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Abstract. A standard critique of attempts to apply entropy-maximizing
perspectives to income distribution phenomena in economics is that
they do not have appropriate characterizations of individuals making
choices, which is at the core of economic modeling. This paper presents
a possible bridge between these two seemingly separate universes of dis-
course. With a specific illustration we show that a conventional model
of choice between occupations by individuals can lead to an economic
equilibrium which can also be characterized as an outcome which maxi-
mizes the entropy of the distribution of individuals across occupations
(and hence across incomes). This occupational choice interpretation
can provide economic and institutional basis to what has, up to now,
often been characterized as somewhat mechanical translation of meth-
ods from one discipline to another, without substantive content. The
illustrations provided in the paper are a first step in exploring the
possible linkages between occupational choice and maximum entropy
approaches in modelling income distribution outcomes.

1 Occupational arbitrage equilibrium in economics

Consider the following model of returns to economic occupations or activities. There
are n occupations, indexed by i = 1, 2, . . . , n. There are N individuals indexed by
j = 1, 2, . . . , N . Let the set of individuals engaged in activity i be denoted Ai with
the number of such individuals denoted Ni and the fraction xi = Ni/N . Denote the
vector x̄ = (x1, . . . , xn). Clearly,

n∑
i=1

xi = 1. (1)

Let the return to an individual j from engaging in occupation i be denoted hij
and let this depend on three factors. First is a factor which is specific to occupation
i, denoted vi. Second is the distribution of population across all occupations, in other
words the set A = [Ai]

n
i=1 where Ai is the set of all individuals in occupation i. Third

is a vector of characteristics specific to individual j, δj . Thus

hij = h (vi, A, δj) . (2)
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An allocation A∗ of the N individuals across the n activities, and the associated
returns h∗ij , is an equilibrium if and only if

h∗ij ≥ h∗kj∀j and ∀ k 6= i. (3)

In other words, no single individual could get a strictly higher return by moving to
an alternative occupation or activity.

While the above statement is useful to position the problem at a certain level
of generality, it is clear that we will have to specify the h(.) function further to get
tractable insights and conclusions. At this level of generality, even the existence of
equilibrium is not guaranteed, depending as it does on the specific properties of the
function h. But helpful specialization is possible if we assume that (i) all individuals
are identical, i.e., δj = δ for all j – since this is a constant parameter now, we do
not mention it explicitly; (ii) h depends not on the detailed allocation of individuals
to occupations, but only on the number of them in each occupation. Normalizing by
total population size we have that (2) becomes

hij = hi = h (vi, x̄) . (4)

The return to any individual in activity i is given as a function of vi, a characteris-
tic specific to occupation i, and the distribution of population across the occupations
as given by the vector x̄ = (x1, . . . , xn) . Now existence can be built on the base of
a set of conditions on the function h, in particular that hi be decreasing in xi and
increasing in xk, k 6= i. With this we have an equilibrium allocation of population
across the activities x̄∗ such that

h∗i = h (vi, x̄∗) = h∗ ∀i. (5)

Solving the equations (5) together with the constraint (1) gives us the equilibrium
distribution of population across occupations, x∗i , i = 1, 2, . . . , n.

The general formulation in (3) and the specialization in (5) capture between them
a large range of phenomena that have been modeled in the economics literature. We
restrict ourselves here to an illustration with three cases.

Case 1. Adam Smith and smuggling

First and foremost, the general idea that high returns in certain activities pull people
into those activities, and such a reallocation tends to reduce returns in those activi-
ties, is presented by Adam Smith [21] in the founding text of modern economics, An
Inquiry into the Nature and Causes of the Wealth of Nations, generally referred to,
of course, as The Wealth of Nations. The opening paragraph of Book 1, Chapter 10,
provides a classic statement of the forces in play in occupational choice and
equilibrium:

“The whole of the advantages and disadvantages of the different employments
of labor and stock must, in the same neighborhood, be either perfectly equal
or continually tending to equality. If in the same neighborhood, there was any
employment evidently either more or less advantageous than the rest, so many
people would crowd into it in the one case, and so many would desert it in the
other, that its advantages would soon return to the level of other employments.
This at least would be the case in a society where things were left to follow
their natural course, where there was perfect liberty, and where every man
was perfectly free both to choose what occupation he thought proper, and to
change it as often as he thought proper. Every man’s interest would prompt
him to seek the advantageous, and to shun the disadvantageous employment.”
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Smith goes on to give many examples of the process and the equilibrium, some-
times in colorful terms. Here is his account of returns to a particular risky occupation:

“Bankruptcies are most frequent in the most hazardous trades. The most haz-
ardous of all trades, that of a smuggler, though when the adventure succeeds
it is likewise the most profitable, is the infallible road to bankruptcy. The pre-
sumptuous hope of success seems to act here as upon all other occasions, and
to entice so many adventurers into those hazardous trades, that their com-
petition reduces their profit below what is sufficient to compensate the risk.
To compensate it completely, the common returns ought, over and above the
ordinary profits of stock, not only to make up for all occasional losses, but to
afford a surplus profit to the adventurers of the same nature with the profit
of insurers.”

Case 2. Entrepreneurship and safety

To move from this general discussion to specifics requires further detailing of the
economics of returns of different activities and how individuals respond to them.
Consider then a second example from the economics literature, in the arena of choice
between risky occupations. Friedman [7] followed the lead of Smith as follows, looking
at Robinson Crusoe on his island:

“At any moment, Robinson Crusoe has many courses of action open to him –
that is, different ways of using his time and the resources on the island. He can
cultivate the arable land intensively or extensively, make one or another kind
of capital goods to assist in cultivation, hunt or fish or do both, and so on in
infinite variety . . . the actual result of the course of action adopted depends
not only on what Robinson Crusoe does but also on such chance events as the
weather, the number of fish in the neighborhood when he happens to fish, the
quality of the seed he plants, the state of his health, and so on.” (p. 279)

With this framework, Friedman [7] goes on to predict income distribution in society
based on risk characteristics of activities and attitudes towards risk of individuals.

However, Kanbur [12] argues that Friedman [7] neglects a key insight of Adam
Smith that individual returns to an activity depend on the number of individuals
in that activity. As more individuals crowd into an attractive looking occupation,
returns to that activity will fall, and will continue to do so till the advantage is
removed – in other words, the equilibrium, is as set out in (5). Kanbur [12] goes on
to the specific occupational arbitrage equilibrium as follows:

“. . . suppose that there are n activities obeying probability densities
f(y;x1, x2, . . . , xn) where y is the return and fi the density in the ith activity,
shown to depend on xi, the proportion of population engaged in the various
activities. Let the utility function of the identical agents be U(y). Then equilib-
rium is defined by a set of xi such that EU(y) =

∫
U(y)fi(y;x∗1, . . . , x

∗
n)dy =∫

U(y)fj(y;x∗1, . . . , x
∗
n)dy, for all i, j, where E is the expectation operator.”

(p. 772)

The core specification thus makes an identification of hi in (4) with∫
U(y)fi(y;x1, . . . , xn) dy, and the application of (5) becomes∫

U(y)fi(y;x∗1, . . . , x
∗
n)dy = EU∗(y) for all i. (6)

After further specification of the dependence of the densities fi on the xi based on
economic production functions, and the shape of the utility function U(y), Kanbur
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[12] derives explicit expressions for income distribution and inequality as a function
of attitudes to risk. Let there be two occupations, one of them safe wage labor which
receives certain wage, and the other uncertain entrepreneurship which hires labor
but in which each individual’s productivity is not known till after the occupation is
entered. Kanbur [12] assumes that output is given by

q = θlα (7)

where l is labor hired by entrepreneur of productivity α. If the wage is w,
entrepreneurial profit is given by

y = θlα − wl. (8)

