. The ‘training phase’ is considered as a passive modeling

stage, which uses a ‘training data set’ (which is labeled) to find the patterns in the data.

The model parameters learned during the training phase are stored for further valid-

ation. The second phase, called the ‘prediction phase’ (testing phase) is the active stage

where the unseen data (the data which were not part of the training set) are validated

using the model parameters learned in the first phase, using for instance Discriminant

Analysis (DA), Multiple Linear Regression (MLR), Principal Component Regression

(PCR), Partial Least Squares (PLS), Support Vector Machines (SVM).

The main disadvantage of these supervised methods is their dependency on labeling

data. When the data set has a large number of observations it is very cumbersome to

label each and every one of these observations. So unsupervised methods are often used

in conjunction with supervised methods to solve this problem. Here, out of many

observations, only a few observations are labeled in the beginning. Initially all of these

observations are fed to unsupervised methods like cluster analysis. Based on the clus-

ters obtained, each unlabeled observation in a particular cluster is labeled with the

dominant class label of already labeled observations in the same cluster. At the end of

this procedure, all the observations would have been labeled. Then, the labeled data are

fed to supervised methods for further classification. This type of algorithms (methods)

is called semi-supervised methods.

As mentioned earlier, some combinations of variables (wavenumbers) of a given data

set are highly correlated with each other. If one can capture these underlying correl-

ation patterns, it is useful in representing the data set compactly with fewer variables.

These variables are linear combinations of the original variables. Obtaining these new

variables in lower dimensional space is a well known problem in multivariate data

analysis and is known as “Dimensionality Reduction”. It also helps in separating out

relevant signals from unwanted noise. Moreover, many classification and clustering

algorithms are quite expensive in computational complexity. It makes more sense to

transform the original variables to a lower-dimensional space before feeding the data to

these classification algorithms. PCA is one such widely used dimensionality reduction

technique.

Principal component analysis (PCA)

PCA is an unsupervised data transformation procedure of complex data sets. PCA is

used for projecting a higher dimensional data matrix “X” onto a low component sub-

space. It reduces a set of variables into a smaller set of orthogonal, and therefore inde-

pendent, principal components (PCs) in the direction of maximal variation i.e. it

reduces the dimensionality and retains the most significant information for further ana-

lysis. PCA tries to decompose the data matrix “X” with m object rows and n variable

columns (m × n matrix) into a structured part (S) and a noise part (E). The m objects

are different observations (spectra) and the n variables are the measurements (wave-

numbers) for each object. The n variables jointly characterize each of the m objects.

The n-dimensional co-ordinate system consists of orthogonal axes with a common

origin for the variables, called the ‘variable space’. The number of independent basis

vectors i.e. the number of independent sources of variation within the data matrix may
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often be lower than n which is the backbone of dimensionality reduction. Assume that

we have a matrix “X” with 500 spectra from different samples (objects) and recorded

over 1000 wavenumbers (700–1700 cm−1) i.e. variables. So, each spectrum is a point in

this “1000- dimensional” variable space, and we have m different observation points for

each variable. Vibrational spectra (Raman and IR) contain the cumulative chemical in-

formation of all the biochemical molecules present in the sample in terms of intensities

at these different wavenumbers (bands). Among these, several features have the same

origin of variation, which results in strong correlations between few variables (wave-

numbers) and sets the stage for dimensional reduction.

The PCs obtained from PCA can be defined as variance-scaled vectors in the variable

space. As mentioned earlier, the main objective of PCA is the transformation of a co-

ordinate system from n ‘variable space’ into a new and more relevant ‘PC coordinate

space’ while simultaneously dropping “the noise part”. These PCs are obtained by cal-

culating the eigenvectors and eigenvalues of the covariance matrix obtained from the

data matrix (X). The eigenvector with the highest eigenvalue gives rise to the first PC

(PC1) i.e. the direction of greatest variance in the data. “PC1” is the direction (axis) that

maximizes the longitudinal (along axis) variance or the axis that minimizes the squared

projection (transverse) distances. PC1 demonstrates the maximum variance in the data

and the second principal component (PC2) illustrates the largest residual variance

along a direction orthogonal to PC1 and so forth. These PCs are completely uncorre-

lated and independent, leaving no further scope for dimensionality reduction.

For an X-matrix (m × n), the largest number of PCs can be either one less than the

number of objects (m-1) or equal to the number of variables (n) depending on which-

ever is smaller. The higher-order PCs (directions) are progressively thought of as noise

directions which accounts for noise component. Despite thousands of spectral channels

the relevant information (spectral variance) can be explained by the first few dominant

PCs (say ‘k’) as repeated information is present in various spectral channels. This new

coordinate system consists of only a few orthogonal PCs and the optimal number of

the PCs (‘k’) to be retained depends on the eigenvalues of the PCs. Higher eigenvalues

represent PCs with less noise, but as the eigenvalues decrease the SNR of the PCs also

decreases. There are some well known techniques such as "scree plots” and “percentage

of variance explained” which are used to determine the optimal ’k’ [55, 56]. Eigenvalues

corresponding to the PCs are sorted in descending order and plotted against the PC

number to obtain a scree plot. A scree plot looks like a steep curve initially and as the

number of PCs increase the scree plot tends to get flattened. The optimal ‘k’ is around

the point where the scree plot begins to level off. Similarly, we can plot the percentage

of variance explained against the PC number to determine the optimal ‘k’. Usually there

is a steep increase in percentage of variance explained, followed by a flat line.

