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Abstract. For an Earth satellite in cislunar space, the effects of
the third or higher-order harmonics in the solar disturbing function
are negligible. For lunar perturbations, however, these terms become
increasingly important as the semimajor axis increases. We investigate
the effects of these higher-order multipole moments on circular, moder-
ate, and highly elliptical orbits, where the semimajor axis is a relatively
large fraction (∼20%) of the Moon’s one. We specifically characterize
the regions of cislunar space where the octupole-order approximation,
often used in celestial and astrophysical dynamics for studying the sta-
bility and fates of hierarchical planetary systems, is actually a valid
truncation of the gravitational interactions.

1 Introduction

The perturbing gravitational forces of the Moon and the Sun acting on Earth satellites
cause both secular and periodic variations to the orbital elements [5,8,16,23,36]. For
near-Earth satellites, the effects of these distant perturbing bodies are often negligible
in comparison to that of the Earth’s oblateness [6], but for satellite orbits that are very
elongated or have semi-major axes of several Earth radii, these lunisolar gravitational
perturbations can change the elements of the orbit to a measurable extent [2,5].
Mathematically, the problem can be cast as a perturbing potential that can be further
expanded into a series of Legendre polynomials in the ratio of the radial distances, a
small quantity for close satellite orbits [27]. Often, we can truncate the series to second
order, so that the lunar and solar potentials are approximated with sufficient accuracy
by quadrupole fields [2,17,23,27,35]. For a satellite in cislunar space, the effects of
the third or higher-order harmonics in the solar disturbing function are negligible.
For lunar perturbations, however, these terms become increasingly important as the
semimajor axis increases [1,18,19,23].

In the celestial and astrophysical dynamics context, the quadrupole approxima-
tion in the secular (doubly-averaged) hierarchical restricted three-body problem gives
rise to the Lidov-Kozai mechanism [10,23]; thought to play an important role in the
formation and evolution of many astronomical systems [28,33]. At that order of series
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truncation, the perturber’s argument of periapsis does not appear and the particle’s
normal component of angular momentum is conserved, enabling the particle’s orbit to
periodically exchange its eccentricity with inclination. Ford et al. [11], Lee and Peale
[20], Katz et al. [14], and Naoz et al. [29] found that qualitatively different behaviors
can occur when the octupole moment of the Legendre expansion is accounted for
in the secular equations. Orbits can reach extremely high eccentricities and undergo
chaotic flips from prograde to retrograde orientation [21,24].

For the vast majority of these studies, only a few comparisons have been made
with direct gravitational N -body integrations [13,20,22,24,25,38]. Lee and Peale [20]
found that the octupole-level secular theory is highly accurate for coplanar, hierar-
chical, two-planet systems with semi-major axes ratios (a/a′) less than about 0.1,
and reasonably accurate for systems with a/a′ as large as 1/3, in the absence of
orbital resonances of the mean-motion type. The general domain of validity of either
the secular quadrupole and octupole approximations, however, has hitherto not been
established.

Returning to the circumterrestrial domain, for the investigation of the Earth’s
magnetosphere and the interplanetary space outside of it, satellites with orbits of
high eccentricity, large semi-major axis, and multi-day period are often used. A basic
question we will address here is whether the octupolar order of approximation can
sufficiently describe the orbital evolution of such systems. In particular, Lidov [23]
stated that the parallactic term (third harmonic or octupole moment) can cause the
eccentricity to build up more rapidly if the orbit is sufficiently large; specifically, that
the parallactic term becomes effective when the object is at a distance of about 10
Earth radii. Similar assertions were made by Musen [27], Allan and Cook [2], and
Cook and Scott [9], but no analysis was conducted to determine the quantitative
effects of higher-order multipoles of the lunar expansion on such distant orbits.

Here, we recover classical secular (i.e., orbit-averaged) equations of motion, writ-
ten in terms of the non-singular Milankovitch vectorial elements, that govern the
long-term evolution of orbits subject to lunisolar perturbations [1,27]. We system-
atically compare numerical simulations of the quadrupole-order and octupole-order
equations, respectively, against precise integrations of the full non-averaged equations
of motion [3]. We ignore here the short-period correction terms in properly specifying
the initial conditions for each formulation [37]; but this omission for singly-averaged
systems is not as serious as it might at first appear [25,30]. We consider semi-major
axes in the range of 4–8× 104 km, all prograde (equatorial) inclinations, and distinct
values of eccentricities of 0, 0.4, and 0.8, respectively. This covers the geosynchronous
region, but also a wide range of the cislunar phase space relevant to both historic
and current scientific missions launched by the US (e.g., AMPTE, Chandra X-ray
Observatory, several EXPLORER series satellites) and Europe (e.g., XMM-Newton,
Cluster II). The limit in semi-major axis was chosen to avoid any low-order lunar
mean-motion resonances, which would invalidate the secular equations of motion.
Future work will focus on hexadecapole- and higher-order multipole secular equa-
tions (qq.v. [13,38]) for treating multi-day period orbits.