Profit maximizing labor demand, and maximized profit are given by

l =
(
θα

w

) 1
1−α

(9)

y =
[
(1− α)

(α
w

) α
1−α
]
θ

1
1−α . (10)

Assume that (i) labor demand is determined after entry to occupation and after
knowledge of productivity, (ii) the density of θ is lognormal,

θ ∼ Λ
(
µ, σ2

)
(11)

and (iii) the utility function displays constant relative risk aversion R:

U (y) =
y1−R

1−R
if R 6= 1 and logR if R = 1. (12)

Kanbur [12] then solves for the full occupational choice equilibrium which leaves
individuals indifferent between expected utility in the two occupations, and the wage
adjusts to clear the labor market, with those who choose to be entrepreneurs hiring
those who choose to be workers. In this society, as attitudes to risk become less risk
averse (lower R), more people crowd into the risky occupation in Smithian fashion,
depressing returns there and raising the safe wages till equality of expected utility
is restored. Further, the overall income distribution is a mixture of the lognormal
distribution of profits in entrepreneurship and the safe wage, the weights being the
equilibrium population distribution. Kanbur [12] then carries out an analysis of how
overall inequality changes when individuals become less risk averse.

Case 3. Rural-urban migration

As a third and final example, consider a classic paper in development economics by
Harris and Todaro [9]. The paper sets out to account for rural-urban migration, or
the allocation of population across rural and urban sectors, in developing countries:

“The basic model which we shall employ can be described as a two-sector
internal trade model with unemployment. The two sectors are the permanent
urban and the rural . . . The crucial assumption to be made in our model
is that rural-urban migration will continue so long as the expected urban
real income at the margin exceeds real agricultural product – i.e., prospective
rural migrants behave as maximizers of expected utility . . . (p. 127) . . . an
equilibrium condition, is derived from the hypothesis that migration to the
urban area is a positive function of the urban-rural expected wage differential
. . . clearly then, migration will cease only when the expected income differen-
tial is zero . . . ” (p. 129)
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The model is further specified to capture the Smithian postulate that as popula-
tion crowds into an activity, returns from that activity to any individual will fall. In
this case, the model is that as the urban population increases unemployment in the
urban area increases, thereby reducing the attractiveness of that activity (or, in this
case, that location) since the prospects of high income in the urban area have to be
balanced against the possibility of unemployment. The Harris–Todaro [9] equilibrium
is then an allocation of population across the rural and urban sectors which equalizes
expected income (hi) in the two locations (i = 1 being rural, say, and i = 2 being
urban or the city).

A specialized version of the Harris–Todaro model, developed first in Todaro [23]
suffices to illustrate the basic equilibrating processes. We follow the exposition in
Christiaensen et al. [3]. There is a single, certain, rural income denoted wr. In the
city, however, there are two incomes, a high “formal employment” income wc and a
low “informal employment” income wr:

wc > wr > woc. (13)

Total population is N̄ , and the populations of the two locations are denoted Nr, and
Nc. Formal and informal employment in the city are respectively Ec and Ic,

Nc = Ec + Ic. (14)

The probability of getting a formal sector job is then specified as Ec/(Ec + Ic). The
basic literature then goes on to assume identical individuals who choose location
on the basis of expected income (i.e., they are risk neutral). Thus the equilibrium
condition analogous to (5) and (6) is given by:

wr = [Ec/ (Ec + Ic)]wc + [1− Ec/ (Ec + Ic)]woc. (15)

Equation (15) together with total population solves the distribution of population
across the two locations r and c, and also within c between formal and informal
employment:

Nc =
[
wc − woc
wr − woc

]
Ec; Ic =

[
wc − wr
wr − woc

]
Ec; N̄ = Nr +Nc. (16)

This equilibrium has been extended and elaborated, but it has been the mainstay of
many branches of development economics (for a recent use of the basic framework,
see [2]). The central point, however, is that the full income distribution is determined
through occupational choice equilibrium as a special case of (5).

