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Abstract. The quantal response behavior widely observed in experi-
ments and observations of human and animal behavior can be derived
as expected payoff maximization subject to a constraint on the entropy
of the subject’s behavior mixed strategy. The Lagrange multiplier cor-
responding to the entropy constraint is an agent’s “behavior tempera-
ture”. Entropy-constrained behavior approximates payoff-maximizing
behavior, but in many contexts exhibits qualitatively different out-
comes. The “endowment effect” and other instances of “loss-aversion”,
for example, can be seen as a consequence of entropy-constrained
behavior. Identical entropy-constrained agents with the same value for
a good or asset will exhibit spontaneous “noise trading”. An entropy-
constrained agent with a lower behavior temperature will systemati-
cally take economic surplus away from an agent with the same valuation
of a good but a higher behavior temperature in bilateral transactions.
The equilibrium of a standard supply-demand models with entropy-
constrained agents is a non-degenerate frequency distribution of trans-
action prices rather than a single equilibrium price. Changes in behavior
temperature can transform social interaction games from prisoners’
dilemmas to assurance games. Entropy-constrained quantal responses
allow quantitative inferences about payoff changes and distribution
stronger than qualitative Pareto comparisons.

1 Choice behavior

The conventional1 economic theory derived from marginalist thinking universally
assumes that individual economic agents have complete and consistent preferences
over outcomes and behave to maximize preferences. This axiom, however, has implica-
tions that are inconsistent with widely-observed human (and, in fact, animal) behav-
ior, and leads to a series of paradoxes and mathematical complications in explaining
economic phenomena. It is my purpose in this paper to explore these points in detail.

Consider a decision-maker who holds a bundle of goods (x1, . . . , xK) confronted
with an offer to receive a quantity of good k, ∆xk, in exchange for a given quantity
of the first good, which we treat as the numéraire, −∆x1 (the price). The decision-
maker, according to the assumption of complete and consistent preferences, either
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Fig. 1. Conventional choice theory predicts a sharp step-function response in the frequency
with which subjects accept an offer to exchange a given quantity of their holdings of some
good for a money price as the price changes, according to the green curve. Observations
invariably show a logistic quantal response to changes in price, according to the red dashed
curve, governed by a parameter that determines how close the response is to the step
function.

prefers the proposed bundle (x1−∆x1, . . . , xk+∆xk) to her original bundle, in which
case she accepts the offer, or prefers her original bundle to the proposed bundle, in
which case she refuses the offer. As illustrated in Figure 1 this implies a sharp step
function in the frequency with which the decision-maker accepts the offer as the price
changes. This implies that the price at which the decision-maker shifts her behavior
can in principle be determined to any desired degree of precision.

One of the best-confirmed results of quantitative psychology and experimental
social science, however, is quantal response, partial randomization of the responses
of human beings (and other organisms) to environmental stimuli as the stimuli move
through regions of transition from one stimulus to another. In the context of the
choice described here, this implies behavior according to the red dashed curve in
Figure 1. The slope of the quantal response is determined by a parameter, and varies
from subject to subject and context to context.

A leading and paradigmatic economic example is the finding of Duncan Luce in
experiments on human subjects’ risk aversion. In these experiments subjects were
offered the choice between a prize B with certainty, and a lottery offering with fre-
quency 1

2 a prize A that the subject consistently preferred to B when offered each
with certainty, and with frequency 1

2 a prize C that the subject consistently preferred
B to when offered each with certainty. The expected utility theorem of John von Neu-
mann and Oskar Morgenstern predicts that an expected utility maximizer has payoffs
for the prizes u[A], u[B], u[C], measurable up to an affine transformation u′ = a+ bu
and values lotteries according to the mathematical expectation of their payoffs. This
theory implies there is a unique outcome payoff u∗ = 1

2u[A] + 1
2u[C], such that the

subject will always choose the certain prize when u[B] > u∗, and always choose
the lottery when u[B] < u∗. (Because payoffs are determined only up to an affine
transformation, without loss of generality we can take u[C] = 0, u[A] = 1.) With this
payoff scale the subject’s certainty equivalent payoff u∗ = 1

2u[A]. Luce discovered, in
line with earlier and independent contemporary psychological researchers, that it is
impossible to determine the payoffs with arbitrary precision because in any experi-
mental setting subjects randomize their choices when the certainty equivalent payoff
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is close to u∗. When u[B] is sufficiently high subjects will (almost) always choose the
certain prize, and when u[B] is sufficiently low subjects will (almost) always choose
the lottery, but in an intermediate interval that cannot be completely eliminated,
subjects sometimes choose the lottery and sometimes choose the certain prize.