2 Problem formulation and averaging

Perturbation theory in celestial mechanics often gives rise to nearly integrable, multi-
dimensional, nonlinear Hamiltonian systems [4,32]. The Kepler Hamiltonian that
describes the orbits of a test particle about a central body of gravitational parameter
µ is given by

HK =
1
2
v2 − µ

r
= − µ

2a
, (1)
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where r = |r|, r being the position vector measured from the center of the body,
v = |v|, v = ṙ, and a is the particle’s semi-major axis. The integrals of motion are
the Hamiltonian HK , and the specific angular momentum and eccentricity vectors

H = r × v, e =
1
µ

v ×H − r

r
· (2)

These vectorial integrals are related to the orbit eccentricity by e = |e| and semi-
major axis by H2 = µa(1 − e2), where H = |H|. Geometrically, H points perpen-
dicular to the orbital plane and e points from the central body toward the orbit’s
pericenter.

A noteworthy feature of celestial mechanics is the use of a potential function,
from which the components of the total perturbing force in the coordinate directions
can be derived by partial differentiation. Taking the central mass as the center of
our dynamical system, the disturbing function (negative potential) arising from an
external body with gravitational parameter µ′ is

R = µ′
[

1
|r − r′|

− r · r′

r′3

]
, (3)

where r′ is the position vector of the perturbing body relative to the central mass and
r′ = |r′|. Assuming r/r′ � 1, the third-body disturbing function can be represented
as an infinite series of Legendre polynomials Pl,0, where the relevant perturbation
terms begin at the quadrupole order as [27]

R =
µ′

r′

∞∑
l=2

( r
r′

)l

Pl,0 (cosψ)

=
µ′

r′

[
r2

r′2

(
−1

2
+

3
2

cos2 ψ
)

+
r3

r′3

(
−3

2
cosψ +

5
2

cos3 ψ
)

+ · · ·
]
, (4)

for which rr′ cosψ = r · r′. The disturbing function can be further expanded in the
form of a Fourier-Taylor series of periodic terms, whose arguments are combinations
of the orbital phase and orientation angles of the particle and the perturbing body,
and whose coefficients depend on the size and shape (semimajor axes and eccentric-
ities) of their orbits and the inclinations [7,12,15,17]:

R = µ′
∞∑

l = 2

l∑

m = 0

l∑

p = 0

l∑

h = 0

∞∑

q =−∞

∞∑

j =−∞

al

a′l+1
εm

(l −m)!

(l +m)!
Fl,m,p(i)Fl,m,h(i′)Hl,p,q(e)Gl,h,j(e′)

× cos
[
(l − 2p)ω + (l − 2p+ q)M − (l − 2h)ω′ − (l − 2h+ j)M ′ +m(Ω− Ω′)

]
, (5)

where a, e, i, Ω, ω, M are the particle’s Keplerian orbital elements, the primed quan-
tities refer to that of the perturbing body, the functions Hl,p,q(e) and Gl,h,j(e′) are
polynomials of order e|q| and e′|j|, respectively, and the functions F are polynomials
in the sine and cosine of half the respective inclinations. This expansion gives rise to
the notion of separation of perturbing effects into periodic and secular variations and
the distinction between fast and slow time variables [26]. The orbit-averaging tech-
nique effectively involves discarding all terms that depend on the fast-varying mean
anomalies; i.e., setting successively l−2p+q = 0 (single averaging) and l−2h+j = 0
(double averaging). Purely secular perturbations are related to terms in the disturb-
ing function expansion with l − 2p = 0, l − 2p + q = 0, l − 2h = 0, l − 2h + j = 0,
and m = 0; these can occur only for even powers of l. Thus, only in the case of an
orbital resonance (a harmonic angle librating), should one generally expect the odd
powers to contribute to the long-term dynamics.
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The Hamiltonian governing the perturbed motion of the test partial can be written
as

H = HK −R. (6)

The perturbation equations can be written in terms of action-angle variables (canon-
ical form) or really any complete set of functionally-independent integrals of the
unperturbed system [4]. Qualitatively, the perturbed Keplerian orbit gains two addi-
tional frequencies, consisting of a precession of the orbit plane and a rotation of
the major axis in the moving orbit plane (nodal and apsidal motion), which are
slow relative to the orbital frequency (i.e., the mean motion). If there are no com-
mensurability relationships involving the mean motions, the Hamiltonian can be
averaged over the successive orbital phases (mean anomalies) of the system to
obtain the secular equations of motion that approximately govern the long-term
behavior.