2 Towards entropy maximization equivalence

Consider now a fourth case, where hi = h (vi, x̄) from (4) is specified, following
Venkatasubramanian et al. [25], as follows:

hi = vi − γ lnxi. (17)

The choice of lnxi for the congestion or the competition term, i.e., for the reduction in
an agents utility due to “overcrowding” from others in the occupational category i, is
a particularly interesting one (we discuss this in more detail in the next section). As
Venkatasubramanian [26] explains, this choice leads to the direct connection between
entropy maximization in statistical mechanics and potential maximization in poten-
tial game theory. That is, the statistical equilibrium of statistical mechanics and the
arbitrage equilibrium of game theory are shown to be equivalent under this choice.
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Now if we apply the equilibrium condition (5) together with condition (1)–(17),
we get the equilibrium distribution of populations across occupations as:

x∗i =
e
vi
γ∑
i e

vi
γ

· (18)

This is, of course, the Gibbs equation which is the solution to the following maximum
entropy problem:

Maxxi −
∑
i

xi lnxi

subject to∑
i

xivi = V∑
i

xi = 1. (19)

Further, from (18), if
vi = α lnSi − β(lnSi)2 (20)

then it can be shown that x∗i has a lognormal density [25,26]. Note that in this case the
constraint

∑
i

xivi = V is not applicable, as discussed by Venkatasubramanian [26].

On the other hand, if
vi = S̄ − Si (21)

then x∗i has an exponential density [1]. Different specifications of the functional rela-
tionship between vi and Si lead to different densities for the equilibrium density x∗i as
a function of Si. For example, the Gamma, Beta, Weibull, Fisk and many others can
be generated by appropriate specification of the functional relationship (see Tab. 1
of [15]).

3 Entropy maximization, arbitrage equilibrium, and income
distribution

There are thus several steps needed to convert the general statement of occupation
arbitrage equilibrium to an equivalence with entropy maximizing distribution of pop-
ulation across occupations. In other words, we need to move sequentially to greater
and greater degrees of specialization, from (3) to (4) to (5) to (17). And then beyond
that to a specification like (20) or (21) to arrive at a specific income distribution den-
sity. Along the way we encounter substantive traditions in economics, from Smith to
Friedman to Harris–Todaro, each of which addresses an economic issue through the
lens of occupational arbitrage equilibrium, but none of which necessarily falls into
the specialization depicted in (17) and then (20), or (21).

Of these steps, the crucial one is the particular choice of lnxi in (17) for the con-
gestion term. As Venkatasubramanian ([26], pp. 61, 62, 120, 121, 246–248) discusses,
without this choice one does not get the connection to entropy maximization. This
term leads directly to entropy in statistical mechanics and information theory. So, as
Venkatasubramanian [26] points out, all the econophysics models in the literature on
income distributions have been making this assumption implicitly without realizing
it. One can miss this point easily if one stays entirely in the statistical mechanics
space. However, if one invokes the occupational choice equilibrium perspective, one
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is forced to reckon with this issue. Here equilibrium is reached when the payoffs or
utilities of all choices are exactly the same. In other words, equilibrium is reached
when the opportunity for arbitrage, i.e., the ability to increase one’s payoff or utility
by simply switching to another option at low or no cost, disappears. This arbitrage
equilibrium (demanded explicitly by the game theoretic formulation in [25]) makes
one recognize the importance of the special choice of lnxi for the connection to
entropy maximization happen, as we will see below.

We know how the specific forms of hi were justified in the occupational choice
stories leading to (6) and (16). Venkatasubramanian [26] presents the following jus-
tification for the particular form of hi as a function of xi and salary Si as shown in
(17) and (20). It will be seen that this involves certain departures from a full-blown
neoclassical model of optimizing individuals.

