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Abstract. Motivated by the importance of study on the complex behav-
iors, which may be exhibited by fractional order differential equa-
tions, this review paper focuses on dynamical fractional order systems
exhibiting chaotic behaviors. The review begins with a brief history
on the first publications on the above-mentioned subject. Then, the
review is continued by investigating the recent progresses relevant to
fractional order chaotic systems. Furthermore, a summary on some
applications for such systems, which have been reported in the litera-
ture, is presented. Finally, the paper is closed by discussing some open
problems on the aforementioned research subject. These open prob-
lems, as future challenges for further study on fractional order chaotic
systems, can specify some direction lines for continuing the research
on that subject.

1 Introduction

More than three centuries after the first attempts to construct basic foundations of
fractional calculus [1,2], today this mathematical tool has opened its way in various
branches of science and engineering [3]. Benefiting from the generalized differentia-
tion/integration operators introduced via fractional calculus, an extended framework
for defining dynamical models has been engendered [4,5]. This extended framework
is more capable to describe the phenomena of the real world, in comparison to the
framework that is available from the traditional calculus (For some samples, see
[6–9]). On the other hand, chaos theory, as another interesting mathematical branch,
provides new insights to discover the world around us [10,11]. Fractional order chaotic
dynamical systems can be considered as the intersection of the mathematical tool of
fractional calculus and the mathematical branch of chaos theory. This paper aims to
review the research works done on the subject of fractional order chaotic systems.
This review includes expressing a brief history on the subject, describing the works
done on the active relevant subfields, explaining the applications, and clarifying the
challenges for future research works.

This review paper is organized as follows. In Section 2, firstly some useful def-
initions relevant to fractional order dynamical systems are restated. Then, a brief
history on the first research works dealing with fractional order chaotic systems is
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presented in this section. In continuation of the review, Section 3 discusses on the
need to differentiate between inherently chaotic fractional order systems and frac-
tional order systems with chaotic integer order approximations. Some directions in
recent researches on fractional order chaotic systems are reviewed in Section 4. More-
over, the applications of fractional order chaotic systems, which have been previously
reported in literature, are summarized in Section 5. Furthermore, some open prob-
lems and future challenges in study of this kind of systems are discussed in Section 6.
Finally, the paper is concluded in Section 7.

2 Preliminaries and a brief history

2.1 Basic definitions

To define the fractional differentiation operator, there are some commonly used defi-
nitions. As one of these popular definitions, the Caputo fractional derivative of order
α (0 < α /∈ N) for function f(t) is defined by

0D
α
t f(t) = 1

Γ(m−α)

∫ t
0

(t− τ)−α−1+m
f (m)(τ)dτ , (1)

where m denotes the first integer number greater than α, i.e. m − 1 < α < m and
Γ(.) specifies the Gamma function [12]. For briefness, we skip to restate the other
popular definitions of fractional differentiation operator (e.g. Riemann-Liouville and
Grünwald–Letnikov definitions), and the interested readers are referred to [12,13] for
details on different definitions for fractional order operators. Considering the defini-
tion of fractional derivative, a fractional order dynamical system can be described in
the pseudo-state space form as

0D
α1
t x1 = f1(x1, x2, . . . , xn)

0D
α2
t x2 = f2(x1, x2, . . . , xn)

...
0D

αn
t xn = fn(x1, x2, . . . , xn)

, (2)

where xi ∈ R and αi ∈ (0, 1] for i = 1, 2, . . . , n. In system (2), the summation of
the involved derivative orders αi, i.e.

∑n
i=1 αi, is called the effective dimension of the

system. x = [x1, x2, . . . , xn]T ∈ Rn is the pseudo-state vector of system (2), and each
xi (i = 1, 2, . . . , b) is a pseudo-state variable for this system (To find out why instead
of “state vector”, x is called the “pseudo-state vector”, see [14]). Also, (2) denotes a
commensurate order system, where α1 = α2 = . . . = αn. Otherwise, (2) will be an
incommensurate order system. The integer order counterpart of system (2) is of the
following common from

ẋ1 = f1(x1, x2, . . . , xn)
ẋ2 = f2(x1, x2, . . . , xn)
...
ẋn = fn(x1, x2, . . . , xn)

. (3)

2.2 The first research works on fractional order chaotic systems

The first attempts to introduce chaotic systems containing fractional order differen-
tiation operators were made by T. T. Hartley, C. F. Lorenzo, and H. K. Qammer.
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Fig. 1. A closed-loop equivalent form for system (4) [15].