The origin of the PC-coordinate system can be obtained by translation of the origin

in variable space to the average object (“centre of gravity” of the group) and this

common origin of the PCs is called the mean centre. Each PC can be represented as a

linear combination of the n unit vectors of the variable space. Each PC is also called a

“loading” and the coefficients in the linear combination representing the PC indicate

the contributions of each variable (wavenumber) in the original variable space. The

loading matrix (UK) consists of the k PCs that have been retained and acts as the

transformation matrix between the original variable coordinate system and the new
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PC-system. Each column in the matrix “UK” represents a PC i.e. the loadings. The

values of each object in the new coordinate system are called PC scores of the object,

i.e. the projections of an object ‘i’ onto the PC1, PC2, PC3 and so on give the corre-

sponding scores yi1, yi2, yi3 and so forth. So, object ‘i’ corresponds to a point in the

new PC-coordinate system with scores (coordinates) yi1, yi2, yi3 and so forth. The

number of scores is the same as the number of PCs i.e. ‘k’. The score matrix “Y” consti-

tutes all the scores for all the objects and the scores of each object make up a row.

X ¼ YUK
T þ E ¼ Structure þ Noise;

Y ¼ XUK

where X is the original m x n data matrix
Y is the m × k scores matrix and UK is then n × k loadings matrix

The PC-model is the structure part i.e. YUK
T and E is the measure of lack-of-fit of the

model; a smaller E represents a better model. The score vectors i.e. columns of the “Y”

matrix are orthogonal and each column represents the scores for one particular PC.

These score vectors are the footprints of the objects projected down onto the PCs.

Two pairs of score vectors plotted against each other (called score plot/scatter plot) are

used as a 2D window into PC space, which depicts the relation between the objects

with respect to those PCs.

In a PCA model each pixel (spectrum) of an image is represented by a small number

of PC scores instead of the full range of wavenumbers (full spectrum) i.e. variables that

depict the complete information about its chemical composition. The pixels of similar

composition in an image are expected to have similar score values and this is used for

image clustering. The 2D scatter plot in the PC-space displays the pixel clusters, which

can be visually identified. So, these score plots can be used for outlier detection, identi-

fication of trends, groups, exploration of patterns etc. [38, 41, 45, 47, 57–59]. This is il-

lustrated by performing PCA analysis (Software used in this work: PLS and MIA Tool

Box from Eigenvector Inc. USA with MATLAB (Ver. 11A) from MATHWORK) on the

raw and preprocessed (as explained earlier) FTIR images of mouse liver tissue at zero,

half, three and six hours post acetaminophen (paracetamol) treatment (Fig. 2). The first

major three PCs were selected (contribution higher than 5 % with total cumulative

value of above 90 %) for observation. The first three columns indicate the PC score im-

ages of the raw FTIR data. There are notable differences in the PC scores within the

same image. This can be attributed to thickness changes within the same image, scat-

tering effects and DC shift. Also, there is no significant change in PC scores across the

different time points. In a nutshell, due to the high variance of PC scores within the

same image, it is very difficult to differentiate between different time points using PCA

of raw data.

As illustrated in the last three columns of Fig. 2, preprocessing certainly enhanced

the uniformity of the PC scores within the same image and the discriminating capabil-

ity across the time points is also improved. Although there is a lot of discrepancy in the

tissue samples as they are collected from different mice from different regions of the

liver, PCA along with preprocessing shows the potential to discriminate between differ-

ent time points effectively.



Fig. 2 Principal Component Scores of raw and preprocessed FTIR images of mouse liver exposed to
acetaminophen. The rows represent control, 0.5 h, 3 h and 6 h images respectively. The first three
columns represent PC1, PC2, PC3 score images of the raw FTIR spectra. The last three columns
represent PC1, PC2, PC3 score images of the preprocessed FTIR spectra. Dark blue regions in the
preprocessed images (4th, 5th and 6th columns) indicate the presence of glass substrate. Uniformity
within the same image and differentiation capability across different time points is enhanced by
preprocessing the data
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In the case of spectroscopic data which can have up to 1000 variables the 2D load-

ings plot is usually quite complex and difficult to interpret. So it is better to plot a

one-dimensional vector (taking into consideration one PC at a time) also known as a

loading spectrum. These spectra are used for the assignment of the most important

variables (bands) contributing to the structural part of the data matrix [60–63].

Although the loading spectra are completely uncorrelated, they cannot be directly

associated with a single chemical compound always. In other words, there is a sig-

nificant difference in the mathematical properties of a loading (PC) and its chemical

interpretation.

Undoubtedly PCA is capable of identifying some important structural informa-

tion in the data but it has less discrimination power due to the fact that it is an

unsupervised procedure i.e. it does not try to model patterns which are important

for classifying one group with another or quantifying the expected outcomes in

terms of measured variables, rather it models patterns which compactly represent

the data. Often, interpretation of the complex biochemical information obtained

through vibrational spectroscopic techniques requires further data analysis using

supervised procedures like LDA, HCA, PLS, PCR etc. As discussed earlier, each

of these methods is meant to solve different problems. Some of the important

problems, the corresponding multivariate data analysis techniques and their appli-

cations to vibrational spectroscopy/chemical imaging are explained in detail

below.
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Classification models

In statistics, classification is defined as the categorization of given objects (observa-

tions) into two or more types. In vibrational spectroscopy classification models are

extensively used in a wide range of applications from forensics to medicine [64, 65].