Venkatasubramanian [26] argues as follows. The utility hi of a job can be thought
of, at the most fundamental level, as the ability to pay bills now so that one can make
a living and the hope that the current job will lead to a better future. One hopes that
the present job will lead to a better one in time, acquired based on the experience
from the current job, and to a series of better jobs in the future, hence to a better
life. This opportunity for a better future, with the expectation of upward mobility, is
valuable to most, if not all, of us. This is the utility of having a fair shot at better
future prospects. We are, of course, prepared to put in the requisite effort, make the
appropriate contribution, to earn such a life. This effort includes not only the effort
we would put into our present jobs but also the effort (and time and money) we
invested in the past to acquire the requisite education, skills, and experience. Thus,
the utility derived from a job is made up of two components: the immediate benefit
of making a living (i.e., “present” utility) and the prospect of a better future life
(i.e., “future” utility).

Hence, the overall utility hi from a job can be seen as determined by three dom-
inant elements: (1) utility ui from salary Si, (2) disutility vi from effort, and (3)
utility wi from a fair opportunity for a better future. Thus, the overall utility of a
job for an agent is given by

hi = ui − vi + wi. (22)

Before modeling these elements further, Venkatasubramanian [26] invokes the last
four decades of research in behavioral economics, that real-life people making complex
real-life decisions are of bounded rationality and are subject to a variety of cogni-
tive traits, attitudes, and preferences [4,10,11,13,18–20,22,24]. They are also limited
in their abilities to process complex information, to compute various quantities, to
evaluate different choices, and to arrive at decisions. Empirical studies have shown
that people suffer from a variety of limitations such as overestimating probabilities
of good outcomes (such as winning a lottery), underestimating probabilities of bad
outcomes (such as the chances of suffering from a disease), experiencing difficulties
in computing expected utilities, and so on.

This real-life behavior is very different from that of the mythical Homo
Economicus, the perfectly rational, unbiased, super-human of unlimited capacity to
process, compute, evaluate, and decide on complex choices as pictured in neoclassical
economics. However, as one might intuitively expect, behavioral studies have shown
that while people are incapable of such Herculean feats, they generally succeed by
using heuristics and approximate models to cope with the complexity in making quick
decisions in real-life [8]. Ballpark estimates, heuristics, and approximate models are
important tools in the problem-solving arsenal of ordinary people in all kinds of sit-
uations. For example, people use ballpark figures and reasoning with approximate
models in negotiations for the price of a home or a car, or for the salary of a new job
offer, and so on, to assess cost-benefit tradeoffs.
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To accomplish this, people often quickly focus on a few key quantities, ignoring
a number of other factors, make estimates, and then reason with an approximate
mental model of the reality using these key quantities. They do this knowing the
potential pitfalls, because they also realize this is the only pragmatic option available
for them. They realize that a more thorough, detailed, and accurate analysis is vir-
tually impossible for most real-life situations because the costs – in terms of money,
time, and effort – are too prohibitive. Sometimes, it simply cannot be done, no mat-
ter how much time, money, or effort is spent, owing to problem complexity. Driven
by such practical considerations, people practice rational inattention [20] and ignore
a variety of less important factors. Furthermore, for the few key elements they have
focused on, they develop approximate mental models and heuristics to help with the
decision-making, evaluating various pros and cons to perform a cost-benefit analysis
to determine the optimal or an acceptable decision under these conditions.

With this background, Venkatasubramanian [26] develops specifications for ui,
vi, and wi. The goal is to develop models that may reflect the approximations used
by people in real-life situations. For the utility derived from salary, we employ the
commonly used logarithmic utility function

ui = α lnSi (23)

where α is a positive parameter. Again, as noted, we are not claiming that people are
necessarily computing logarithms, but people do have an intuitive feel for diminishing
marginal utility of resources. They know that the value of something diminishes and
saturates as they have more and more of it. Such diminishing marginal utility is a
standard assumption in economics.