Averaging can be carried out systematically for each term in the third-body mul-
tipole expansion [q.v., 32]. The singly-averaged equation of motion to quadrupole
order (2nd order in r/r′) can be written in the form [1,27]

ḣquad =
3µ′

2nr′5
[
5 (e · r′) e× r′ − (h · r′) h× r′

]
, (7)

ėquad =
3µ′

2nr′5
[
5 (e · r′) h× r′ − (h · r′) e× r′ − 2r′2h× e

]
. (8)

Here n2 = µ/a3, h = H/na2, and we note that the particle’s semi-major axis a is
constant on average and that solutions are restricted by the constraints h · e = 0
and h · h + e · e = 1. The scaled angular momentum vector and eccentricity vector,
while not canonical variables, have decided advantages over classical element sets in
formulating the perturbation equations [13,14,25,35].

The singly-averaged equations resulting from the octupole term can be stated
as [1]

ḣoct = − 15aµ′

16nr′7

{[
35(e · r′)2 − 5(h · r′)2 + r′

2
(1− 8e2)

]
e× r′ − 10(e · r′)(h · r′)h× r′

}

(9)

ėoct = − 15aµ′

16nr′7

[{[
35(e · r′)2 − 5(h · r′)2 + r′

2
(1− 8e2)

]
h× r′ − 10(e · r′)(h · r′)e× r′

}

− 16r′
3
(e · r′)h× e

]
. (10)

For a satellite on an initially circular orbit (e = 0), the orbit remains circular
throughout under the quadrupole order (or other even degree Legendre polynomials);
but this particular solution is destroyed when the effects of l = 3 (or other odd degree
Legendre polynomials) are taken into account. So even degree polynomials are more
relevant in the long-term dynamics, but the octupolar order is definitely needed when
discussing the perturbed dynamics of low-eccentricity orbits.

Note that both the quadrupole-order and octupole-order equations can subse-
quently be averaged over the perturber’s motion [14,29]; however, these will not be
used here.

3 Numerical exploration

It is the mechanical structure of the satellites and the nature of its orbit that
determine which perturbing forces are significant and which are negligible for any
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particular application. We are not interested here in precise solutions for specific ini-
tial conditions, but rather in quantifying the errors produced by series truncation and
averaging of gravitational force potentials. As such, our perturbation model is limited
to lunar and solar gravity, and we use the THALASSA software tool1 [3] to produce
highly accurate trajectories under the restricted 4-body problem (Earth-Satellite-
Moon-Sun) for an expansive grid of initial conditions. We specifically consider semi-
major axes in the range of 4–8× 104 km, all prograde (equatorial) inclinations, and
distinct values of eccentricities of 0, 0.4, and 0.8, respectively. Simulations are carried
out for 100 years (∼104 orbital revolutions), and the results are displayed in a series
of “error” maps, where the colorbar corresponds to the root mean square (RMS) of
the difference between the THALASSA “truth” trajectory and that produced from the
various approximate models. In particular, we compute the RMS of the difference in
the Delaunay action H , which is conjugate to the ascending node:

H =
√
µa(1− e2) cos i. (11)

The units of length and time are normalized so that the geostationary distance is unity
and the period of Earth’s rotation is equal to 2π; consequently, µ = 1. (As an example,
for circular equatorial orbits of semi-major axis 40 000 km and 80 000 km, respectively,
H ≈ 0.9740 and H ≈ 1.3774. In the simulations considered, H ∈ [0, 1.3774],
initially.)

Figure 1 shows the results of this error analysis corresponding to six different
initial values of semi-major axis, inclination, and eccentricity. The J2000 epoch
date was used for all simulations, and the initial angular quantities were set to
(Ω, ω,M) = (180◦, 90◦, 0). Note that other specific combinations of angles would
lead to different evolutions, in general, particularly when subjected to a resonance
effect. We ignore here the short-period correction terms (i.e., the osculating-to-mean
element transformation; see, e.g., [30]) and thus the initial conditions are the same for
each formulation. The positions of both the Moon and Sun were computed using the
JPL ephemeris (DE431). It can be seen from Figure 1 that the octupole approxima-
tion must be considered when analyzing quasi-circular orbits, and that higher-order
multipoles are needed for more distant orbits.