Luce found, moreover, that the frequency with which subjects chose the lottery,
f , in this type of experimental setting consistently followed the logistic law

f =
e

1
2u[A]−u[B]

T

1 + e
1
2u[A]−u[B]

T

for a parameter T > 0 that varied with the subject and the experimental protocol.
Although Luce’s experiments involved choices over lotteries, the quantal response

also describes choice behavior between certain outcomes.
Figure 1 summarizes the situation. The horizontal axis represents the price for

some action presented to the subject, and the vertical axis the frequency with which
the subject takes the action given that price (the probability p of success in a series of
Bernoulli trials) While expected utility theory predicts a sharp step-function response
of an expected utility-maximizing subject to changes in the certain payoff, experi-
mental evidence invariably finds an S-shaped logistic response. The closeness of the
logistic response to the step function is expressed by the parameter T . In the (empir-
ically unreachable) limit T → 0, the quantal response converges to the (Heaviside)
step function.

1.1 Natura non facit saltum

The sharp step-function behavior predicted by expected utility theory (and other
economic theories of choice that assume behavior reflects preference maximization
over complete and consistent preferences) is at odds with the presumption of natu-
ral scientists that, except in extreme circumstances of only theoretical significance,
like temperatures of absolute zero, systems tend to exhibit the smoothest behav-
ior compatible with the constraints imposed by natural laws. In mathematical terms
this principle translates into the rule that informational entropy cannot be arbitrarily
low. The informational Shannon entropy of a frequency distribution {f1, . . . , fK} with
fk ≥ 0,∀k,

∑
k fk = 1 is H = −

∑
k fkLog [fk] with the convention that 0Log[0] = 0.

In the context of choice theory, consider the problem of a decision-maker who
can choose among a finite number of actions a1, . . . , aK , knowing the payoff u [ak]
for each2. In general we can represent the behavior of the decision-maker as a mixed
strategy assigning some non-negative frequency fk ≥ 0 to each of the actions, and
resulting in an expected payoff

∑
k fku [ak]. Maximizing expected utility subject only

to the normalization constraint
∑
k fk = 1 will lead the decision-maker to choose the

highest-payoff action with frequency 1 and all the others with frequency 0 (assuming
we perturb payoffs so as to avoid ties). The entropy of this distribution is zero. If,
however, the decision-maker faces a lower bound on the entropy of her mixed strategy,
H̄, she solves the mathematical programming problem:

Max
{f1,...,fK}≥0

∑
fku [ak] subject to

∑
fk = 1,−

∑
fkLog [fk] ≥ H̄.

Because the objective function of this program is linear in the frequencies, and the
entropy is a strictly concave function of the frequencies that defines a convex set for

2 The term “utility” carries with it both the sense of “payoff” and the sense of “welfare”.
Since welfare is not the issue in this context, I will use the term “payoff” to describe the
variable that influences choice behavior.
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the constraints, the first-order conditions of the Lagrangian L[f, µ, T ] =
∑
fku [ak]−

µ (
∑
k fk − 1) + T

(
−
∑
fkLog [fk]− H̄

)
are necessary and sufficient to characterize

the solution. The first-order conditions can be solved to yield:

f [ak] =
e
u[ak]
T∑

k e
u[ak]
T

· (1)

This is the Gibbs distribution, which leads the decision-maker to choose each avail-
able action with a positive frequency, with the logarithm of frequency proportional
to the ratio of the payoff to the Lagrange multiplier T . In physical systems T , the
Lagrange multiplier corresponding to entropy, is referred to as a temperature, and in
the behavioral context can be regarded as a behavioral temperature. The lower the
behavioral temperature, the more concentrated the decision-maker’s behavior is on
the payoff-maximizing action.

In the case where there are only two actions, the Gibbs distribution is

f [a1] =
e
u[a1]
T

e
u[a1]
T + e

u[a2]
T

=
1

1 + e
u[a2]−u[a1]

T

·

This is the logistic function psychological experimentation reveals. One way (though
certainly not the only way) to understand logistic behavior is to regard it as reflect-
ing informational constraints on human (or more generally organismic) responses to
stimuli such as a choice situation, that is, as entropy-constrained behavior3.