This kind of approximate model people use is captured by a logarithmic function.
As for the second element, u and v are combined to compute unet = au − bv

(a and b are positive constant parameters), which is the net utility (i.e., net benefit
or gain) derived from a job after accounting for its cost. Typically, net utility will
increase as u increases (e.g., because of salary increase). However, generally, after a
point, the cost has increased so much – due to personal sacrifices such as working
overtime, missing quality time with family, giving up on hobbies, job stress resulting
in poor mental and physical health, etc. – that unet begins to decrease after reaching
a maximum.

The simplest model of this commonly occurring inverted-U profile is a quadratic
function, as in

unet = au− bu2. (24)

Since ui ∼ lnSi, we get vi = u2
i ∼ (lnSi)2.

Therefore,
vi = β(lnSi)2 (25)

where β is a positive parameter.
Again, the motivation here is to develop the simplest possible model that cap-

tures the essence of the underlying phenomenon. For the third element, Venkata-
subramanian [26] considers the following scenario. A group of freshly minted law
school graduates have just been hired by a prestigious New York law firm as asso-
ciates. They have been told that one of them will be promoted as partner in eight
years depending on their performance. Let us say that the partnership is worth $Q
millions over the career of a partner. So any associate’s chance of winning the cov-
eted partnership goes as 1/Ni, where Ni is the number of associates in her peer group
i, her local competition. Therefore, her expected value for the award is Q/Ni, and
the utility derived from it goes as ln(Q/Ni) because of diminishing marginal utility.
While the reward Q lies in the future, were she to win the partnership, the cost is
paid here and now in the form of working hard to compete with her peers.
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Hence we have:
wi = −γ lnNi. (26)

Again, as noted, the Homo Economicus way of properly modelling this element
would require invoking discounted future utility over many time periods, using a
complicated discounting factor, and performing complicated computations. Instead,
we use approximate models to estimate the potential benefits and costs. Equation
(26) is proposed in that spirit – a model that captures the cost of competition.

Combining all three, we have

hi(Si, Ni) = α lnSi − β(lnSi)2 − γ lnNi (27)

where α, β, γ > 0. This equation is essentially the same as the combination of (17)
and (20), if we replace Ni by xi (= Ni

N ).
In general, α, β, and γ, which model the relative importance an agent assigns

to these three elements, can vary from agent to agent. But for a 1-class society, the
simplest case, all agents have the same preferences and hence we can treat these as
constant parameters.

4 Potential game theory and arbitrage equilibrium

Venkatasubramanian et al. [25] show the connection between the arbitrage equilib-
rium and entropy maximization directly through potential game theory. In potential
games [14,16], there exists a single scalar-valued global function, called potential,
that captures the necessary information about the utilities or payoffs. The gradient
of the potential is the payoff or the utility.

Therefore, for the utility hi in (27), we have

hi (x) ≡ ∂φ (x)
∂xi

(28)

where φ(x) is the potential. This naturally leads to

φ (x) =
n∑
i=1

∫
hi (x) dxi. (29)

When one performs the integration using the information in (27), one obtains the
following:

φ (x) = φu + φv + φw + constant (30)

where

φu = α
n∑
i=1

xi lnSi

φv = −β
n∑
i=1

xi (lnSi)
2 (31)

φw =
γ

N
ln

N !∏n
i=1 (Nxi)!

·

We have used Stirling’s approximation to φw obtain. As Venkatasubramanian
et al. [25] observe is essentially the same as entropy in statistical mechanics except
for the missing Boltzmann factor k.
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In potential games, arbitrage equilibrium is reached when the potential is maxi-
mized. We can show that φ(x) the potential is strictly concave, as given by:

∂2φ (x)
∂x2

i

= − γ
xi
< 0. (32)

Therefore, a unique Nash equilibrium exists for this game exists when φ(x) is maxi-
mized [16].