These classification models are useful for early diagnosis and understanding the

mechanism of disease progression [66–69]. Some of the important and widely used

classification techniques are explained below.

a) Linear Discriminant Analysis (LDA)

The main aim of Discriminant analysis (also called Fisher’s linear Discriminant

analysis) is to find the “Discriminant axes” which optimally classify the data into

two or more classes. LDA is closely related to PCA as both of them look for latent

axes which compactly explain variance in the data. The main difference between

PCA and LDA is that LDA is a supervised method and PCA is an unsupervised

method. PCA looks for projections to maximize variance and LDA looks for pro-

jections that maximize the ratio of between-class to within-class scatter as

depicted in Fig. 3.

Data can be projected into the new dimensional space using these axes found with

LDA. In the new dimensional space, each observation would have fewer variables (di-

mensionality reduction) and at the same time observations belonging to the same class

will form lumps (clusters) and each cluster would be clearly differentiated from the

other [41, 70].

Let us assume that the original data set “X” is labeled with two different classes,

where “X1” represents data of class 1 and “X2” represents data of class 2. Each observa-

tion has “n” variables and there are “m” such observations out of which “m1” belong to class

1 and “m2” belong to class 2. In other words, “X” is a data matrix with size “m × n”, “X1” is

a data matrix with size “m1 × n” and “X2” is a data matrix with size “m2 × n”. Also, let us
Fig. 3 Schematic representation of the axes found using PCA and LDA for a two-class data set
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define “SCw” which represents within-class scatter and “SCb” which represents between-

class scatter.

SCw ¼
XC
i¼1

SCi

where C is the number of classes
and

SCi ¼
Xmi

j¼1

Sj−μi
� �

Sj−μi
� �T

where mi is total number of observations of the ith class

Sj is one such observation (spectrum) and μi is the mean of all such observations of

the ith class

SCb ¼
XC
i¼1

μi−μð Þ μi−μð ÞT

where μi is the mean of class i and μ is the mean of all such means
LDA tries to find the axes ‘W’ that maximize the objective function (ratio of

between-class scatter to within-class scatter) “J(W)” defined as below:

J Wð Þ ¼ WTSCbW
�� ��
WTSCwW
�� ��

where, W = [w1 |w2 | ……… wL] and L is the number of solutions (projections).

The solution to this optimization problem is given by solving the generalized

Eigenvalue problem given below.

SCbwi− λiSCwwi ¼ 0 ; i ¼ 1; 2; 3; ………; L

where each wi (eigenvector) gives a unique projection and λi is the corresponding
eigenvalue

Here, we may get either “C-1 (Number of classes-1)” or “n (number of variables in the

original data set)” solutions, whichever is lowest. Generally, “n” tends to be much

higher than “C-1” in the context of spectroscopic data. So, LDA gives “C-1” projections

i.e. L = C-1. As explained earlier, these “C-1” projections (also called Linear Discrimi-

nants - LDs) not only help to achieve dimensionality reduction but also efficiently dis-

criminate all the other classes from each other.

It is very useful to combine both PCA and LDA approaches (called PC-LDA model), which

improves the efficiency of classification as it automatically finds the most diagnostically sig-

nificant features. Another advantage of the PC-LDA model is that it is easy to visualize the

clusters in three dimensional space using LD scores. Here, first PCA is applied to the ori-

ginal data set “X” and only the first few principal component scores are retained for fur-

ther analysis. “X” is an “m × n” matrix and let us assume that the PC score matrix is “Y”:

Y ¼ X � Uk ;

where Uk is an “n × k” matrix with first k principal components (PC loadings) as

columns.
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So, the resulting principal component scores matrix “Y” is of size “m × k”. Now, LDA

is applied on matrix “Y” to obtain the LD score Matrix “Z” as below.

Z ¼ Y �W ;

where Uk is an n × k matrix with first k principal components (PC loadings as columns)

So, the resulting Linear Discriminant scores matrix “Z” is of size “m × (C-1)”. This

matrix “Z” represents compactly the original data “X” and differentiates one class from

another very efficiently. Similar to PCA, loading analysis can also be performed using

the PC-LDA model. Here, each LD loading can be represented as a linear combination

of PC Loadings.

Let us say that the LD loadings matrix is defined as “V” and can be obtained as:

V = Uk *W; where V is of size “n × (C-1)”

Here, each column of loading matrix “V” represents a particular loading and these

loadings can be used to understand the role of a particular wavenumber (or band) in

differentiating one class from others. It can be used to understand and identify the crit-

ical vibrational bands causing the differences between classes. In the literature, many

studies have been conducted where the PC-LDA model is used for classification pur-

poses [38, 45, 47, 58, 71]. We have also performed a PC-LDA analysis on the prepro-

cessed Raman spectra from Drosophila muscles to differentiate between 2- and 12-days

old flies using MatLab (Math Works, 2010) and R (Team, 2012) [9]. Raman spectra

were recorded using a commercial Raman micro-spectrometer (Renishaw, InVia sys-

tem) at 785 nm excitation wavelength, which was focused onto the muscles using 50x

(NA = 0.75) objective for an integration time of 150 s. As a first preprocessing step cos-

mic ray removal was done after acquiring each spectrum using Renishaw WiRE 3.2

software. Other spectral preprocessing steps such as band alignment using local re-

gression (LOWESS), baseline correction using the ALS method and smoothening

using a SG filter with a window width of 11 and polynomial order of 5 were performed.