Logistic quantal response behavior can be regarded as a generalization of rational
choice theory, in so far as the decision-maker, as in rational choice theory, has well-
defined payoffs over actions, and maximizes expected utility in choosing a mixed
strategy, which results in more frequent choices of higher-payoff actions. The new
element in entropy-constrained behavior is the behavior temperature, which limits
the degree to which the decision-maker can concentrate frequency on the highest-
payoff action.

The implications of entropy-constrained logistic behavior are far-reaching, but
much research in psychology and economics is conducted and interpreted without
taking these implications fully into account.

While logistic quantal response behavior can be regarded as a kind of general-
ization of conventional choice theory, it violates the assumptions of consistency and
completeness of preferences. This violation arises because subjects behaving accord-
ing to a logistic quantal response sometimes choose one option and sometimes another
when presented with exactly the same choice. Conventional economic theory has
responded to this anomaly by seeking one or another way to defend the assumptions
of consistency and completeness of preferences and the principle that observed choice
reflects (unconstrained) payoff maximization. For example, Luce himself derived the
logistic quantal response function he observed empirically by assuming that the sub-
ject is uncertain about the payoff, with the uncertainty represented by a particular
frequency distribution that implies logistic quantal response behavior. Later work
in this field by economists and econometricians such as Chrales Manski and Daniel
McFadden [2] follows this line of interpretation. Unfortunately, as I will argue here,
this way of rationalizing logistic quantal response behavior obscures important eco-
nomic implications and can lead to misleading conclusions. One example is discussed
in Section 2.

3 This derivation of logistic quantal response behavior is essentially equivalent to
Christopher Sims’ theory of “rational inattention” [5].
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It is tempting to think that because entropy-constrained logistic quantal response
behavior approximates full payoff-maximizing behavior the converse is true, so that
models assuming full payoff-maximizing behavior are reliable guides to entropy-
constrained behavior in the real world. But this logic does not hold, because the
limiting case where behavior temperature goes to zero has important qualitative dif-
ferences from entropy-constrained behavior at any positive behavior temperature.
For example, at any positive behavior temperature the entropy-constrained model
predicts that we will observe every available action with some positive (though pos-
sible very low) frequency. But unconstrained payoff-maximization predicts that we
will observe only payoff-maximizing actions.

This point touches the most fundamental aspects of conventional economic the-
ory, including the analysis of market equilibrium through supply and demand curves,
endowment and other loss-aversion effects, the distributional effects of market exchange,
and such key concepts as Bertrand’s “cut-throat competition”. The problem is that
many conclusions that hold for the knife-edge case T = 0 do not hold qualitatively
in the case T > 0, no matter how low the behavior temperature is.

Entropy-constrained behavior leads to smooth average demand functions, even
when the choice set, preferences, and constraints do not meet the convexity require-
ments for continuous demand functions with unconstrained maximization. This fea-
ture of entropy-constraints may help address some of the perplexities produced in
general equilibrium theory because of its commitment to payoff maximization with-
out entropy constraints4.

2 The endowment effect

One important implication of entropy-constrained choice behavior involves observa-
tions on a population of subjects even when they are not actively engaged in eco-
nomic interactions, and they all have identical payoffs and behavior temperatures.
Amos Tversky and Daniel Kahneman [1,6] demonstrated the experimental replicabil-
ity of a wide range of subject behaviors that are anomalous from the point of view of
rational choice theory under the general rubric of “loss-aversion”. One widely-noticed
instance is the “endowment effect”, which purports to demonstrate that ownership
of some good changes the payoff associated with it to its owner. It is instructive to
consider the endowment effect from the point of view of entropy-constrained decision
theory.

In one highly influential and often-replicated experiment, a group of subjects
(typically a college class) are randomly divided into two sub-groups, one of which
receives an “endowment” of an object (such as a coffee mug) of moderate value.
The subjects then report the prices at which they would sell or buy the object. The
mean selling prices reported by the sub-group that received the object are replicably
and statistically significantly higher than the mean buying prices reported by the
sub-group who did not receive the object. Kahneman and Tversky interpret these
reported subjective prices as point estimates of the subjects’ payoffs, and regard the
difference as an endowment effect, reflecting a context-dependent attachment of the
subjects to the things they own.