Formulating this optimization using the method of Lagrange multipliers, subject
to the constraint

∑n
i=1 xi = 1, given in (1), we get

L = φ+ λ

(
1−

n∑
i=1

xi

)
. (33)

Solving ∂L/∂xi = 0, we obtain

xi =
1
SiD

exp

{
− [lnSi − (α+ γ) /2β]2

γ/β

}
(34)

where D = N exp [h∗/γ − (α+ γ)2/4βγ] and h∗ is given by (5).
This, of course, is the lognormal distribution of salaries Si.
So by maximizing the game theoretic potential φ(x), subject to the constraint in

(1), we see that from (31) that what we have essentially accomplished is to maximize
entropy subject to the constraints implied by the terms φu and φv, and of course
by (1). Thus, the arbitrage equilibrium demanded by the potential game theoretic
framework, achieved by maximizing potential, is equivalent to the statistical equilib-
rium accomplished by maximizing entropy, subject to the appropriate constraints.
However, for this to happen, as noted, the crucial requirement is the choice of lnxi
(or equivalently lnNi) for the congestion term.

5 Discussion and conclusion

An important aspect of the typical econophysics approaches to income distribution
phenomena in economics is that they do not have appropriate modeling of individuals
making choices, which is, of course, central to conventional economic models. This
paper shows how these two seemingly separate perspectives could be connected by
invoking a perspective of equilibrium through arbitrage in occupational choice.

This paper highlights a mathematical dualism in the determination of individual
incomes via the elimination of arbitrage opportunities: that between occupational
choice equilibrium for individuals with a certain type of preferences and the max-
imization of entropy functionals under constraints on the distribution of individu-
als across income levels or occupations. We show that a particular model of choice
between occupations by individuals leads to an economic equilibrium which can also
be characterized as an outcome which maximizes the entropy of the distribution of
individuals across occupations (and hence across incomes) under a specific choice of
the congestion term in the utility function. This choice leads to entropy maximization
in statistical mechanics. We also link this outcome to the equilibrium structure of
potential games. The arbitrage equilibrium of payoffs in potential games, which is
achieved by maximizing potential, is equivalent to the statistical equilibrium accom-
plished by maximizing entropy, subject to the appropriate constraints. In arbitrage
equilibrium the payoffs of all occupational choices are equal for identical people.
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In statistical equilibrium, the chemical potentials of all options are equal for
molecules. These turn out to be equivalent when the congestion term is lnxi, as
postulated in the specific model in Venkatasubramanian [26].

The equivalence established in this paper between occupational choice equilib-
rium, maximum entropy equilibrium and the equilibrium of potential games is of
course for a specific model with specific functional forms. We fully recognize this lim-
itation. At the very least it shows what precisely is required as a necessary (and per-
haps sufficient) condition to postulate equivalence between the different approaches.
It is a first step in the further exploration of the relationship between these similar
outcomes from very different perspectives. If the exploration is successful, the power
of maximum entropy methods and potential games can be brought to bear on the
analysis of income distribution. Further, the occupational choice interpretation can
provide economic and institutional substance, which is largely missing in the typ-
ical econophysics models. The equivalence can also provide the basis for economic
comparative static analysis, where key economic parameters can be altered to gauge
their impact on income inequality.

Despite the value added we have claimed for bringing together these perspectives
to enrich econophysics on the one hand and income distribution analysis on the other,
we are aware of the conceptual, methodological and modeling challenges involved. We
are grateful to the anonymous referees of this paper for highlighting these challenges
in constructive fashion, and we use some of their own words in what follows to
outline the issues that will need further and deeper and dialogue across economics
and statistical physics.

Coming to the specific and key role of the specification of the congestion effect
as a separable term in the logarithm of the fraction of population in an occupation,
more thought clearly needs to be given to the underlying economics which leads
to this formulation. Venkatasubramanian [26] interprets and motivates as this as the
probability of big success, winning the ultimate prize, in an occupation. But Smithian
congestion could arise in a number of different ways. The typical economic thinking
(including Smith’s) is that equalization across occupations (adjusted for differences
in risk, etc.) works through differences in pay or rates of return. In (17) together
with (20), salary appears entirely disconnected from labor supply in occupation i. In
Kanbur [12], there is a wage that ensures market clearing in the labor market, but it
is not obvious how one gets from that to something like (17), where the congestion
penalty is a separate term from remuneration.