Further all spectra were normalized using a SNV transformation and mean centering

across was performed before applying PCA. As shown in Fig. 4 preprocessing is cer-

tainly needed to reduce the variability of the Raman data and thus enable the detection

of minor differences. All spectra from the mutants upheld1 (up1) and upheld101 (up101)

the control Canton-S (CS) were subjected to outlier removal as discussed earlier. PCA

was done on the remaining valid Raman spectra for dimensionality reduction and the

most significant 60 PC scores (~95 % of variance) were used to perform LDA for fur-

ther classification. The 3D scatter plot of scores of LDFs illustrates a good separation

between the 2- and 12-days old samples of mutants (Fig. 5) which depicts that PC-LDA

model is able to differentiate between the early stage of muscle degeneration (2nd day

samples) and almost completely degenerated muscles (12th day samples). However, the

2- and 12-days old samples of control (CS) flies grouped together.

b) Soft Independent Modeling of Class Analogy (SIMCA)

This approach is normally used to model each class locally. First of all, PCA is ap-

plied to the original data of each class separately to model the particular class and only



Fig. 4 a Raw and b preprocessed Raman spectra of muscles from control Canton-S (CS) 2 days old flies.
The dark shaded areas correspond with the average Raman intensity +/− one standard deviation. The
differentiating Raman features are enhanced by preprocessing the data, which reduces the variability
among the spectra from the same group
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few significant PCs are retained. The number of PCs can vary from one class to the

other and this can be determined using cross validation which will be discussed later in

this review. So, based on the optimal number of PCs retained, we can easily calculate

the average residual variance (variance which is not explained by the optimal number

of PCs) of each class. When making membership decisions, SIMCA takes into account

the fact that the unknown sample (test sample) will be similar to the other samples in

its true representative class in the lower dimensional space (PC scores). So, an un-

known sample is projected onto every PC model (each class has a PC model) and the

residual variance of the unknown sample with respect to the current PC model is com-

pared against the average residual variance of the current PC model calculated for the

training set. This comparison is used as goodness of fit to make membership decisions.

The advantage of the SIMCA model is that a given unknown sample is not classified as

any of the classes if the residual variance of the unknown sample exceeds a particular

threshold for each PC model. Such unknown samples are considered as outliers. How-

ever, a given unknown sample could get labeled with more than one class if the residual

variance of the unknown sample is less than a particular threshold for more than one

class. The other disadvantage of SIMCA is that it is highly sensitive to the quality



Fig. 5 PC-LDA scores plot of 2- and 12 days old flies with (left) upheld1 (up1) mutation in comparison with
control flies CS; (right) upheld101 (up101) mutants in comparison with control flies CS. The 2- and 12 days old
flies of mutants’ up1 and up101 are well separated from each other, while for the control group CS the
2- and 12 days old flies almost merged together
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(SNR) of the data used in the training phase (PC modeling phase). In spite of this,

SIMCA has been applied successfully to spectroscopic data to solve many classification

problems [72–75].

c) Artificial Neural Networks (ANN)

Artificial Neural Networks are computational models inspired by the functionality

of the central nervous system of the human brain. Here, many artificial nodes (coun-

terparts of neurons) are arranged in layers and each node is connected to all other

nodes in the adjacent layers. Typically these layers are categorized as input layer, out-

put layer and hidden layers. In a given neural network setup, there is only one input

and output layer, but there could be multiple hidden layers. The more hidden layers,

the deeper is the neural network. The strength of a neural network lies in its connec-

tions. A typical illustration of an ANN is given in Fig. 6; the graph shows only one

hidden layer but there could be several hidden layers between the input and the out-

put layers. The input layer represents the variables in a given observation, for e.g. in-

tensities at all wavenumbers in a given spectrum. All of these intensities are fed as

input to every node in the hidden layer as shown in Fig. 6. There are many models

that represent artificial nodes in the hidden layers. Different models apply different

nonlinear functions (activation functions) to the weighted sum of input values. Let

us say an input observation “S” has values s1, s2 …., sN and the output of the node in

the hidden layer is ‘h’:

h ¼ f
XN
i¼1

wisi

 !
;

where “f” represents a non linear function (activation function)



Fig. 6 Schematic representation of an ANN, in this case with a single hidden layer. The data flow from
input layer to output layer via the hidden layer(s). Black arrows represent the connections between the
artificial nodes and each node is connected to all other nodes in the adjacent layers
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and “wi” represents the weight of the edge connecting the ith input node to the in the

hidden layer.

One of the most commonly used activation function is “sigmoid” also called “logistic

function”, which transforms a value ranging from -∞ to ∞ to a value between 0 and 1

as follows:

S xð Þ ¼ 1
1þ e−x

So, when “logistic function” is applied to the weighted sum of input values, we get

the following equation.

h ¼ 1

1þ e
−
XN

i¼1
wisi

� �

The output of such nodes in the hidden layer is passed from one layer to the other
through the connections between them. The absolute weight of these edges (connec-

tions) indicates the importance (strength) of the particular connection. These weights

are learned in the training phase to produce the desired final output. Based on the type

of node in the output layer, the ANN can be modeled as either regressor or classifier. If

the node in the output layer is similar to the nodes in the hidden layer (i.e. with sig-

moid activation function) then the ANN acts as classifier. ANN is a very powerful tool

and can represent extremely complex structures in the data as it can approximate many

patterns locally using different hidden layers. ANN is also used to solve classification

problems in the field of vibrational spectroscopy [76, 77].

d) Support Vector Machines (SVM)
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Support Vector Machines identify the decision boundaries (hyperplanes) between the

classes in an optimal way i.e. they try to separate the observations of different classes

by a clear and widest gap in N-dimensional space (say, each observation has ‘N’ vari-

ables) according to an optimization criterion. In the training phase, SVM tries to find

such an optimal set of hyperplanes from the training data and when a new observation

is projected onto these hyperplanes it can be easily classified with one of the class labels

used in the training phase.