In their research paper [15], published in August 1995, a fractional order version of
the Chua system, defined by

0D
α
t x = a

(
y + x−2x3

7

)
0D

α
t y = x− y + z

0D
α
t z = − 100

7 y

, (4)

where α and a are positive constants, has been introduced. To analyze the chaotic
behavior of system (4), firstly a closed-loop equivalent form for this system as that
shown in Figure 1 has been considered in [15]. Then, the fractional integration opera-
tor 1

sα in this equivalent form has been replaced by some fifth order biproper transfer
functions, as rational approximations for the operator 1

sα . This means that in [15],
approximations in the form

1
sα ≈

∑5
k=0aks

k

∑5
i=0bis

i , (5)

have been used to obtain the trajectories in system (4).
The numerical simulation based analysis of [15] revealed that system (4) can

exhibit chaotic behaviors, where its effective dimension is less than 3. Reporting this
result was interesting for the researchers working in the field on dynamical systems,
because from the Poincaré–Bendixson theorem [16] it is known that the integer order
systems in form ẋ = f(x), where f : Rn → Rn is a continuously differentiable
function, with effective dimensions less than 3 cannot exhibit chaotic behavior. It
is worth mentioning that on the basis of the equivalent closed-loop form shown in
Figure 1 for system (4) and using the results of [17], describing function based analysis
to justify the existence of chaos in this system have been presented in [15].

After publishing [15], inspired from this paper, various research works with the
subject of introducing and analyzing specific fractional order chaotic systems were
published. Among these research works, it seems that [18] and [19] are the first two
papers with the aforementioned subject which have been published after [15]. In [18],
which has been published in 1998, a class of fractional order cellular neural networks
with chaotic behaviors has been introduced. Also, [19], which has been published in
1999, deals with numerical analysis of the chaotic behavior of the following fractional
order system.

ẋ = 0.9− y
ẏ = 0.4 + z

ż = 0D
1−q
t (xy − z)

. (6)

In the special case q = 1, (6) specifies one of the simple chaotic systems intro-
duced by Sprott in [20]. In addition to the above-mentioned two papers, various
research works, numerically investigating fractional order counterparts of famous
chaotic dynamical systems, were published within a decade after publishing the
first paper on the subject of fractional order chaotic systems. Some of the chaotic
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fractional order systems studied in these works are as follows.

– Fractional order Lorenz system [21,22]
– Fractional order Rössler system [23]
– Fractional order Chen system [24]
– Fractional order Lü system [25]
– Fractional order Arneodo system [26]
– Fractional order Genesio–Tesi system [27]
– Fractional order Ikeda system [28]
– Fractional order Duffing system [29]

Also, [30–34] are some of the other primary works on fractional order chaotic
systems.

3 Fractional order chaotic systems versus approximating integer
high order chaotic ones

One of the items focused by the pioneering research work [15] and the most of the
other papers following this work in the later years is to numerically find the min-
imum effective dimension for capability to exhibit chaotic behaviors in a specific
fractional order system. Continuing these efforts, in research work [35], published
in July 2007, a lower bound for such a minimum effective dimension in commensu-
rate order systems, whose integer order counterpart has a double scroll attractor, is
analytically derived (This result was later extended in [36] for the incommensurate
order systems). A surprising consequence of the lower bound found in [35] was that
this analytic bound was inconsistent with some results previously reported on the
minimum effective dimensions in fractional order chaotic systems (Some samples of
these inconsistencies have been investigated in [35,37,38]). A more in-depth analysis
revealed that such inconsistencies originate from the numerical methods used for sim-
ulation of fractional order systems [39]. More specially, using approximations in the
forms such as (5) for approximating the fractional operators can cause that the proxi-
mate system is inconsistent with the original one in the viewpoint of the specifications
relevant to the equilibrium points (specifications such as the number, location, and
stability/instability of equilibrium points) [40]. In fact, the aforementioned class of
frequency-domain approximations converts the original fractional order system into
an integer high order one. Due to the inherent differences between the original frac-
tional order system and its integer high order approximation, their capabilities to
generate chaos may be different, i.e. the original system may have represent regular
behaviors, whereas its integer order approximation is chaotic [39]. Conversely, the
original fractional order system may chaotically behave, whereas its approximation
is a regular system. For more clarifying the point, let us recall a numerical example
from [37]. Consider the fractional order Lorenz system