More generally, the issue arises as to how specific economic models of occupational
choice as laid out in Section 1 could lead to a separable logarithmic congestion term –
what specifications of production and preferences could be consistent with a charac-
terization which would be consistent with entropy maximization. The demonstration
exercises in this paper, while interesting and illuminating, raise further questions of
generalizability.

Turning to broader methodological issues, it can be argued that the paper effec-
tively casts entropy as something phenomenological, reflecting homogeneous sub-
jective preferences, and not as a simple combinatorial heuristic quantifying the
support across the economic system’s micro-level configurations enjoyed by differ-
ent macroscopic distributions of income or occupations. It is of course possible to say
large-N systems have a “preference” for higher-entropy states, but that is simply a
metaphorical recognition that those states are more common across all possible states
the system may occupy. As such, we statistically expect systems to evolve toward
higher entropy states. But this is different from the paper’s effective contention that
maximum-entropy states are expressions of a specific pattern of subjective preferences
governing the pursuit of arbitrage opportunities in labor markets. These methodolog-
ical differences are open for further discussion and debate.
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Adam Smith spoke of a society where “every man was perfectly free both to
choose what occupation he thought proper, and to change it as often as he thought
proper” as the basis of his occupational choice equilibrium. Recent developments
in behavioral economics have widened considerably our notions of individual choice
beyond the standard neoclassical model of what is the “proper” basis of choice. While
we have focused on the linkages between the choice based and entropy maximization
outcomes, information theory and statistical mechanics could enable the pursuit of a
nuanced understanding between the micro- and macro-level functioning of systems.
This opens the possibility to move beyond the conventional understanding in eco-
nomics that “scientific rigor” requires casting macroscopic patterns or results in terms
of strongly specified models of homogeneous individual behavior based on quantities
and suppositions that may be difficult to observe or investigate scientifically.

This is not to deny the value of contributions that do indeed seek to characterize
macroscopic outcomes in terms of detailed descriptions of individual characteristics.
It is simply to point to the broader array of possibilities that can be pursued with
these techniques we are taking from information theory and statistical mechanics.
Here recent work by Scharfenaker and Foley [17] on the Quantal-Response Statisti-
cal Equilibrium models is interesting. They may offer a way to draw on Kanbur’s
earlier work (engaging with Friedman’s contributions on occupational choice) to pro-
duce new information-theoretic models of the outcomes of labor-market arbitrage.
Specifically, if hypotheses concerning the elimination of arbitrage opportunities can
be framed in terms of moment constraints (say, expected values of returns across
families of occupations are the same), it may be possible to postulate interesting
maximum-entropy models to express some of the possible macroscopic consequences
of the pursuit of labor-market arbitrage.

Here entropy would be used in the conventional, combinatorial manner, as a way
to characterize the most likely distributions of income under certain types of no-
arbitrage conditions or participation constraints.

Finally, we recognize the long history of attempts to incorporate entropy per-
spectives into economic modeling. Specifically, Foley [5] already makes the claim
that because arbitrage opportunities are systematically eliminated in competitive
markets, they are entropy maximizing. Like the present paper, Foley [5] relaxes the
mainstay behavioral assumptions typical in economics, though in very limited and
specific manner: agents accept any utility improving exchange rather than only the
unique utility maximizing exchange. This makes an interesting case for maximum
entropy approaches for understanding the distribution of market outcomes. Foley
and Smith [6] also build a bridge between classical thermodynamics and general
equilibrium modeling in economics, covering entropy analogues and when they break
down. Our contribution can be seen to be in this longer tradition, but with a focus
on deriving implications for income distribution as well as on bridging statistical
mechanics and potential game theory.

Publisher’s Note The EPJ Publishers remain neutral with regard to jurisdictional claims
in published maps and institutional affiliations.
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