The schematic represents the various hyperplanes (shown in magenta, orange

and green color) - in two-dimensional spaces a hyperplane becomes a line - to

classify observations (in two-dimensional spaces) into two categories (Fig. 7).

SVM finds the optimal hyperplane (shown in green color) that has the max-

imum margin from the boundaries of observations belonging to both categories.

In vibrational spectroscopy many studies have already been conducted using

SVM as the classifier [38, 78–80].

Spatial clustering models

The automated grouping of the pixels in an image having the same characteristic bands

is called spatial clustering. This is done by considering two important criteria: (i) pixels

in the same group are as similar as possible and (ii) pixels in different groups are as dis-

similar as possible. Various multivariate methods (unsupervised) such as K-means Clus-

ter Analysis (KMCA), Agglomerative Hierarchical Cluster Analysis (AHCA), Principal

Component Analysis (PCA), Fuzzy C Means Cluster Analysis (FCMCA), Vertex Com-

ponent Analysis (VCA), and Divisive Correlation Cluster Analysis (DCCA) are being

widely used for cluster analysis of Raman and IR images [45, 81, 82]. Spatial clustering

algorithms can be divided into two main categories:

Hard Clustering: Each pixel (object) belongs to only one of the clusters. Many clus-

tering algorithms like KMCA, HCA are hard clustering algorithms.
Fig. 7 Schematic representation of Support Vector Machine (SVM), identifying the optimal hyperplane for a
two-class data set
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Soft Clustering: Each pixel (object) belongs to some extent to each cluster i.e. the al-

gorithms capture the probabilities with which a given pixel belongs to each class and

these probabilities should sum to ‘1’. Algorithms such as FCMCA belong to the soft

clustering category.

Hard clustering can be described as soft clustering with the probability of a pixel be-

longing to a particular cluster is ‘1’ and all other remaining clusters is ‘0’.

Clustering algorithms can also be distinguished based on the approach and under-

lying statistical methodologies [83]. Some of the categories of cluster algorithms are

listed below:

Hierarchical Approaches: These methods use recursive approaches either in top-

down or bottom-up fashion in partitioning a given data set. Algorithms like AHCA,

DHCA belong to this category.

Partitioning Approaches: These methods iteratively keep shuffling the cluster labels

from one pixel to other until a particular criterion (objective function) is minimized,

for e.g. KMCA.

Graph Based Approaches: Graph theory related techniques like minimal spanning

tree and max-flow min-cut etc. are used for clustering. Here, data is converted to

Graph by representing pixels (objects) as nodes and the distance between the pixels as

edge weights. Based on the particular type of problem the definition of distance (edge

weights) varies. For example if we want to increase the probability of pixels adjacent to

each other falling in the same cluster, we can incorporate the spatial location informa-

tion in the distance calculation to make sure adjacent pixels have less distance from

each other.

Density Based Approaches: These methods are somewhat similar to partitioning

based approaches, but they calculate the probability of pixels belonging to each cluster.

Here, it is assumed that the probability of a given pixel belonging to each cluster can

be modeled by a particular probability distribution function. The overall distribution of

the data is assumed to be a mixture of several such distributions. Algorithms like

Gaussian Mixture Models (GMM) can be categorized under these approaches.

However, when it comes to spectroscopy only few of the above mentioned algorithms

are being widely used. Some of those algorithms are explained in detail later in the re-

view. One common problem with most of these clustering algorithms is to find the op-

timal number of possible clusters for the data set. Although there are a few rules of

thumb for the selection of the ideal number of clusters, it depends mostly on the prob-

lem at hand and the intuition of the chemometrician. Nevertheless, there are a few sim-

ple and useful guidelines to identify an ideal number of clusters and these techniques

vary from method to method. More details about the techniques specific to each

method are explained below.

a) K-means Cluster Analysis (KMCA)

The K-means algorithm is the simplest and one of the most widely used clustering

algorithms in vibrational spectroscopy [45, 47, 57]. Along with observations, KMCA

expects additional input parameters like the number of clusters (K) and initial cluster

centers. KMCA is an iterative algorithm and two steps are performed in every

iteration:
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Step-1: Find the distances from a given observation to each cluster centre and label

the observation with the label of the cluster centre which is the closest. At the end of

this step each observation would have been labeled with a new label.

Step-2: Recalculate the cluster centers based on the new labels obtained in step-1.

KMCA repeats the above explained steps until a convergence criterion is met. One of

the most commonly used convergence criteria is that the distance between the current

(iteration) cluster centers and the previous (iteration) cluster centers is less than a se-

lected threshold. As mentioned earlier, KMCA requires the initial cluster centers to be

fed as input before running the algorithm. Generally there are two ways of assigning

the initial cluster centers. In the first approach, all the observations are randomly la-

beled with the possible number of labels (K) and subsequently cluster centers are calcu-

lated. In the second approach, from all observations in the data set, ‘K’ observations are

selected randomly as cluster centers. Irrespective of the method used for calculating

the initial cluster centers, each time KMCA may converge to an entirely different solu-

tion because of the randomness in allocating initial cluster centers. This problem can

be solved by running KMCA many times (say 100) and finally selecting one of those so-

lutions based on some disparity criterion. Disparity is calculated as the sum of distances

from the final cluster centers to the observations in the given cluster as shown below.