0D
0.8
t x = 10(x− y)

0D
0.8
t y = 28x− xz + 8z

0D
0.8
t z = xy − 8

3z
. (7)

It can be checked that (x, y, z) = (±
√

96,±
√

96, 36) are two equilibrium points
for system (7). By linearizing system (7) around these points, it is deduced that
(x, y, z) = (±

√
96,±

√
96, 36) are two stable equilibrium points in system (7). Conse-

quently, asymptotically stable orbits around the aforementioned equilibrium points
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can be observed in numerical simulation results of system (7) (For a sample, see
Figure 1 of [37]). But, if the approximation

1
s0.8 ≈

5.235s3+1453s2+5306s+254.9
s4+658.1s3+5700s2+658.2s+1

, (8)

is used for simulation of fractional order system (7), the obtained system for approx-
imating (7) is an integer order one of order 12. Using the linearization technique, it
is shown that all of the equilibrium points in the approximating integer order sys-
tem are unstable. In this case, the existence of chaos in approximating integer order
system is revealed from numerical simulation results, such that the original asymptot-
ically stable orbits around the stable equilibrium points (x, y, z) = (±

√
96,±

√
96, 36)

are converted to chaotic ones (For more discussions, see [37]). This means that fake
chaotic behaviors are exhibited by the approximating integer order system, whereas
the original system (7) is not a chaotic one.

Considering the above-mentioned example, it is necessary to distinguish between
chaotic oscillations inherently generated by fractional order systems and those created
by their integer high order approximations (More analytical details on this point can
be found in [40] and [41]).

4 More recent achievements

In this section, some active topics, which have been gained attention of the researches
working on chaotic phenomena in fractional order systems, are summarized.

4.1 Study on specific fractional order chaotic systems and bifurcation analysis

In recent years, study on the properties of fractional order counterparts of the intro-
duced integer order chaotic systems by using more advanced techniques has been still
continued. Some of these studies deal with bifurcation analysis in fractional order
Lorenz system [42], fractional order Rössler system [43], and fractional order Chua
system [44]. Another related topic, which has been paid attention by the researchers,
is to investigate the strange attractors produced by fractional order chaotic systems.
For instance, fractional order chaotic systems with multiwing attractors have been
studied in [45–49].

4.2 Chaos analysis in fractional order real-world inspired models

Investigating the chaotic behaviors of fractional order counterparts of real-world
inspired models, such as fractional order electrical models, fractional order mechani-
cal models, fractional order biological models, and fractional order financial models
has been the subject of various research works published in recent years. For example,
in [50] it has been shown that a fractional order electrical RLC circuit containing a
Chua’s diode [51] can generate chaos, where it is excited by sinusoidal inputs. Also,
in some research works the chaotic behaviors of fractional order electrical circuits
containing memristors [52], e.g. fractional order Chua circuit including a memristor
[53], simple electrical circuits containing a fractional capacitor, a fractional inductor,
and a memristor [54–56], electrical circuits consisting of a fractional capacitor and a
delayed memristor [57], and fractional order memristor based neural networks [58],
have been studied (It is worth mentioning that the circuitry implementation of frac-
tional order chaotic systems has been also taken into consideration in recent years
[59–64]).
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Some samples of fractional order mechanical/electromechanical models exhibiting
chaotic oscillations can be found in [65–68]. Moreover, the fractional order HIV model,
the fractional order cancer model, the fractional order model of pancreatic β-cells,
and the fractional order prey predator model are some of the biological models whose
chaotic behaviors have been analyzed in [69–72], receptively. Furthermore, [73–76] are
some samples of research works dealing with fractional order financial systems having
chaotic behaviors.