The difference in buying and selling prices, however, is also a direct implication
of entropy-constrained behavior. If these subjects were offered the opportunity to
buy or sell the object at various prices, entropy-constrained behavior theory predicts
they would respond along a logistic curve at some non-zero temperature. At very low
prices the subject would (almost) always buy, and at very high prices (almost) always

4 For example [3].
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Fig. 2. An entropy-constrained economic agent whose valuation of some good is represented
by the vertical section of the green curve will buy or sell the good with a frequency depending
on the price offered, as represented by the dashed red “Sell” and dotted purple “Buy” logistic
quantal response curves. If asked at what price she would buy or sell the good, the agent
chooses some frequency threshold (the dashed-dotted purple curve) to represent a summary
of her behavior, and will always report a lower buying price than selling price, despite having
a well-defined and stable valuation of the good.

sell, but for some intermediate range of prices the subject will buy with a frequency
that falls with the offered price. If the subjects in the endowment experiment behave
in this way, it is reasonable to suppose that when asked at what price they would buy
or sell the object they interpret the question as referring to some frequency threshold,
such as 90%, and report the price at which they would buy or sell the object with
90% frequency.

As Figure 2 illustrates, if behavior temperature is non-zero, a typical subject will
report a gap between buying and selling prices in this situation, despite having only
a single unchanged payoff for acquiring or keeping the object. The price at which the
object is offered or which is offered for the object is plotted on the horizontal axis,
and the frequency with which a typical subject will buy (the blue dotted curve) or
sell (the red dashed curve) is plotted on the vertical axis. The threshold frequency
the subjects interpret as “willingness to buy or sell” is the purple dashed-dotted line.
All the subjects have the same payoff for owning the object, but the theory of the
endowment effect interprets the differences in reported prices for buying and selling as
representing a shift in a single (zero behavior temperature) valuation of the object as
a result of one sub-group owning it. In the constrained-entropy interpretation of the
experiment, the difference is due to the fact that the sub-group who own the object
are asked about their selling price and the sub-group who do not own the object are
asked about their buying price. But researchers who firmly adhere to the principle
that buying and selling behavior reflect exact maximization of an underlying payoff
will interpret this difference as a change in the agent’s underlying payoff for the good
depending on context. The reader can work out how other instances of apparent
loss-aversion, possibly more disguised, will arise from entropy-constrained behavior.

The issue here is certainly not the empirical replicability of experimental obser-
vations. Logistic quantal response behavior occurs reliably in a wide range of choice
situations, and there is no reason not to believe that the experimental data reported
as supporting loss aversion are highly replicable. The issue is the interpretation of
these experiments as indicating a shift in underlying agent payoffs due to context.
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Conventional choice theory, interpreted as the existence of consistent and com-
plete preferences that can be represented by payoffs, and the principle that actual
behavior represents unconstrained maximization of expected payoff, is surely inconsis-
tent with the evidence from the endowment effect experiences. The question researchers
face is what modifications in the theory are called for by these anomalies. Recognizing
that entropy-constrained quantal response behavior is ubiquitous generalizes conven-
tional choice theory through the introduction of a single new parameter, the behavior
temperature. The theory of loss-aversion, on the other hand, practically requires the
introduction of new parameters for every experimental and observational situation.

This is not to deny that even the generalized entropy-constrained version of choice
theory may be flawed as a tool for the analysis of particular choice situations, and
therefore in need of modifications beyond the introduction of entropy constraints.

3 Spontaneous transactions in markets

A striking example of the failure of conclusions that hold in the limit T → 0 to
be robust qualitatively when T > 0 is the question of whether identical agents will
actually transact. In the case where agents are payoff-maximizers without an entropy
constraint, identical agents have no incentive to transact because there are no poten-
tial gains from trade between them.

The case of entropy-constrained agents is, however, qualitatively different. Sup-
pose the typical agent values the good at µ, has a payoff of buying (selling) a unit of
the good at price p equal to u[p] = µ − p, which is her consumer surplus when her
valuation of the good is µ and operates at a behavior temperature T > 0. Then the
frequencies of buying, f [p], and selling, 1− f [p], at price p are:

f [p] =
1

1 + exp[−µ−pT ]
(2)

1− f [p] =
1

1 + exp[µ−pT ]
· (3)

The frequency of a transaction at price p is f [p](1 − f [p]), the frequency with
which one agent buys at that price and a counterpart agent sells. The frequency of
transactions at price p, τ [p] is, assuming µ = 0, so that p represents the difference
between the transaction price and the typical agent’s value of the good:

τ [p] =
1

1 + exp[ pT ]
1

1 + exp[− p
T ]

=
1

2 + 2 cosh[ pT ]
·

Integrating the frequency over all prices shows that the frequency of spontaneous
transactions among entropy-constrained transactors who have the same valuation of
a good or asset and operate is equal to their behavior temperature, T .