Let us say we have ‘K’ clusters named as C1, C2, C3 … CK with cluster centers as μ1, μ2,

μ3 … μK respectively:

disparity ¼
XK
i¼1

X
x∈Ci

dist x; μið Þ ; where “dist” represents the distance metric

Here, generally Euclidean distance is used as distance metric. Many clustering algo-

rithms including KMCA have a dependency on the number of clusters “K”. Most of the

time the optimal “K” is subjective as it depends on the problem being solved. In some

of the earlier studies conducted in the field of vibrational spectroscopy, KMCA was run

by varying “K” from 2 to a very high number (say 20). Then, the optimal number of “K”

was chosen by comparing the KMCA clustered images with histopathological images

[82]. As “K” increases underlying spatial patterns are revealed and beyond a certain

number of clusters these patterns will not yield any extra information. As these obser-

vations are done qualitatively, the optimal number of “K” varies from problem to prob-

lem. There are also some quantitative approaches available to determine the optimal

number of “K”. One such method is called the “elbow method”. Here, for each “K”

starting from 2, the disparity measure is calculated. As “K” increases the disparity de-

creases. But, beyond a certain “K” the change in disparity is very minimal. So, based on

the percentage change in disparity an optimal “K” can be obtained.

b) Hierarchical Cluster Analysis (HCA)

HCA is one of the most powerful and frequently used methods in chemical (Raman

and IR) imaging. In HCA many of the distance metrics, explained earlier in the begin-

ning of the review, can be used, of which Euclidean and Mahalanobis distance metrics

are the most common. One of the biggest advantages of HCA is that it does not have

to run again and again as the number of clusters varies. There are mainly two different

approaches in HCA, firstly a “bottom up” approach called AHCA and secondly a “top

down” approach called DHCA.
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Agglomerative hierarchical cluster analysis (AHCA)

In AHCA, all the observations in the data set are considered to be belonging to differ-

ent clusters. In other words, each observation belongs to a different cluster. At each

step of AHCA, two clusters are merged based on a particular distance criterion until

all the clusters are merged into a single cluster. Many different distance criteria are

used to merge the clusters; some of the most popular methods are listed below.

Single-linkage: The distance between two clusters is defined as the minimum of all

distances between the observations in one cluster and the other cluster:

single−linkage distance ¼ min dist x; yð Þ : x ∈X; y ∈Yf g;

where X and Y are two different clusters
Complete-linkage: The distance between two clusters is defined as the maximum of

all distances between the observations in one cluster and the other cluster:

complete−linkage distance ¼ max dist x; yð Þ : x ∈X; y ∈Yf g;

where X and Y are two different clusters

Average-linkage: The distance between two clusters is defined as the average of all

distances between the observations in one cluster and the other cluster:

average−linkage distance ¼ 1
NXNY

X
x ∈X

X
y ∈Y

dist x; yð Þ;

where X and Y are two different clusters;
NX,NY are the corresponding numbers of observations

Ward’s Criterion: Here, at every step two clusters that yield a minimum increase in

total within-cluster variance (which is similar to disparity of single cluster) are merged

[39, 40, 43].

This whole hierarchical process is captured as a “Dendrogram”. A dendrogram is a

tree structure used to illustrate the merging process and corresponding distances at

each step. Based on the optimal distance we can split the data set into a particular

number of clusters or based on the number of clusters required an optimal distance is

chosen to split the data set into clusters using “Dendrogram”.

Divisive hierarchical cluster analysis (DHCA)

The DHCA process starts with a single cluster and ends up with the same number of

clusters as the number of observations in the data set. At every step, a chosen cluster is

split in two based on a particular criterion. AHCA has less computational complexity and

is the most popular technique for chemical (Raman and IR) imaging [39, 40, 77, 84, 85].

Here, we demonstrate the use of AHCA for spatial clustering of a HeLa cell, the most

commonly used human (cervical cancer) cell line. Raman images were generated by

raster-scanning the laser beam (633 nm) over the Hela cell with a step size of 1 μm

(Fig. 8). The excitation line was focused using a 63x (NA = 0.9) water immersion object-

ive for an integration time of 15 s using an inverted microscope system. The Raman

image is classified into four clusters using AHCA to visualize regions with high Raman

spectral similarities. The white light image is shown in Fig. 8a. Since significant

portions of the image represent only substrate and buffer (background), a high SNR fil-

ter is employed to make sure such unwanted signal is removed prior to multivariate



Fig. 8 Hierarchical Cluster Analysis of Raman image from a HeLa cell, the most commonly used human
(cervical cancer) cell line. a White-light image; b corresponding Raman image of four clusters obtained by
using AHCA multivariate technique; black regions indicate low SNR spectra (mostly buffer and substrate),
which were removed prior to AHCA during the preprocessing stage; c average Raman spectra of four
clusters; and d the difference spectrum (black) obtained by subtracting the average spectrum of the purple
region from the average spectrum of the green region
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analysis. The black regions in Fig. 8b represent the pixels which were removed be-

fore clustering. Also, subsequently each spectrum in the image was baseline cor-

rected, smoothed and normalized to eliminate effects of instrumental drift. In order

to reduce dimensionality, eliminate noise and to improve computational efficiency