4.3 Hidden attractors in fractional order systems

The existence of hidden attractors in some fractional order systems is another subject
which has been taken into consideration in the literature of fractional order chaotic
systems. For instance, in [77–85] some fractional order systems with no equilibrium
point have been introduced which possess hidden attractors. In [86] a fractional order
chaotic system with no equilibrium point and infinitely many hidden attractors has
been analyzed. The existence of hidden chaotic attractors in a fractional order system
with a stable equilibrium point has been investigated in [87]. In [88] a fractional
order system with two equilibrium points and hidden attractors has been analyzed.
A memristor based hyperchaotic fractional order system with a line of equilibrium
points, which possesses hidden chaotic attractors, has been investigated in [89]. A
fractional order chaotic system having infinite number of equilibrium points, which
are placed on a line and a hyperbola, with the potential of generating hidden chaotic
attractors has been studied in [90]. A fractional order chaotic system with circular
equilibrium points and hidden chaotic attractors has been introduced in [91]. In [92],
the hidden chaotic attractors of the fractional order counterpart of a generalized
Lorenz system, fractional order version of a non-smooth Chua system, and fractional
order Rabinovich-Fabrikant system have been studied.

4.4 Study on fractional order chaotic maps

The discrete version of fractional calculus, called as the fractional discrete calculus
[93], provides a framework for describing the fractional difference operators, as gen-
eralizations for the simple difference operator. By using these operators, fractional
order discrete-time dynamical system are defined. Considering this point, till now dif-
ferent fractional order chaotic maps have been analyzed in literature. Some of these
maps are as follows.

– Fractional order logistic map [94,95]
– Fractional order sine map [96]
– Fractional order Ikeda map [97,98]
– Fractional order Henon map [98,99]
– Fractional order Lozi map [100]
– Fractional order Lorenz map [100]
– Fractional order flow map [100]
– Fractional order Grassi–Miller map [101]
– Fractional order unified map [102]

Some other fractional order chaotic maps have been introduced and analyzed in
[103–106].
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4.5 Chaotic systems defined via using more generalized differentiation
operators

Although fractional order differentiation/integration operators are themselves the
generalized versions of traditional differentiation/integration operators, more extended
forms have been also introduced for these fractional order operators. Baed on these
extended operators, which lead to more extended calculuses, more generalized mod-
els for describing dynamical systems can be proposed. For instance, variable order
derivative of function f(t), as a generalization for the fractional order derivative of
this function, can be defined as

0D
α(t)
t f(t) = 1

Γ(1−α(t))

∫ t
0

(t− τ)−α(t)
f

′
(τ)dτ , (9)

where function α(t) ∈ (0, 1) denotes the order of differentiation operator 0D
α(t)
t [107].

On the basis of variable order differentiation operators, some variable order chaotic
systems have been introduced, and their dynamical behaviors have been analyzed in
literature. Some samples of these chaotic systems can be found in [108–112]. It is
worth mentioning that by introducing variable order difference operators, discrete-
time variable order chaotic systems have been also investigated (For some samples,
see [112] and [113]).

Another generalization for fractional order differentiation operator, called as the
distributed order differentiator, is defined by

0D
w(α)
t f(t) =

∫ 1

0
w(α)0D

α
t f(t)dα , (10)

in which operator 0D
α
t is given by (1) and w(α) (0 ≤ α ≤ 1) specifies the weight

function [114]. Using this generalized form of differentiation operator, distributed
order dynamical systems can be defined. Considering this point, distributed order
systems exhibiting chaotic behaviors have been studied in some research works (For
example, [115] and [116]).

4.6 Lyapunov exponents in fractional order systems

Considering the importance of the concept of Lyapunov exponents for analysis of
dynamical systems in the viewpoint of sensitivity to initial conditions and conse-
quently its impact in justifying the existence of chaos, some studies on Lyapunov
exponents in fractional order systems have been done in literature. For instance, by
defining the Lyapunov exponents for fractional order systems in [117], this research
work has obtained analytical upper and lower bounds for the values of Lyapunov
exponents in fractional order dynamical systems. These bounds have been also sim-
plified in [117] for the special class of linear time invariant fractional order systems.
Moreover, in [117] the validity of the found upper bound has been numerically verified
for the fractional order Chen system

0D
0.92
t x = 35(y − x)