Entropy-constrained behavior provides an explanation for the widely-observed
phenomenon of “noise-trading” in asset and other markets. The derivation shows
that this phenomenon is closely connected to the endowment effect.

4 Distribution with different behavior temperatures

Even if agents’ valuations of a good or asset are the same, differences in behavior
temperatures will lead to unequal gains from transactions, as Figure 4 shows.
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Fig. 3. Identical transactors with the same valuation of a good or asset and the same pos-
itive behavior temperature will generate non-zero spontaneous transactions due to quantal
response effects. The frequency of transactions is equal to T , the area under the frequency
curve.

Fig. 4. When agents with the same valuations but different behavior temperatures transact,
the agent with the lower behavior temperature (the red quantal response) will take money
away from the agent with the higher behavior temperature (the green quantal response).
The high temperature agent sells more often at a low price, and buys more often at a high
price. The net gain is represented by the area between the curves (remembering that the
buyer gains at low prices and the seller at high prices), equal to (Thi − Tlo) ln 2.

With entropy-constrained buying and selling behavior, an agent with a higher
behavior temperature sells more often at lower prices, and buys more often at higher
prices. An example is the ability of experienced bond traders (who can value bonds
relatively precisely) to profit from trades with less experienced customers (who can
value the bonds relatively less precisely). The net transfer of wealth when the payoff
is the difference between transaction price and the transactor’s valuation of the good
is the area between the two quantal responses, (Thi − Tlo) ln 2, and is thus directly
proportional to differences in behavior temperature.
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Fig. 5. When entropy-constrained agents have different valuations of the good or asset,
transactions arise both spontaneously and as a means of realizing potential economic surplus.
The figure plots selling and buying quantal responses for agents with a low valuation of the
good in red and for agents with a high valuation of the good in green. The resulting frequency
of transactions at different prices is plotted in blue. This interaction approximates supply-
demand equilibrium (given the assumption of equal numbers of high- and low-valuation
agents) in that the modal and mean transaction price is the average of the agents’ valuations
of the good.

This is another example of a significant qualitative difference between assuming
that agents maximize payoffs without an entropy constraint, and assuming that there
is an entropy constraint leading to a non-zero behavior temperature. Since the traders
in this example have the same valuation of the good, if they have zero behavior tem-
peratures, there will be no transactions at all, similarly to Figure 3. The transactions
in this scenario neither realize nor destroy economic surplus, since the agents have
the same valuation of the good, but serve only to transfer economic surplus from
high to low behavior temperature transactors.

5 Transactions with different valuations

Conventional economic theory, based on the assumptions that behavior represents
maximization of consistent and complete preferences without an entropy constraint,
generally focuses on cases where there are differences between agents’ valuations of
goods (their marginal rates of substitution or marginal costs), so that there is an
opportunity for mutually advantageous transactions. Figure 5 shows the frequency
of transactions at various prices in this scenario.

In this case there are four possible combinations of agents that can give rise to
transactions: a high valuation agent selling to another high valuation agent; a low
valuation agent selling to another low valuation agent; a high valuation agent selling
to a low valuation agent; and a low valuation agent selling to a high valuation agent.
In the general case these possible configurations have to be weighted by the relative
number of agents of each type.

In this scenario some transactions actually reduce the realization of economic
surplus. This is an unavoidable consequence of the fact that agents maximize payoff
subject to an entropy constraint, and therefore sometimes make what conventional
economic theory would regard as erroneous transactions.
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Fig. 6. When the frequency with which other identical agents choose some action influences
the frequency with which a typical agent chooses that action, quantal response behavior
temperature determines the number and stability of equilibria (which occur on the 45◦

line where all agents act identically). The horizontal axis measures the frequency with
which other agents choose the action and vertical axis the frequency with which the typical
agent’s best response is to choose the action, represented by two quantal response curves.
The green quantal response represents a high behavior temperature: as a result the typical
agent does not respond very much to the behavior of other agents, and there is a single
stable interior equilibrium. The red quantal response represents a low behavior temperature:
as a result the typical agent responds sensitively to the behavior of other agents and the
interior equilibrium becomes unstable and bifurcates into two stable extreme equilibria. The
behavior temperature can transform an interaction from a Prisoners’ Dilemma-like single
equilibrium interaction into an Assurance Game-like multiple equilibrium interaction with
path dependency.

6 Social interaction

Another important consequence of behavior temperature is the multiplicity and sta-
bility of equilibria in a social interaction scenario.