PCA was performed prior to cluster analysis [39, 40]. The thirty most significant PC

scores were retained and further fed to AHCA for clustering and the corresponding

average spectra from each cluster were plotted (Fig. 8c). The average spectrum from

the green cluster belongs to the nuclear region due to the presence of Raman bands

at 785, 810, 1093, 1338 and 1576 cm−1 which are assigned to nucleic acids. The

positive nucleic acid bands in the difference spectrum i.e. the average spectrum of

the green cluster minus the average spectrum of the purple cluster also illustrates

the high nucleic acids content in the green region (Fig. 8d). Importantly, the nega-

tive bands at 717, 1064, 1440 and 1740 cm−1 in the difference spectrum indicate

that the purple cluster is dominated by vesicular lipids. The Raman image of HeLa

cell was recorded 2 h after isolating from the media, which must have resulted in

the formation of vesicles due to stress [86]. This is also clear from the granular

structures seen in the white light image. Overall, we could divide the Raman image

according to the chemical components and their relative intensities effectively using

multivariate analysis.

a) Fuzzy C Means Cluster Analysis (FCMCA)

Unlike KMCA and HCA, FCMCA is a soft clustering algorithm. In other words, each

observation belongs to more than one cluster with a given probability (membership

value). Otherwise, FCMCA is very similar to KMCA except that these membership

values have to be included in the objective function. In vibrational spectroscopy

FCMCA is often used for solving the soft clustering problem [73, 84, 87].

Multivariate regression models

Unlike classification or clustering, regression is used in quantification of particular

dependent variables (expected outcome of the experiment). In the case of regression

methods two matrices are used, one with dependent variables Y and the other is our
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previously introduced “X” matrix. Using these data matrices an underlying regression

model (coefficients) is learned during the training phase. This model is used to predict

Y-values from new measurements of X. This solves the problem of estimating new

measurements (Y) which may be expensive, difficult, time consuming, dangerous,

ethically undesirable etc. to obtain experimentally [58, 78, 79, 88, 89]. There are many

multivariate regression methods available and some of the commonly used methods in

vibrational spectroscopy are as follows.

In case of Multiple Linear Regression (MLR), a linear relationship is assumed between

independent and dependent variables. The regression of one Y-variable is done on a set

of independent X-variables using the Least Squares Criterion [78, 79]. In spectroscopic

applications the predictor variables (measurements at different frequencies) are highly

correlated with each other, which leads to an ill-conditioned least squares problem.

This can be solved by projecting the original variables/measurements into a lower di-

mensional space where the latent predictor variables are not correlated with each other.

Principal Component Regression (PCR) and Partial Least Squares (PLS) are two such

methods.

In the case of Principal Component Regression (PCR), X-variables are first subjected

to PCA and then the Y-variable/s is/are regressed onto this decomposed X-matrix

[52, 54]. A major shortcoming of PCR is that although the latent variables obtained

from PCA maximize the variance in predictor variables, they may not be optimal for

predicting the response as covariance between the predictor and response variables

is not considered when calculating these latent variables.

Partial Least Squares (PLS) is an improvement over PCR where limitations of MLR

are also overcome. In PLS covariance between predictor and response variables i.e.

XTY is subjected to Singular Value Decomposition (SVD) in contrast to XTX as in the

case of PCR to obtain the latent variables which are further used to predict the re-

sponse variable [20, 21, 52, 54]. Also in the case of MLR and PCR, correlations between

dependent variables are not considered. In other words, it is assumed that dependent

variables are independent of each other. In the real world it is quite possible that the

dependent variables which are being estimated from the same pool of independent vari-

ables are correlated with each other. The PLS method can quite effectively handle one

or more co-varying dependent variables. This is done by projecting both X and Y into

latent variable spaces T and U respectively, such that T and U are coupled, and chosen

to maximize covariance between predictor and response variables i.e. XTY. Subse-

quently a linear regression function between the latent variables, T and U is also

learned. Given a new observation, first they are projected into latent space defined by

T and further using linear regression the latent response variables are predicted which

are in the space defined by U. Now, the actual response variables are obtained by back

transforming the predicted latent response variables defined by U.

PLS is one of the most widely used analytical techniques along with vibrational spec-

troscopy to estimate and quantify the signature of various components in a given sam-

ple. The applications range from forensics to medicinal research [90–92]. Harvey Lui

et al. performed principal component with general discriminant analysis (PC-GDA) and

PLS on Raman spectroscopic data to distinguish malignant from benign skin lesions

with good diagnostic accuracy [91]. This application has been commercialized jointly

by Verisante Aura™ to aid medical professionals in the detection of cancer. Infrared
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absorption spectroscopy along with multivariate analysis tools is also used for noninva-

sive in vivo glucose sensing for human subjects [92].

Performance metrics and validation of statistical models

Multivariate statistical methods, and in particular classification techniques, may

perform excellently on the training data where the parameters of the model are

learned. However, they may not adapt very well to the new unseen data supplied in

the testing phase. So it is very important to understand the robustness of the model

built during the training phase before moving to the validation phase. This also

helps in evaluating the prediction strength of the model. Cross Validation is one

such technique that determines the robustness of the statistical model. Before mov-

ing on with Cross Validation it is important to define some performance metrics of

the classification model. Results obtained from a classification model can be tabu-

lated in the form of a truth table. A simple example of a truth table (also called con-

fusion matrix) for a two-class (say, positive and negative classes) classifier is shown

in Table 1.

True Positive (TP): Number of observations which are originally positive and also

classified as positive.