0D
0.92
t y = −8x− xz + 27y

0D
0.92
t z = xy − 3z

. (11)

Another research work dealing with Lyapunov exponents in fractional order systems
is [118], in which a semi-analytical method has been proposed to calculate these
exponents in fractional order systems. This method, which is also applicable for
computation of the Lyapunov exponents in integer order systems, follows two steps:
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transforming the original fractional/integer order system to a discrete map, and then
finding the Lyapunov exponents of the obtained discrete map via a QR factoriza-
tion procedure. The well-posedness of Lyapunov exponents in the class of piecewise
continuous fractional order systems, described in the form

ẋ = g(x) +A(x)s(x) , (12)

where x ∈ Rn, g : Rn −→ Rn is a continuous function, A(x) denotes a n× n matrix,
and the elements of function s : Rn −→ Rn are piecewise constant, has been proved
in [119]. This obtained result has been verified in the fractional order Sprott system

0D
0.99
t x = y

0D
0.98
t y = z

0D
0.97
t z = −x− y − 0.5z + sign(x)

, (13)

the piecewise linear fractional order Chen system

0D
0.99
t x = 1.18(y − x)

0D
0.9
t y = sign(x)(0.02− z) + 0.12y

0D
0.999
t z = sign(y)x− 0.16z

, (14)

and the fractional order Shimizu–Morioka system

0D
0.99
t x = y

0D
0.97
t y = (1− z)sign(x)− 0.75y

0D
0.98
t z = x2 − 0.45z

. (15)

To facilitate the computation of Lyapunov exponents in fractional order systems, a
Matlab code, constructed based on the Wolf algorithm [120], has been proposed in
[121]. In the code proposed in [121], the part of numerical integration of integer order
differential equations, available in the classical Wolf algorithm, has been replaced
by the predictor-corrector Adams–Bashforth–Moulton method [122] for numerical
integration of fractional order differential equations.

4.7 Chaos control in fractional order dynamics

Andrievskii and Fradkov in their review papers [123] and [124] on the subject of chaos
control, have categorized three major classes of problems related to this subject:

– Eliminating chaotic oscillations
– Generating chaotic oscillations (Chaotization)
– Synchronization of chaotic systems

In the research field of fractional order chaotic systems, there are numerous works
on the above-mentioned classes of research problems. For example, in the context
of the first class, till now various control methods have been introduced for sup-
pression of chaotic oscillation via stabilization of the unstable equilibrium points of
fractional order chaotic systems. These methods have been originated from different
powerful tools in control systems theory, e.g., linear control based methods [125–127],
robust control based methods [128–130], adaptive control based methods [131–134],
predictive control based methods [135,136], and intelligent control based methods
[137–139]. Concerning the first class of problems, there are also some works attempt-
ing to reduce the chaotic oscillations in fractional order systems to regular ones (For
example, [140–142]). Furthermore, fractional calculus based techniques have been
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taken into attention to be used for suppression of chaotic oscillations in integer order
systems [143–145]. Similarly, the second class of above-mentioned problems has been
considered by the researchers working in the field of fractional order chaotic systems
(For some relevant works, see [146–148]).The research works have been done regarding
the third class of above-mentioned problems are relatively more diverse in compari-
son to those dealing with the first and the second classes. Synchronization between
two identical fractional order chaotic systems [149–153], synchronization between two
similar fractional order chaotic systems in the presence of model uncertainties and
external disturbances [154–158], synchronization between a fractional order chaotic
system and an integer order one [159–161], and synchronization between two different
fractional order chaotic systems [162–166] are some samples categories of the works
done to solve the third problem.

4.8 Parameter identification in fractional order chaotic systems

Another related topic, which has been devoted attention of the researchers working
on fractional order chaotic systems, is parameter identification in these systems. This
issue, that can be formulated as an optimization problem, has been considered is some
related works, and effective methods have been proposed for solving the optimization
problem corresponding to parameter identification in fractional order chaotic systems
(For some samples, see [167–174]).

5 Some applications

Till now, different applications have been reported for fractional order chaotic sys-
tems. Some of these applications are reviewed in this section.