An output time step of 10 days was used in all simulations and the RMS
error in normalized Delaunay H can be computed. For the example evolutions of
Figure 1, this varied between 0.0017 and 0.2755 for the secular quadrupole model
and between 0.0017 and 0.0730 for the octupole-level dynamics. Figure 2 shows error
maps corresponding to three different initial eccentricities for 200× 200 grids of ini-
tial (equatorial) inclinations and semi-major axes. Each grid point, together with
(Ω, ω,M) = (180◦, 90◦, 0), was used to form the full orbital element state vector,
and the l = 2 and l = 3 singly-averaged equations, respectively, were propagated
for at most 100 years and compared against direct gravitational N -body integrations
(i.e., no truncations or averaging).

We are not concerned here with the nature of the structures visible in each
map, and, generally speaking, the results would be more sensible if casted in ecliptic
inclinations as opposed to equatorial values. The Moon’s inclination to the Earth’s
equator varies between roughly 18.3◦ and 28.6◦, on account of the gravitational

1 The THALASSA Earth-satellite orbit propagation tool, which is freely available through
a GitLab repository (URL: https://gitlab.com/souvlaki/thalassa), uses the variable
step-size and order (up to 12th) LSODAR solver to numerically integrate a collection of regu-
larized formulations of the full equations of motion, which automatically selects the solution
algorithm between the implicit Adams-Bashforth-Moulton and backwards differentiation
formulas.

https://gitlab.com/souvlaki/thalassa
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Fig. 1. Evolution of the Delaunay H for distant circumterrestrial orbits of eccentricity 0
(left) and 0.8 (right). The J2000 epoch date was used for all simulations, and the initial
node, perigee, and mean anomaly angles were set to (Ω, ω,M) = (180◦, 90◦, 0). Each (a, i)
pair was used to form the full orbital element state vector, and the quadrupole-order (red,
dashed) and octupole-order (blue, dash-dot) averaged equations were propagated for at most
100 years and compared against direct N -body integrations using THALASSA (cyan). In the
case of an Earth re-entry trajectory, the evolutions were only compared over the shortest
orbital lifetime, according to all dynamical models. Here, H is dimensionless and the time
unit is the modified Julian date.

action of the Sun. The results appear to be in agreement with the findings of
Lee and Peale [20] for small semi-major axis ratios; the range of validity, however,
shrinks for specific non-coplanar, hierarchical systems. The secular octupole-order
equations give significant improvements over that at quadrupolar order for the maps
produced with initially circular orbits (Fig. 2, top panel). However, no improve-
ments are gained from this additional Legendre term when considering higher ini-
tial eccentricities (middle and bottom panels), where the initial orbit apogees can
exceed 15 Earth radii. (Note that the larger RMS values along the zero degrees
equatorial inclination at distinct semi-major axis values, appearing in the top panel
only, are an artifact; as these points are of no dynamical significance for the
lunisolar perturbation problem and no formulation treated herein suffers from any
singularities.)

The two approximations made in forming the secular equations are a truncation
of the infinite series expansion and an averaging (at the first order) of the Hamilto-
nian over the satellite’s orbital motion. While higher-order averaging techniques can
in principle produce more accurate results [4], the fundamental limitation in recov-
ering the N -body trajectories is the truncation order. Figure 3 shows a comparison
between the quadrupole-order singly-averaged and non-averaged error maps for ini-
tially circular orbits. The latter map was made with the solar potential truncated
at quadrupolar order (a valid assumption for all of circumterrestrial space) and the
lunar potential also truncated at the l = 2 term (Eq. (4)), using THALASSA. The
same structures are present in each map, but within their boundaries, averaging
leads to larger RMS values. Figure 4 shows the comparison at octupole-order for an
initial eccentricity of 0.4. In this case, for these more distant orbits, the averaged and
non-averaged maps are in better agreement as the errors here are dominated by the
truncation order.