True Negative (TN): Number of observations which are originally negative and also

classified as negative.

False Positive (FP): Number of observations which are originally negative but classified

as positive. These errors are called Type-I errors.

False Negative (FN): Number of observations which are originally positive but classified

as negative. These errors are called Type-II errors.

Based on the values in the truth table some of the important performance metrics

are:

Sensitivity (True Positive Rate – TPR or recall):

Sensitivity ¼ TP
TP þ FN

Specificity (True Negative Rate – TNR):

Specificity ¼ TN
TN þ FP

Precision (Positive Predictive Value – PPV):
Table 1 Truth table for a two-class classifier

Ground truth (desired output)

Ground truth – positive
(Class 1)

Ground truth – negative
(Class 2)

Classifier Result Classifier result – Positive
(Class 1)

True Positive (TP) False Positive (FP)

(Statistical model Output) Type–I Error

Classifier result – Negative
(Class 2)

False Negative (FN) True Negative (TN)

Type–II Error
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Precision ¼ TP
TP þ FP

False Positive Ratio – FPR:
FPR ¼ FP
FP þ TN

Negative Predictive Value – NPV:

NPV ¼ TN
TN þ FN

Total accuracy:
Total Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

Cross validation
As mentioned earlier, cross validation of the model is important (i) to avoid over fitting

or under fitting the model due to an inappropriate selection of components used, and

(ii) to determine the associated prediction error for future work (For e.g. in the testing

phase). This is done by dividing the original data set into a training and a validation

dataset, where the training set is used for learning the parameters and the validation

set is used for evaluating the performance of the classification technique [72, 93, 94].

There are many different versions of cross validation, but some of the methods which

are more popular are listed below.

Leave One Out Cross Validation (LOOCV): Here, one observation is excluded at a

time from the training set and the resulting model is evaluated on this left out observa-

tion. This is repeated for all the observations in the data set and the average perform-

ance across those iterations is considered as the performance of the classification

model.

K-Fold Cross Validation (KFCV): Here, the original data are divided randomly into K-

sub folds (subsets). Each subset is excluded at a time from the training set and the

resulting model is evaluated on the left out subset. This is repeated ‘K’ times till all the

subsets are validated. The average performance across the ‘K’ iterations is considered as

the performance of the classification model.

Receiver operating characteristics (ROC) curves

ROC curves are used to determine the ability of a classification model to discriminate

negative from positive test results. Most of the classification models give an output

such as the probability that a particular observation belongs to each class. This prob-

ability can be discretized by applying a threshold on the probability values. For a two-

class problem, if the probability value is greater than the threshold it is considered as a

positive outcome, otherwise as a negative outcome. Obviously it makes more sense to

keep this threshold as 0.5. It is easy to visualize that if this threshold is ‘0’ then all the

observations are classified as positive. Similarly, if the threshold is kept as ‘1’ then all

the observations are classified as negative. So, it is interesting to observe what happens

to performance metrics like “sensitivity” and “specificity” as this threshold is varied

from ‘0’ to ‘1’. The ROC curves capture this behavior by plotting “sensitivity” against

“FPR (1- specificity, which indicates false alarms)” for the different possible probability
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thresholds of a classification model [9, 38, 68, 95]. It exhibits the tradeoff between “sensi-

tivity” and “specificity” i.e. an increase in “sensitivity” will be accompanied by a decrease

in “specificity”. A model, with 100 % sensitivity and 100 % specificity i.e. with no overlap

in the two distributions, has an ROC plot that passes through the upper left corner (Fig. 9).

As the curve approaches the 45° diagonal line (also called “Line of No Discrimination”)

the accuracy of the model decreases. If the classifier is randomly allocating the class labels

the ROC of such a classifier should be the same as the 45° diagonal line. As a result the

area under the curve (AUC) of the ROC is an important measure of the predictability of a

classification model. A strong and robust classifier should have an AUC close to ‘1’. If the

AUC of a classifier is less than ‘0.5’ then it is performing worse than the “Line of No dis-

crimination” i.e. the classifier exhibits the opposite of the desired behavior.

Negative control studies

This is used in evaluating the supervised classifier to understand its behavior when purpose-

fully wrong labels are fed to the classification model [96]. Here, actual labels (ground truth)

of the observations in the training set are randomized (shuffled) and fed to the classification

model. Subsequently performance metrics like “PPV”, “sensitivity” and “total accuracy” are

collected by repeatedly performing the study as explained above. Each time when the study

is performed, a new set of randomized training set labels (which are not the same as ground

truths) are fed to the classifier. For a robust classification model it is expected to get very

low values for the above mentioned performance metrics (say, 0-50 %). If it is not the case

then the classifier is very sensitive to potential confounding variables and correlations in the

data set, making it highly volatile particularly when subjected to new test data.
Conclusion
Various multivariate data preprocessing, analysis methods, and the validation criteria,

which are commonly used for Raman and IR spectroscopy, are described in this review.
Fig. 9 Illustration of a receiver operating characteristic (ROC) plot and three levels of performance
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Data preprocessing is the crucial step in Raman and IR data analysis to extract the ac-

curate information. Most widely used data preprocessing methods are discussed but it

is still active research area as we need to optimize the steps according to the sample

and its native matrix. Depending on the objective of the study and depending on the

technique (Raman or FTIR) used, one (or more) of the data preprocessing and analysis

methods can be applied for effective interpretation of the data. One has to select a sub-

set of the data analysis methods for solving the specific problems.
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