5.1 Applications in image encryption, sound encryption and
compression-encryption techniques

Generally, it has been known that fractional order dynamical systems exhibiting
chaotic behaviors can be useful in design of appropriate algorithms for secure com-
munication [175–178]. More specially, such dynamical systems have been used in
image encryption algorithms (For some samples, see [179–183]), sound encryption
algorithms (See [184] and [185]) and image compression-encryption techniques (For
some examples, see [186] and [187]).

5.2 Applications in authentication algorithms

In [188], benefiting from the chaotic fractional order logistic map, an image authen-
tication technique has been introduced. The proposed technique is a four-step one,
which in its fourth step fractional order logistic map is applied to generate hash
sequences. It is worth noting that fractional order differentiation operators along
with integer order chaotic dynamics have been also applied in proposing authentica-
tion algorithms. For example, in [189] a fingerprint identification method has been
proposed in which fractional order differentiation operators is used for edge detection,
and a chaotic system, introduced by Sprott [190], is applied for classification.
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5.3 Applications in modeling of the chaotic phenomena

Fractional order dynamical models are good candidate to describe the behavior of
chaotic phenomena [191,192]. For instance, in [193], fractional order chaotic dynamics
have been used for modeling the neuronal chaotic activities. Also, the chaotic vibra-
tions in viscoelastic plates have been described in [194] by fractional order dynamical
models. Moreover, in [195] it has been experimentally verified that the reason of
the inconsistency between numerical simulation results and experimental results of a
chaotic circuit may be the fractionality nature of the energy storage elements exist-
ing in the electrical circuit. Consequently, considering the fractionality nature in the
model of the circuit, which yields in a fractional order chaotic model, results in more
realistic models.

5.4 Applicability in detection methods for engineering applications

On the basis of synchronization of fractional order chaotic systems, till now different
detection methods with the aim of applicability in specific engineering applications
have been introduced. For example, in [196] a method of fault diagnosis to be used
in ball bearing systems has been proposed, that can detect small changes occur-
ring in signals of a ball bearing system by benefiting from a fractionalized version
of the Chen–Lee chaotic system [197]. Also, a real-time method for monitoring the
power quality in power systems has been suggested in [198] on the basis of using
the fractional order Sprott chaotic system [190]. The suggested method is capable
to detect the undesirable disturbances acting on power systems in a high precision
framework. Moreover, a real-time intelligent method gaining from fractional order
chaotic dynamics has been proposed in [199] for detection of islanding in solar power
systems having grid connected topologies. Furthermore, relying on the synchroniza-
tion of fractional order chaotic systems, an identification method to recognize the
chattering caused by machine milling processing has been proposed in [200].

6 Some future challenges

In this section, some open problems in the research field of fractional order chaotic sys-
tems are discussed. As future challenges, these open problems invite further research
works to enrich our knowledge about chaotic behaviors in fractional order dynamical
systems.

6.1 Chaos in continuous-time dynamical systems with a lower number of
pseudo-state variables

From the Poincaré–Bendixson theorem [16], it is known that the well-defined integer
order systems in the form (3) with less than three state variables (i.e., where n < 3)
cannot be chaotic. Even though, the placement of a memory element such as time-
delay in state-space equations changes the story. In this new situation, chaos can
occur in an integer order system of the form

ẋ = f(x, xτ ), (16)

where x(t) ∈ R and xτ = x(t − τ) (For example, the simple integer order system
ẋ = sin(x(t − 5)) [201]). Such a conclusion is also valid for the fractional order
time-delay systems, i.e., a time-delay system in the form

0D
α
t x = f(x, xτ ), (x(t) ∈ R), (17)
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can be chaotic (For some samples, see [202] and [203]). Consequently, the existence of
the time-delay, as a memory element, in first-order differential equations or fractional
differential equations of order α ∈ (0, 1) can cause the occurrence of chaos. On the
other hand, a significant difference between fractional derivative and its traditional
counterpart is that the first one is a non-local operator, whereas the second operator
is a local operator [204]. This means that fractional order differentiation operators
in (2) are inherently memory elements [205]. Now, this question is raised: Can the
existence of these non-local operators in (2) with αi ∈ (0, 1] (similar as the influence of
the existence of time-delay elements in differential equations) cause the occurrence of
chaos in the cases that the number of pseudo-state variables of (2) is less than 3 (i.e.,
where n < 3)? This is an open problem, which can be considered in future research
work. It is worth noting that assumption αi ∈ (0, 1] is necessary in the aforementioned
question. Otherwise, chaotic models with less than three pseudo-state variables and
the involved orders greater than one have been previously in literature (For example,
in [18]).