From a harmonic analysis of the perturbations (Eq. (5)), one can generally con-
clude that a truncation should always be performed at an even degree Legendre
polynomial [19]. Figure 5 shows maps made with the solar potential truncated at
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Fig. 2. Error maps in the (equatorial) inclination–semi-major axis phase space for initial
eccentricities of 0 (top), 0.4 (middle), and 0.8 (bottom). The J2000 epoch date was used
for all simulations, and the initial node, perigee, and mean anomaly angles were set to
(Ω, ω,M) = (180◦, 90◦, 0). Each grid point was used to form the full orbital element state
vector, and the quadrupole-order (left) and octupole-order (right) averaged equations were
propagated for 100 years and compared against direct gravitational N -body integrations
using THALASSA. The colorbar indicates the root mean square of the difference in Delaunay
action H , as obtained from numerical integrations of the various dynamical models.
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Fig. 3. Error maps in the (equatorial) inclination–semi-major axis phase space for an
initial eccentricity of 0. The J2000 epoch date was used for all simulations, and the ini-
tial node, perigee, and mean anomaly angles were set to (Ω, ω,M) = (180◦, 90◦, 0). Each
grid point was used to form the full orbital element state vector, and the l = 2 singly-
averaged (left) and l = 2 truncated, non-averaged (right) equations, respectively, were
propagated for 100 years and compared against direct gravitational N -body integrations
(i.e., no truncations). The colorbar indicates the root mean square of the difference in
Delaunay action H , as obtained from numerical integrations of the various dynamical
models.
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Fig. 4. Error maps in the (equatorial) inclination–semi-major axis phase space for an
initial eccentricity of 0.4. The J2000 epoch date was used for all simulations, and the
initial node, perigee, and mean anomaly angles were set to (Ω, ω,M) = (180◦, 90◦, 0).
Each grid point was used to form the full orbital element state vector, and the l = 3
singly-averaged (left) and l = 3 truncated, non-averaged (right) equations, respectively,
were propagated for 100 years and compared against direct gravitational N -body integra-
tions (i.e., no truncations). The colorbar indicates the root mean square of the difference
in Delaunay action H , as obtained from numerical integrations of the various dynamical
models.

the l = 2 term and the lunar potential truncated at the l = 4 and l = 6 (Eq. (4)),
respectively, using THALASSA. We can see that already at hexadecapole-order, the
discrepancy with the N -body integrations nearly vanishes.
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Fig. 5. Error maps in the (equatorial) inclination–semi-major axis phase space for initial
eccentricities of 0 (top), 0.4 (middle), and 0.8 (bottom). The J2000 epoch date was used for all
simulations, and the initial node, perigee, and mean anomaly angles were set to (Ω, ω,M) =
(180◦, 90◦, 0). Each grid point was used to form the full orbital element state vector, and
the l = 4 (hexadecapole; left) and l = 6 (right) truncated, non-averaged equations were
propagated for 100 years and compared against direct gravitational N -body integrations,
all using THALASSA. The colorbar indicates the root mean square of the difference in Delaunay
action H , as obtained from numerical integrations of the various dynamical models.
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4 Discussion and conclusions

Averaging appears to be such a natural procedure that many dynamicists do not
even bother to justify the process [26]. Though averaging has proven its use over
the past five decades, its validity should be constantly tested against precise simu-
lations of the full system; especially considering the ubiquity of orbital resonances
in celestial mechanics (see, e.g., [31]). Herein, we have compared detailed numeri-
cal simulations of singly-averaged and non-averaged systems, with a focus on the
octupole-order multipole of the third-body gravitational potential. For semi-major
axes ratios of 0.21 or less, as considered herein, only in the initially circular orbit case
does the octupole-level singly-averaged theory lead to notable improvements over the
quadrupolar order, at least for the Earth-Moon-Sun system. For deeper space probes,
the secular equations must be developed at the hexadecapole-order, or higher. The
implications for the stability and fates of hierarchical planetary systems remain an
open question. The doubly-averaged equations used in these celestial dynamics appli-
cations must still be systematically vetted against the full system, where it becomes
more important to properly account for the short-periodic corrections in the initial
conditions. Future work should address these questions, as well as consider orbits
where the semi-major axis is a substantial fraction of the Moon’s (e.g., the Soviet
space probe, Luna 3 (1959 Theta 1) or the recently launched, Transiting Exoplanet
Survey Satellite (TESS; 2018-038A)), where lunar mean-motion resonances must be
considered.

Some results of this paper were presented at the XIX Colóquio Brasileiro de Dinâmica
Orbital, CBDO, 2018, São José dos Campos, SP, Brazil. This paper has benefited from
insightful comments made by D. Amato, I. Gkolias, and M. Lara. This research has
made use of the THALASSA software package (Astrophysics Source Code Library, record
ascl:1905.018) and NASA’s Astrophysics Data System.

Publisher’s Note The EPJ Publishers remain neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

References

1. R.R. Allan, Q. J. Mech. Appl. Math. 15, 283 (1962)
2. R.R. Allan, G.E. Cook, Proc. R. Soc. Lond. A 280, 97 (1964)
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