In this scenario the agent responds not to an offered price, but to the average
behavior of other identical agents, measured by the frequency of their choosing some
action. Because the agents are identical, equilibria occur where the quantal response
frequency of the typical agent is equal to the frequency of the other agents, repre-
sented by the 45◦ line in Figure 6. When the behavior temperature of the typical
agent is high, she does not respond much to other agents’ actions, and there is a
single stable interior equilibrium. Given the strategic complementarity implied by
the upward-sloping quantal best response function, this equilibrium will in general
be a Prisoners’ Dilemma–like outcome with agents choosing the action too rarely.
When the behavior temperature of the typical agent is low enough, her quantal best
response cuts the equilibrium locus from below at the interior equilibrium, which
becomes unstable, bifurcating into two stable extreme equilibria. In typical situa-
tions, one or the other of the stable equilibria is preferred by the typical agent,
but which one prevails depends on the initial starting point so that the system is
a path-dependent Assurance Game-like interaction. A change in behavior tempera-
ture transforms the Prisoners’ Dilemma-like interaction into an Assurance Game-like
interaction5.

The quantal response of the typical agent induces a Markov chain on the state
space of profiles of agent behavior in the social interaction model. Given any starting

5 For the stability of social interactions and see, for example [4].
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Fig. 7. Ergodic distributions of the social interaction model at high and low behavior
temperatures. The red line is the best response, which is flat for high behavior temperature,
and steep for low behavior temperature. The blue line is the equilibrium locus. The purple
distribution dots represent the ergodic distribution induced by the social interaction in a
population of n = 100. For high behavior temperatures the ergodic distribution is centered
on the interior stable equilibrium. For low behavior temperatures the ergodic distribution
is bi-modal concentrated on extreme outcomes in which most of the agents choose either
to take or not to take the action. In the low behavior temperature case there is a positive
frequency of transition between the extreme quasi-equilibrium configurations.

profile of agent actions determining the average frequency of the action, the quantal
best response of the typical agent determines the frequency with which any agent
chooses the action in the next period, and, as a consequence, the frequency of any
particular profile of agent actions in the next period. (In the binary case this is just
a binomial distribution.) If there are n agents each with behavior temperature T
and a payoff µ− P , where P is the average frequency of agents choosing the action,
the state of the system in any round of interaction can be described as the number
of agents choosing the action, k = 0, . . . , n, the average frequency of taking the
action will be P = k

n , the frequency with which each agent will choose the action is
f [P ] = 1

1+exp[µ−PT ]
and the transition probabilities from state k to state k′, tk,k′ are:

tk,k′ =
(
n
k′

)
f [
k

n
]k
′
(1− f [

k

n
])n−k

′
. (4)

The resulting Markov chain has an ergodic distribution, which describes the long
run evolution of the system, as Figure 7 illustrates.

The ergodic distribution for high temperature social interactions is centered on
the interior stable equilibrium, but there is a finite frequency for any outcome due to
the fact that the quantal response has a non-zero entropy. The ergodic distribution
for low temperature social interactions is bi-modal, with concentrations at quasi-
equilibria corresponding to the extreme stable equilibria. Again, due to the fact that
the quantal response has non-zero entropy, there is a finite frequency of transition
between the extreme quasi–equilibria6.

7 Quantitative welfare economics

As is the case for other applications of expected utility theory, entropy-constrained
quantal response implies that payoffs are cardinal up to an affine transformation of

6 For the dynamics of transitions between multiple quasi-equilibria in Markov chains see,
for example [7].
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units and zero point. From equation (1), the logarithm of the ratio of the frequencies
with which an entropy-constrained agent chooses two feasible actions is equal to
the difference in implied payoffs to the actions scaled by the behavior temperature.
When agents’ behavior reflects entropy-constrained expected utility maximization,
it is possible to recover quantitative information about payoffs from observations of
behavior.

In scenarios where it makes sense to regard agents as identical, and their payoffs
as interpersonally comparable, the cardinal properties of payoffs permit quantitative
comparisons of payoff outcomes as parameters describing the institutional context
of social interactions change. While conventional economic choice theory makes it
possible, for example, to judge whether a given institutional structure will lead to a
Pareto-efficient outcome which exhausts all possible increases in payoffs, the entropy-
constrained approach supplies quantitative information about the degree to which
any outcome approximates Pareto-efficiency. This quantitative information can be
expressed either in the form of an estimate of the unrealized potential payoff gains
in some particular outcome, or in the form of an estimate of the probability that two
randomly chosen agents could make a mutually advantageous exchange.
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