6.2 Toward finding the minimum effective dimension for the occurrence of
chaos

From the earliest research works on chaos analysis in specific fractional order dynam-
ical systems to the most recent ones, finding the minimum effective dimension for the
under-study system to generate chaotic oscillations is one of the major research top-
ics. Such a minimum effective dimension, which is definitely related to the definition
type of the fractional differentiation operator used in differential equations describing
the system dynamics, has been often obtained via numerical searching manners. Due
to the influence of numerical methods, which are used for simulation of fractional
order systems, on generate fake chaotic oscillations or eliminate the actual chaotic
oscillations, some of the reported minimum effective dimensions for the existence of
chaos in fractional order systems are not correct (For more details, see [35,39–41]). In
[206] by numerically investigating different fractional order systems, a conjecture on
the non-existence of chaos, where the effective dimension (i.e.,

∑n
i=1 αi in (2)) is less

than 3, has been stated. Proving/rejecting of this conjecture in an analytical manner,
where functions fi are continuously differentiable, is another interesting problem for
future research works (If assumption on differentiability of functions fi are removed,
fractional order chaotic systems with very low effective dimension can be found. For
some samples, see [207]). In [208], it has been verified that using different numerical
methods for simulation of a fractional order system yield in different minimum effec-
tive dimensions for the existence of chaos. The minimum effective dimensions near
1 have been reported in [208] for the existence of chaotic oscillations in numerical
simulation results of the fractional order simplified Lorenz system. But, it needs to
specify whether the demonstrated chaotic oscillations are the actual ones (i.e., can
exist in the actual response of the system) or not. The study done in [209] reveals that
fractional order systems in the form (2) with continuously differentiable functions fi
can potentially generate (regular) oscillations, even if they have very low effective
dimensions.

6.3 Rigorous proofs for the existence of chaotic attractors in fractional order
systems

Most of the papers investigating chaotic behaviors in fractional order systems rely on
analysis of numerical simulation results or experimental signals. Since the numerical
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methods applied for simulations and the measurement devices used in experiments
can influence to demonstrate fake chaotic oscillations, analytical tools for proving
the existence of chaos in dynamical systems is of great importance [210]. Such ana-
lytical tools have been introduced for the integer order systems (For instance, tools
constructed on Shil’nikov Theorem [210] and Li-Yorke criterion [211], and the other
powerful tools introduced in literature [212,213]). On the basis of these analytical
tools, rigorous proofs can be provided for the existence of chaotic attractors in famous
integer order chaotic systems [214–216]. But, to the best of the author knowledge,
such analytical tools yielding sufficient conditions for the existence of chaos have
not been extended for the class of fractional order dynamical systems. In addition
to appropriate numerical simulation based methods [217], two analytical approaches
are common for chaos detection in fractional order systems. The first approach is
based on stability analysis of the equilibrium points in the under-study system (For
examples, see [35,36,39–41,209]). Such an approach results in necessary conditions
for the occurrence of chaos, or equivalently sufficient conditions for “no-chaos”. The
second analytical approach for predicting the occurrence of chaos in fractional order
systems has been constructed on the basis of describing function (harmonic balance)
method (For some samples, see [218–220]). Due to approximate nature of this method
[221,222], using the second approach does not result in obtaining sufficient (or even
necessary) conditions for the existence of chaos in fractional order systems. Conse-
quently, it is required to establish analytical methods for proving the existence of
chaotic attractors in fractional order systems, although it does not seem to be an
easy task.

6.4 Finding fractional order chaotic systems whose integer order counterpart
has a non-chaotic structure

It has been known that incommensurate order system with involved orders in the
range (0, 1) may have unstable equilibrium points, whereas these equilibrium points in
their integer order counterpart are stable [223]. Inspired by this result, the following
question is raised: Can a fractional order chaotic system be found such that the
structure of its integer order counterpart is a non-chaotic one, i.e. cannot generate
chaotic oscillations for all involved parameters? Finding a reasonable response for this
question invites future research works. It is worth noting that if the answer of the
question raised in Section 6.1 is positive, the found fractional order chaotic system
with lower than three pseudo-state variables will be a sample system justifying the
positiveness of the answer of the above question. Nevertheless, the answer of the
above question can be positive, whereas the answer of the question of Section 6.1 is
negative.

6.5 The paradox of absence of periodic orbits and route to chaos in fractional
order systems

It has been known that chaotic attractors in integer order chaotic systems can be
well approximated by their unstable periodic orbits (UPOs) [224–226]. In fact, study
on such periodic orbits has increased our knowledge about the occurrence of chaos in
integer order chaotic systems [227–229]. But, as a surprising fact, it has been proved
that fractional order systems in the form (2) cannot have periodic orbits [230], [231].
It seems that we face a paradox. Chaos occurs in fractional order chaotic systems,
whereas no UPO exits in such systems. To address this paradox, more analytical
tools for analysis of the complex behaviors in fractional order systems need to be
developed.
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7 Conclusions

This review paper dealt with researches on fractional order dynamical systems gener-
ating chaotic oscillations. From a historical point of view, the pioneering works on the
subject of the existence of chaos in fractional order systems were reviewed. Then, a
survey on the recent research works done on this subject was presented. Also, applica-
tions of fractional order systems with chaotic behaviors were summarized. Moreover,
some relevant open problems were described, which can be considered in the future
research works on fractional order chaotic systems.
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43. J. C̆ermák, L. Nechvátal, Int. J. Bifurc. Chaos 28, 1850098 (2018)
44. Z. Odibat, N. Corson, M.A. Aziz-Alaoui, A. Alsaedi, Int. J. Bifurc. Chaos 27, 1750161

(2017)
45. E.F.D. Goufo, Int. J. Bifurc. Chaos 28, 1850125 (2018)
46. M. Borah, B.K. Roy, Chaos Solitons Fractals 102, 372 (2017)
47. E. Bonyah, Chaos Solitons Fractals 116, 316 (2018)
48. E.F.D. Goufo, Chaos Solitons Fractals 104, 443 (2017)
49. L. Chen, W. Pan, R. Wu, J.A. Tenreiro Machado, A.M. Lopes, Chaos 26, 084303

(2016)
50. J. Palanivel, K. Suresh, S. Sabarathinam, K. Thamilmaran, Chaos Solitons Fractals

95, 33 (2017)
51. M.P. Kennedy, IEEE Trans. Circuits Syst. I: Fundam. Theor. Appl. 40, 657 (1993)
52. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Nature 453, 80 (2008)
53. I. Petras, IEEE Trans. Circuits Syst. II: Express Briefs 57, 975 (2010)
54. D. Cafagna, G. Grassi, Nonlinear Dyn. 70, 1185 (2012)
55. J. Ruan, K. Sun, J. Mou, S. He, L. Zhang, Eur. Phys. J. Plus 133, 3 (2018)
56. L. Teng, H.H.C. Iu, X. Wang, X. Wang, Nonlinear Dyn. 77, 231 (2014)
57. W. Hu, D. Ding, Y. Zhang, N. Wang, D. Liang, Optik 130, 189 (2017)
58. Y. Fan, X. Huang, Z. Wang, Y. Li, Nonlinear Dyn. 93, 611 (2018)
59. K. Rajagopal, A. Karthikeyan, A. Srinivasan, Nonlinear Dyn. 91, 1491 (2018)
60. K. Rajagopal, S.T. Kingni, A.J.M. Khalaf, Y. Shekofteh, F. Nazarimehr, Eur. Phys.

J. Special Topics 228, 2035 (2019)
61. A.G. Soriano–Sánchez, C. Posadas–Castillo, M.A. Platas–Garza, A. Arellano–Delgado,

Appl. Math. Comput. 332, 250 (2018)
62. D.K. Shah, R.B. Chaurasiya, V.A. Vyawahare, K. Pichhode, M.D. Patil, Int. J.

Electron. Commun. 78, 245 (2017)
63. X. Zhang, Z. Li, D. Chang, Int. J. Electron. Commun. 82, 435 (2017)
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